3BB006 |
^metasimp
|
( Meta → Meta )
Simplifies a meta object.
Non recursive rational simplification.
|
118007 |
^DISTRIB*
|
( meta → meta' T )
( meta → meta F )
Distribute *.
Returns FALSE if no distribution done.
First available in ROM 1.11.
|
3C2006 |
^DISTRIB/
|
( meta → meta' T )
( meta → meta F )
Distribute /.
Returns FALSE if no distribution done.
|
304006 |
^METASINEXPA
|
( Meta → Meta' )
Expands SIN.
|
305006 |
^SINEXPA+
|
( Meta → Meta' )
Expands SIN(x+y).
|
306006 |
^SINEXPA-
|
( Meta → Meta' )
Expands SIN(x-y).
|
307006 |
^SINEXPA*
|
( Meta → Meta' )
Expands SIN(x*y).
Expands if x or y is an integer.
|
308006 |
^SINEXPA*1
|
( Meta2 Meta1 → Meta' )
Expands SIN(x*y).
Meta1 is assumed to be an integer.
|
30A006 |
^METACOSEXPA
|
( Meta → Meta' )
Expands COS.
|
30B006 |
^COSEXPA+
|
( Meta → Meta' )
Expands COS(x+y).
|
30C006 |
^COSEXPA-
|
( Meta → Meta' )
Expands COS(x-y).
|
30D006 |
^COSEXPA*
|
( Meta → Meta' )
Expands COS(x*y).
|
30E006 |
^COSEXPA*1
|
( meta2 meta1 → Meta' )
Expands COS(x*y).
meta1 represents an integer.
|
310006 |
^METAEXPEXPA
|
( Meta → Meta' )
Expands EXP.
|
311006 |
^EXPEXPA+
|
( Meta → Meta' )
Expands EXP(x+y).
|
312006 |
^EXPEXPA-
|
( Meta → Meta' )
Expands EXP(x-y).
|
313006 |
^EXPEXPA*
|
( Meta → Meta' )
Expands EXP(x*y).
|
314006 |
^EXPEXPANEG
|
( Meta → Meta' )
Expands EXP(-x).
|
315006 |
^EXPEXPA*1
|
( Meta2 meta1 → Meta' )
Expands EXP(x*y).
meta1 represents an integer.
|
317006 |
^METALNEXPA
|
( Meta → Meta' )
Expands LN.
|
318006 |
^LNEXPA*
|
( Meta → Meta' )
Expands LN(x*y).
|
319006 |
^LNEXPA/
|
( Meta → Meta' )
Expands LN(x/y).
|
31A006 |
^LNEXPA^
|
( Meta → Meta' )
Expands LN(x^y).
|
31E006 |
^METATANEXPA
|
( meta → tan[meta] )
Expands tan[meta].
|