[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.4.6 Division, GCD and LCM

3E8006 ^PSEUDODIV ( Q2 Q1 → a Q2*a/Q1 Q2*a/Q1 )
3E9006 ^IDIV2
3EA006 ^BESTDIV2 ( o2 o1 → quo mod )
3EB006 ^CDIV2ext
3EC006 ^QUOText ( o2 o1 → o2 div o1 )
Euclidean quotient of 2 objets (works even if o2 mod o1=0).
3ED006 ^NEWDIVext ( ob2 ob1 → quo mod )
Euclidean division, ob2 and ob1 may be fractions of returns a fraction of Q.
3F3006 ^QUOTOBJext ( a_a-1...a0 bb_1...b0 #b #a flag → r q )
SRPL Euclidean division: step 2 computes the remainder r only if flag is TRUE.
3F4006 ^DIVISIBLE? ( a b → a/b T )
( a b → ob F )
Returns TRUE and quotient if b divides a, otherwise returns FALSE.
3F5006 ^QDiv? ( a b → a/b T )
( a b → F )
Returns TRUE and quotient if b divides a, otherwise returns FALSE.
3F6006 ^FastDiv? ( P Q → P/Q PmodQ T )
Euclidean division. Assumes P and Q have integer or Gaussian integer coefficient. Returns FALSE in complex mode or if sparse short division fails.
3F7006 ^POTENCEext ( z1 z2 → q r )
Step by step Euclidean division for small integers.
2A5006 ^DENOLCMext ( list → ob )
Calculates the LCM of the denominator of the elements of the list. If input is not a list, returns the denominator of the object.
2A6006 ^METADENOLCM ( Meta → ob )
Calculates LCM of the denominators of the elements of Meta.
2B1006 ^LPGCDext ( {} → {} ob )
Calculates the GCD of all the elements in the list. The algorithm is far from optimal.
2B2006 ^SLOWGCDext ( c 1 A B → c* gcd(A,B) )
Euclidean algorithm for polynomial GCD. Used if A or B contains irrquads. c is the GCD of the contents of the original polynomials returned after failure of GCDHEUext.
2B3006 ^QGcd ( ob2 ob1 → gcd )
Generic internal GCD.
( LAM2: GCDext ob1, ob2 → pgcd ).
2B4006 ^GCDext


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Carsten Dominik on May, 30 2005 using texi2html