[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.4.1 Basic Operations and Function Application

125006 ^x+ext ( ob2 ob1 → ob2+ob1 )
Symbolic addition, tests for infinities.
126006 ^x-ext ( ob2 ob1 → ob2-ob1 )
Symbolic subtraction, tests for infinities.
127006 ^x*ext ( ob2 ob1 → ob2*ob1 )
Symbolic multiplication, tests for infinities.
129006 ^x/ext ( ob2 ob1 → ob2/ob1 )
Symbolic division, tests for infinities.
12B006 ^x^ext ( ob power → ob^power )
Power.
12C006 ^EXPAND^ ( x y → x^y=exp[y*ln[x]] )
Power with simplifications. If y is a fraction of integers, use XROOT^ instead.
4FB006 ^QNeg ( ob → -ob )
Symbolic negation.
4FC006 ^RNEGext ( ob → -ob )
Symbolic negation.
4FA006 ^SWAPRNEG ( ob2 ob1 → ob1 -ob2 )
Does SWAP then symbolic negation.
4FE006 ^RREext ( ob → Re(ob) )
Symboloc real part.
4FD006 ^SWAPRRE ( ob2 ob1 → ob1 Re(ob2) )
SWAP, then RREext.
500006 ^RIMext ( ob → Im(ob) )
Symbolic imaginary part.
4FF006 ^SWAPRIM ( ob1 ob2 → ob2 Im(ob1) )
SWAP, then RIMext.
501006 ^xREext ( symb → symb' )
Complex real part. Expands only + - * / ^.
503006 ^xIMext ( symb → symb' )
Complex imaginary part. Expands only + - * / ^.
505006 ^RCONJext ( ob → Conj(ob) )
Symbolic complex conjugate.
507006 ^xSYMCONJ
50D006 ^xABSext ( ob → abs(ob) )
Symbolic ABS function.
50A006 ^RABSext ( ob → abs(ob) )
Internal ABS. Internal representation.
50F006 ^xSYMABS
512006 ^xSYMSIGN
514006 ^xSYMARG
519006 ^CXIRext
52A006 ^xINVext ( ob → 1/ob )
Symbolic inversion.
557006 ^xSYMINV ( symb → 1/symb )
Symbolic inversion.
553006 ^xSQext ( symb → sq(symb) )
Symbolic square.
2EF53 (SYMSQ) ( symb → symb^2 )
Calls ^xSYMSQ for symbolic objects and xSQ for other objects.
555006 ^xSYMSQ ( symb → symb^2 )
51B006 ^SXSQRext ( ob → sqrt(ob) )
Does not take care of the sign.
51C006 ^XSQRext ( ob → sqrt(ob) )
Tries to return a positive square root if nocareflag is cleared.
52B006 ^xvext ( ob → sqrt(ob) )
Symbolic square root, tests for 0 and 1.
552006 ^xSYMSQRT ( symb → sqrt(symb) )
521006 ^CKLN ( ob → ln(ob) )
Symbolic LN with special handling for fractions. Does not use the internal representation.
522006 ^xLNext ( ob → ln(ob) )
Symbolic LN, without fraction handling.
524006 ^xSYMLN
525006 ^EXPANDLN ( ob → ln(ob) )
Symbolic LN using internal representation. Before switching to internal representation, test for ABS, 0 and 1 and, in real mode, test if ob=exp(x).
528006 ^REALLN ( ob → ln(ob) )
Internal natural logarithm for a real argument.
526006 ^CMPLXLN ( ob → ln(ob) )
Internal complex natural logarithm.
527006 ^LNATANext ( ob → ln(ob) )
Internal natural logarithm for complex.
529006 ^xEXPext ( y d n → exp(y*n/d*i*π) )
Symbolic EXP, tests for 0, infinity and i*k*π/12 where k is an integer. Tests for d=1,2,3,4,6.
52C006 ^xCOSext ( ob → cos(ob) )
Symbolic COS, tests for 0 and multiples of π/12. Also tests if ob=acos(x) or ob=asin(x).
536006 ^xSYMCOS ( ob → cos(ob) )
533006 ^xACOSext ( ob → acos(ob) )
Symbolic ACOS. Tests for 0, infinity and tables.
53F006 ^xSYMACOS ( ob → acos(ob) )
52D006 ^xSINext ( ob → sin(ob) )
Symbolic SIN, tests for 0 and multiplies of π/12. Also tests if ob=acos(x) or ob=asin(x).
538006 ^xSYMSIN ( ob → sin(ob) )
532006 ^xASINext ( ob → asin(ob) )
Symbolic ASIN. Tests for 0, infinity and tables.
53D006 ^xSYMASIN ( ob → asin(ob) )
52E006 ^xTANext ( ob → tan(ob) )
Symbolic TAN. Tests for 0 and multiplies of π/12. Also tests if ob=atan(x).
53A006 ^xSYMTAN ( ob → tan(ob) )
534006 ^xATANext ( ob → atan(ob) )
Symbolic ATAN. Tests for 0, infinity and tables.
541006 ^xSYMATAN ( ob → atan(ob) )
52F006 ^xCOSHext ( ob → cosh(ob) )
Symbolic COSH. Tests for 0, infinity and acosh(x).
545006 ^xSYMCOSH ( ob → cosh(ob) )
54E006 ^xACOSHext ( symb → acosh(symb) )
Symbolic ACOSH.
550006 ^xSYMACOSH ( symb → acosh(symb) )
530006 ^xSINHext ( ob → sinh(ob) )
Symbolic SINH. Tests for 0, infinity and asinh(x).
543006 ^xSYMSINH ( ob → sinh(ob) )
54B006 ^xASINHext ( symb → symb' )
Symbolic ASINH.
54D006 ^xSYMASINH ( symb → asinh(symb) )
531006 ^xTANHext ( ob → tanh(ob) )
Symbolic TANH. Tests for 0 and atanh(x).
547006 ^xSYMTANH ( ob → tanh(ob) )
Symbolic TANH.
548006 ^xATANHext ( symb → symb' )
Symbolic ATANH.
54A006 ^xSYMATANH ( ob → atanh(ob) )
55B006 ^xSYMD>R
55D006 ^xSYMR>D
55F006 ^xSYMFLOOR ( symb → symb' )
561006 ^xSYMCEIL ( symb → symb' )
563006 ^xSYMIP ( symb → symb' )
565006 ^xSYMFP ( symb → symb' )
567006 ^xSYMXPON ( symb → symb' )
569006 ^xSYMMANT ( symb → symb' )
56B006 ^xSYMLNP1 ( symb → symb' )
56D006 ^xSYMLOG ( symb → symb' )
56F006 ^xSYMALOG ( symb → symb' )
571006 ^xSYMEXPM1 ( symb → symb' )
572006 ^factorial ( symb → symb! )
Symbolic factorial.
573006 ^facts ( symb → symb! )
Symbolic factorial.
575006 ^xSYMFACT ( symb → symb! )
578006 ^xSYMNOT ( symb → symb' )
128006 ^x=ext ( ob2 ob1 → ob2=ob1 )
12E006 ^xssSYMXROOT
3AC006 ^xssSYM+
3AE006 ^xssSYM-
3B0006 ^xssSYM*
3B2006 ^xssSYM/
3B6006 ^xssSYM^
3B8006 ^xSYMCHS
130006 ^xssSYMMIN
132006 ^xssSYMMAX
134006 ^xssSYM<?
136006 ^xssSYM<=?
138006 ^xssSYM>?
13A006 ^xssSYM>=?
13C006 ^xssSYM=?
13E006 ^xssSYM#?
140006 ^xssSYM%
142006 ^xssSYM%CH
144006 ^xssSYM%T
146006 ^xssSYMMOD
148006 ^xssSYMTRCXY
14A006 ^xssSYMRNDXY
14C006 ^xssSYMCOMB
14E006 ^xssSYMPERM
150006 ^xssSYMOR
152006 ^xssSYMAND
154006 ^xssSYMXOR


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Carsten Dominik on May, 30 2005 using texi2html