118006 |
^QAdd
|
( o1 → o2+o1 )
Adds two polynomials.
|
119006 |
^RADDext
|
( o2 o1 → o2+o1 )
Internal +. This is the same entry as
^QAdd .
|
117006 |
^SWAPRADD
|
( o2 o1 → o1+o2 )
SWAP , then QAdd .
|
115006 |
^QSub
|
( o2 o1 → o2-o1 )
Subtracts two polynomials.
|
116006 |
^RSUBext
|
( o2 o1 → o2-o1 )
Internal -. This is the same entry as
^QSub .
|
114006 |
^SWAPRSUB
|
( o2 o1 → o1-o2 )
SWAP , then QSub .
|
111006 |
^QMul
|
( Q1 Q2 → Q )
Multiplication of polynomials with
extensions.
|
112006 |
^RMULText
|
( Q1 Q2 → Q )
Multiplication of polynomials with
extensions. This is the same entry as
^QMul .
|
110006 |
^SWAPRMULT
|
( Q1 Q2 → Q )
SWAP , then ^QMul .
|
11C006 |
^QDiv
|
( o2 o1 → o2/o1 )
Internal /.
|
11B006 |
^RDIVext
|
( o2 o1 → o2/o1 )
Internal /. This is the same entry as
^QDiv .
|
11A006 |
^SWAPRDIV
|
( o2 o1 → o1/o2 )
SWAP , then QDiv .
|
0D9006 |
^QMod
|
( Q, Z → Q mod Z )
|
0DF006 |
^QRoot
|
Extracts Nth power factors from polynomial.
|
113006 |
^RASOP
|
( n1/d1 n2/d2 → d1*d2 n1*d2 n2*d1 )
Used by RADDext and RSUBext for rational
input.
|
11D006 |
^R15SIMP
|
|
11E006 |
^PPow#
|
|
11F006 |
^RP#
|
( o2 # → o2^# )
Internal power (not for matrices).
|
120006 |
^MPext
|
( ob # prg* → ob^# )
General power with a specified multiplication
program.
|
123006 |
^RPext
|
( o2 o1 → o2^o1 )
Tries to convert o1 to an integer to call
RP# , otherwise x^ext .
|
122006 |
^MPEXEC
|
|
108006 |
^DISTDIVext
|
( P Q → quo mod T )
( P Q → P Q F )
Euclidean division. Assumes P and Q have
integer coefficientes. Returns FALSE if
sparse short division fails.
|
3E5006 |
^PTAYLext
|
( P, r → symb )
Taylor for polynomials.
|
15B006 |
^CARCOMPext
|
( Q1/Q2 → Q1'/Q2' )
Extracts leading coefficients for the first
variable from a rational polynomial.
|
3EE006 |
^QDivRem
|
( ob2 ob1 → quo mod )
Polynomial Euclidean division of 2 objects.
Dispatchs to DIV2LISText for list
polynomials.
|
3EF006 |
^DIV2LISText
|
( Z0 l1 l2 → div mod )
Euclidean division, l1 and l2 are list
polynomials. Test first if l1=l2, then tries
fast division, if it fails switch to SRPL
division.
|
3F8006 |
^PDIV2ext
|
( A B → Q R )
Step by step Euclidean division for univar
poly.
|
3F9006 |
^PSetSign
|
( P1 P2 → sign[P2]*P1 )
Sets sign of P1 according to leading coeff of
P2.
|
3C4006 |
^ModExpa
|
( Zn Fraction → Fraction modulo Zn )
|
3C5006 |
^ModAdd
|
( Q1 Q2 Zn → Z )
Modular addition. Z = Q1+Q2 (mod Zn).
|
3C6006 |
^ModSub
|
( Q1 Q2 Zn → Z )
Modular subtraction. Z = Q1-Q2 (mod Zn).
|
3C7006 |
^ModMul
|
( Q1 Q2 Zn → Z )
Modular multiplication. Z = Q1*Q2 (mod Zn).
|
3C8006 |
^ModDiv
|
( Z1 Z2 Zn → Z )
Modular division. Z = Z1/Z2 (mod Zn).
|
3C9006 |
^ModDiv2
|
( Q1 Q2 Zn → quo mod mod' )
Modular division. mod' = Q1 mod Q2 mod Zn.
If Q1 and Q2 are integers, Q1 mod Q2 mod Zn
is always 0.
|
3CA006 |
^ModInv
|
( Z Zn → Z' )
Modular inversion. Z' = INV(Z) (mod Zn).
NONINTERR if GCD[Z,Zn] ≠ 1 or if Z = 0
(otherwise the results would be
unpredictable).
|
3CB006 |
^ModGcd
|
( Q1 Q2 Zn → Q' )
Modular GCD.
|
3CC006 |
^ModLGCD
|
|
3CD006 |
^ModLOPD
|
|
3CE006 |
^MODULOMODext
|
|
3CF006 |
^MODULOMAText
|
|
3D1006 |
^ModFctr
|
|