3E8006 |
^PSEUDODIV
|
( Q2 Q1 → a Q2*a/Q1 Q2*a/Q1 )
|
3E9006 |
^IDIV2
|
|
3EA006 |
^BESTDIV2
|
( o2 o1 → quo mod )
|
3EB006 |
^CDIV2ext
|
|
3EC006 |
^QUOText
|
( o2 o1 → o2 div o1 )
Euclidean quotient of 2 objets (works even if
o2 mod o1=0).
|
3ED006 |
^NEWDIVext
|
( ob2 ob1 → quo mod )
Euclidean division, ob2 and ob1 may be
fractions of returns a fraction of Q.
|
3F3006 |
^QUOTOBJext
|
( a_a-1...a0 bb_1...b0 #b #a flag → r q )
SRPL Euclidean division: step 2 computes the
remainder r only if flag is TRUE .
|
3F4006 |
^DIVISIBLE?
|
( a b → a/b T )
( a b → ob F )
Returns TRUE and quotient if b divides a,
otherwise returns FALSE .
|
3F5006 |
^QDiv?
|
( a b → a/b T )
( a b → F )
Returns TRUE and quotient if b divides a,
otherwise returns FALSE .
|
3F6006 |
^FastDiv?
|
( P Q → P/Q PmodQ T )
Euclidean division. Assumes P and Q have
integer or Gaussian integer coefficient.
Returns FALSE in complex mode or if sparse
short division fails.
|
3F7006 |
^POTENCEext
|
( z1 z2 → q r )
Step by step Euclidean division for small
integers.
|
2A5006 |
^DENOLCMext
|
( list → ob )
Calculates the LCM of the denominator of the
elements of the list. If input is not a list,
returns the denominator of the object.
|
2A6006 |
^METADENOLCM
|
( Meta → ob )
Calculates LCM of the denominators of the
elements of Meta.
|
2B1006 |
^LPGCDext
|
( {} → {} ob )
Calculates the GCD of all the elements in the
list. The algorithm is far from optimal.
|
2B2006 |
^SLOWGCDext
|
( c 1 A B → c* gcd(A,B) )
Euclidean algorithm for polynomial GCD. Used
if A or B contains irrquads. c is the GCD of
the contents of the original polynomials
returned after failure of GCDHEUext .
|
2B3006 |
^QGcd
|
( ob2 ob1 → gcd )
Generic internal GCD.
( LAM2: GCDext ob1, ob2 → pgcd ).
|
2B4006 |
^GCDext
|
|