125006 |
^x+ext
|
( ob2 ob1 → ob2+ob1 )
Symbolic addition, tests for infinities.
|
126006 |
^x-ext
|
( ob2 ob1 → ob2-ob1 )
Symbolic subtraction, tests for infinities.
|
127006 |
^x*ext
|
( ob2 ob1 → ob2*ob1 )
Symbolic multiplication, tests for
infinities.
|
129006 |
^x/ext
|
( ob2 ob1 → ob2/ob1 )
Symbolic division, tests for infinities.
|
12B006 |
^x^ext
|
( ob power → ob^power )
Power.
|
12C006 |
^EXPAND^
|
( x y → x^y=exp[y*ln[x]] )
Power with simplifications. If y is a
fraction of integers, use XROOT^ instead.
|
4FB006 |
^QNeg
|
( ob → -ob )
Symbolic negation.
|
4FC006 |
^RNEGext
|
( ob → -ob )
Symbolic negation.
|
4FA006 |
^SWAPRNEG
|
( ob2 ob1 → ob1 -ob2 )
Does SWAP then symbolic negation.
|
4FE006 |
^RREext
|
( ob → Re(ob) )
Symboloc real part.
|
4FD006 |
^SWAPRRE
|
( ob2 ob1 → ob1 Re(ob2) )
SWAP , then RREext .
|
500006 |
^RIMext
|
( ob → Im(ob) )
Symbolic imaginary part.
|
4FF006 |
^SWAPRIM
|
( ob1 ob2 → ob2 Im(ob1) )
SWAP , then RIMext .
|
501006 |
^xREext
|
( symb → symb' )
Complex real part.
Expands only + - * / ^.
|
503006 |
^xIMext
|
( symb → symb' )
Complex imaginary part.
Expands only + - * / ^.
|
505006 |
^RCONJext
|
( ob → Conj(ob) )
Symbolic complex conjugate.
|
507006 |
^xSYMCONJ
|
|
50D006 |
^xABSext
|
( ob → abs(ob) )
Symbolic ABS function.
|
50A006 |
^RABSext
|
( ob → abs(ob) )
Internal ABS.
Internal representation.
|
50F006 |
^xSYMABS
|
|
512006 |
^xSYMSIGN
|
|
514006 |
^xSYMARG
|
|
519006 |
^CXIRext
|
|
52A006 |
^xINVext
|
( ob → 1/ob )
Symbolic inversion.
|
557006 |
^xSYMINV
|
( symb → 1/symb )
Symbolic inversion.
|
553006 |
^xSQext
|
( symb → sq(symb) )
Symbolic square.
|
2EF53 |
(SYMSQ)
|
( symb → symb^2 )
Calls ^xSYMSQ for symbolic objects and xSQ
for other objects.
|
555006 |
^xSYMSQ
|
( symb → symb^2 )
|
51B006 |
^SXSQRext
|
( ob → sqrt(ob) )
Does not take care of the sign.
|
51C006 |
^XSQRext
|
( ob → sqrt(ob) )
Tries to return a positive square root if
nocareflag is cleared.
|
52B006 |
^xvext
|
( ob → sqrt(ob) )
Symbolic square root, tests for 0 and 1.
|
552006 |
^xSYMSQRT
|
( symb → sqrt(symb) )
|
521006 |
^CKLN
|
( ob → ln(ob) )
Symbolic LN with special handling for
fractions. Does not use the internal
representation.
|
522006 |
^xLNext
|
( ob → ln(ob) )
Symbolic LN, without fraction handling.
|
524006 |
^xSYMLN
|
|
525006 |
^EXPANDLN
|
( ob → ln(ob) )
Symbolic LN using internal representation.
Before switching to internal representation,
test for ABS, 0 and 1 and, in real mode, test
if ob=exp(x).
|
528006 |
^REALLN
|
( ob → ln(ob) )
Internal natural logarithm for a real
argument.
|
526006 |
^CMPLXLN
|
( ob → ln(ob) )
Internal complex natural logarithm.
|
527006 |
^LNATANext
|
( ob → ln(ob) )
Internal natural logarithm for complex.
|
529006 |
^xEXPext
|
( y d n → exp(y*n/d*i*π) )
Symbolic EXP, tests for 0, infinity and
i*k*π/12 where k is an integer.
Tests for d=1,2,3,4,6.
|
52C006 |
^xCOSext
|
( ob → cos(ob) )
Symbolic COS, tests for 0 and multiples of
π/12. Also tests if ob=acos(x) or
ob=asin(x).
|
536006 |
^xSYMCOS
|
( ob → cos(ob) )
|
533006 |
^xACOSext
|
( ob → acos(ob) )
Symbolic ACOS. Tests for 0, infinity and
tables.
|
53F006 |
^xSYMACOS
|
( ob → acos(ob) )
|
52D006 |
^xSINext
|
( ob → sin(ob) )
Symbolic SIN, tests for 0 and multiplies of
π/12. Also tests if ob=acos(x) or
ob=asin(x).
|
538006 |
^xSYMSIN
|
( ob → sin(ob) )
|
532006 |
^xASINext
|
( ob → asin(ob) )
Symbolic ASIN. Tests for 0, infinity and
tables.
|
53D006 |
^xSYMASIN
|
( ob → asin(ob) )
|
52E006 |
^xTANext
|
( ob → tan(ob) )
Symbolic TAN. Tests for 0 and multiplies of
π/12. Also tests if ob=atan(x).
|
53A006 |
^xSYMTAN
|
( ob → tan(ob) )
|
534006 |
^xATANext
|
( ob → atan(ob) )
Symbolic ATAN. Tests for 0, infinity and
tables.
|
541006 |
^xSYMATAN
|
( ob → atan(ob) )
|
52F006 |
^xCOSHext
|
( ob → cosh(ob) )
Symbolic COSH. Tests for 0, infinity and
acosh(x).
|
545006 |
^xSYMCOSH
|
( ob → cosh(ob) )
|
54E006 |
^xACOSHext
|
( symb → acosh(symb) )
Symbolic ACOSH.
|
550006 |
^xSYMACOSH
|
( symb → acosh(symb) )
|
530006 |
^xSINHext
|
( ob → sinh(ob) )
Symbolic SINH. Tests for 0, infinity and
asinh(x).
|
543006 |
^xSYMSINH
|
( ob → sinh(ob) )
|
54B006 |
^xASINHext
|
( symb → symb' )
Symbolic ASINH.
|
54D006 |
^xSYMASINH
|
( symb → asinh(symb) )
|
531006 |
^xTANHext
|
( ob → tanh(ob) )
Symbolic TANH. Tests for 0 and atanh(x).
|
547006 |
^xSYMTANH
|
( ob → tanh(ob) )
Symbolic TANH.
|
548006 |
^xATANHext
|
( symb → symb' )
Symbolic ATANH.
|
54A006 |
^xSYMATANH
|
( ob → atanh(ob) )
|
55B006 |
^xSYMD>R
|
|
55D006 |
^xSYMR>D
|
|
55F006 |
^xSYMFLOOR
|
( symb → symb' )
|
561006 |
^xSYMCEIL
|
( symb → symb' )
|
563006 |
^xSYMIP
|
( symb → symb' )
|
565006 |
^xSYMFP
|
( symb → symb' )
|
567006 |
^xSYMXPON
|
( symb → symb' )
|
569006 |
^xSYMMANT
|
( symb → symb' )
|
56B006 |
^xSYMLNP1
|
( symb → symb' )
|
56D006 |
^xSYMLOG
|
( symb → symb' )
|
56F006 |
^xSYMALOG
|
( symb → symb' )
|
571006 |
^xSYMEXPM1
|
( symb → symb' )
|
572006 |
^factorial
|
( symb → symb! )
Symbolic factorial.
|
573006 |
^facts
|
( symb → symb! )
Symbolic factorial.
|
575006 |
^xSYMFACT
|
( symb → symb! )
|
578006 |
^xSYMNOT
|
( symb → symb' )
|
128006 |
^x=ext
|
( ob2 ob1 → ob2=ob1 )
|
12E006 |
^xssSYMXROOT
|
|
3AC006 |
^xssSYM+
|
|
3AE006 |
^xssSYM-
|
|
3B0006 |
^xssSYM*
|
|
3B2006 |
^xssSYM/
|
|
3B6006 |
^xssSYM^
|
|
3B8006 |
^xSYMCHS
|
|
130006 |
^xssSYMMIN
|
|
132006 |
^xssSYMMAX
|
|
134006 |
^xssSYM<?
|
|
136006 |
^xssSYM<=?
|
|
138006 |
^xssSYM>?
|
|
13A006 |
^xssSYM>=?
|
|
13C006 |
^xssSYM=?
|
|
13E006 |
^xssSYM#?
|
|
140006 |
^xssSYM%
|
|
142006 |
^xssSYM%CH
|
|
144006 |
^xssSYM%T
|
|
146006 |
^xssSYMMOD
|
|
148006 |
^xssSYMTRCXY
|
|
14A006 |
^xssSYMRNDXY
|
|
14C006 |
^xssSYMCOMB
|
|
14E006 |
^xssSYMPERM
|
|
150006 |
^xssSYMOR
|
|
152006 |
^xssSYMAND
|
|
154006 |
^xssSYMXOR
|
|