3B178 | 
 x^
 | 
( y x → y^x ) 
Power Analytic Func 
-- 
Returns the value of the level 2
object raised to the power of the
level 1 object. 
w      z      → w^z 
z      'sym'  → 'z^sym' 
'sym'  z      → '(sym)^z' 
'sym1' 'sym2' → 'sym1^(sym2)' 
x_u    y      → xy_uy 
x_u    'sym'  → '(x_u)^(sym)' 
-- 
Flags: -1 -3 
Principal soln  -1 
Numeric results -3 
-- 
Related: EXP,ISOL,LN,XROOT
 | 
3B639 | 
 xSQRT
 | 
( x → x' ) 
Square Root Analytic Func 
-- 
Returns the (+ve) square root of
the argument. 
-- 
z     → √z 
x_u   → √(x)_u 
'sym' → 'SQRT(sym)' 
-- 
Flags: -1 -3 
-- 
Related: SQ,^,ISOL
UserRPL: x√
 | 
3AAF5 | 
 xPI
 | 
(  → π ) 
PI Func 
-- 
Returns the symbolic constant 'π'
or its numerical representation,
3.14159265359. 
→ 'π' 
→ 3.14159265359 
-- 
Flags: -2 -3 
-- 
Related: e,i,MAXR,MINR,→Qπ
UserRPL: xπ
 | 
3E049 | 
 x<=?
 | 
( x y → 1 ) 
( x y → 0 ) 
Less Than or Equal Func 
-- 
Tests whether one object is less
than or equal to another object. 
-- 
x      y      → 0/1 
#n1    #n2    → 0/1 
"str1" "str2" → 0/1 
x      'sym'  → 'x<=sym' 
'sym'  z      → 'sym<=z' 
'sym1' 'sym2' → 'sym1<=sym2' 
x_u1   y_u2   → 0/1 
x_u    'sym'  → 'x_unit<=sym' 
'sym'  x_u    → 'sym<=x_unit' 
-- 
Flags: -3 
-- 
Related: <,>,≥,==,≠
UserRPL: x≤
 | 
3E0ED | 
 x>=?
 | 
( x y → 1 ) 
( x y → 0 ) 
Greater Than or Equal Func 
-- 
x      y      → 0/1 
#n1    #n2    → 0/1 
"str1" "str2" → 0/1 
x      'sym'  → 'x≥sym' 
'sym'  z      → 'sym≥z' 
'sym1' 'sym2' → 'sym1≥sym2' 
x_u1   y_u2   → 0/1 
x_u    'sym'  → 'x_u≥sym' 
'sym' x_u     → 'sym≥x_u' 
-- 
Flags: -3 
-- 
Related: <,≤,>,==,≠
UserRPL: x≥
 | 
3DF0F | 
 x#?
 | 
( x y → 1 ) 
( x y → 0 ) 
Not Equal Func 
-- 
Tests if two objects are equal. 
obj1   obj2   → 0/1 
(x,0)  x      → 0/1 
x      (x,0)  → 0/1 
z      'sym'  → 'z≠sym' 
'sym'  z      → 'sym≠z' 
'sym1' 'sym2' → 'sym1≠sym2' 
-- 
Flags: -3 
-- 
Related: SAME,TYPE,<,≤,>,≥, ==
UserRPL: x≠
 | 
3EC15 | 
 xRPN->
 | 
( ob1 .. obn →  ) 
Create Local Variables Cmd 
-- 
Creates local variables. 
obj1 ... objn → 
-- 
Syntax: 
→ name1 name2 ... nameN « prog » 
→ name1 name2 ... nameN 'Expr' 
-- 
Related: DEFINE,STO
UserRPL: x→
 | 
3E57E | 
 xALG->
 | 
 
Create local variable comand.
<REF>xRPN->
UserRPL: x→
 | 
3BD96 | 
 xFACT
 | 
( x → x' ) 
Factorial (Gamma) Func 
-- 
Returns the factorial n! of a
positive integer argument n, or
the gamma function ¢(x+1) of a
non-integer argument x. 
n     → n! 
x     → ¢(x+1) 
'sym' → '(sym!)' 
-- 
Flags: -3 -20 -21 
Numerical Results   -3 
Underflow exception -20 
Overflow exception  -21 
-- 
Related: COMB,PERM
UserRPL: x!
 | 
3C452 | 
 x%
 | 
( x y → xy/100 ) 
Percent Func 
-- 
Returns x (level 2) percent of y
(level 1). 
x      y      → xy/100 
x      'sym'  → '%(x,sym)' 
'sym'  x      → '%(sym,x)' 
'sym1' 'sym2' → '%(sym1,sym2)' 
x      y_unit → (xy/100)_unit 
x_unit y      → (xy/100)_unit 
'sym'  x_unit → '%(sym,x_unit)' 
x_unit 'sym'  → '%(x_unit,sym)' 
-- 
Flags: 
Numerical Results -3 
-- 
Related: %CH,%T
 | 
3AB9F | 
 x+
 | 
( x y → x+y ) 
Add Analytic Func 
-- 
Returns the sum of the arguments.
Addition. If one arg is list, insert element
in list or concatenate lists. <REF>xADD 
z1       z2       → z1+z2 
[ arr ]1 [ arr ]2 → [ arr ]1+2 
z        'sym'    → 'z+(sym)' 
'symb'   z        → 'sym+z' 
'sym1'   'sym2'   → 'sym1 + sym2' 
{ lst1 } { lst2 } → { lst1 lst2 } 
obj      { o... } → { obj o... } 
{ o... } o        → { o... obj } 
"str1"   "str2"   → "str1str2" 
obj      "str"    → "obj str" 
"str"    obj      → "str obj" 
#n1      n2       → #n' 
n1       #n2      → #n' 
#n1      #n2      → #n' 
x1_u1    y_u2     → (x2+y)_u2 
'sym'    x_u      → 'sym+x_u' 
x_u      'sym'    → 'x_u+sym' 
grob1    grob2    → grob' 
-- 
Flags: -3 -4 -5 -6 -7 -8 -9 -10 
Numeric results -3 
Bint wordsize   -5 → -10 
-- 
Related: -,*,/,=
 | 
3AD68 | 
 x-
 | 
( x y → x-y ) 
Subtract Analytic Func 
-- 
Returns the difference of the
arguments: the object in level 1
is subtracted from the object in
level 2. 
z1       z2       → z1-z2 
[ arr ]1 [ arr ]2 → [ arr ]1_2 
z        'sym'    → 'z-sym' 
'sym'    z        → 'sym-z' 
'sym1'   'sym2'   → 'sym1 - sym2' 
#n1      n2       → #n' 
n1       #n2      → #n' 
#n1      #n2      → #n' 
x1_u1    y_u2     → (x2-y)_u2 
'sym'    x_u      → 'sym-x_u' 
x_u      'sym'    → 'x_u-sym' 
-- 
Flags: -3 
Numeric results -3 
-- 
Related: +,*,/,=
 | 
3AFCA | 
 x/
 | 
( x y → x/y ) 
Divide Analytic Func 
-- 
Returns the quotient of the
arguments: the level 2 object
divided by the level 1 object.
(Abbrev. _u = _unit) 
z1      z2        → z1 / z2 
[ arr ] [[ mat ]] → [[mat^-1×arr]] 
[ arr ] z         → [ arr / z ] 
z       'sym'     → 'z / sym' 
'sym'   z         → 'sym / z' 
'sym1'  'sym2'    → 'sym1 / sym2' 
#n1     n2        → #n' 
n1      #n2       → #n' 
#n1     #n2       → #n' 
x_u1    y_u2      → (x/y)_u1/u2 
x       y_u       → (x/y)_1/u 
x_u     y         → (x/y)_u 
'sym'   x_u       → 'sym/x_u' 
x_u     'sym'     → 'x_u/sym' 
-- 
Related: +,-,*,=,RATIO
 | 
3C685 | 
 x<
 | 
( x y → 1 ) 
( x y → 0 ) 
Less Than Func 
-- 
Tests whether one object is less
than another object. 
x      y      → 0/1 
#n1    #n2    → 0/1 
"str1" "str2" → 0/1 
x      'sym'  → 'x<sym' 
'sym'  x      → 'sym<z' 
'sym1' 'sym2' → 'sym1<sym2' 
x_u1   y_u2   → 0/1 
x_u    'sym'  → 'x_u<sym' 
'sym'  x_u    → 'sym<x_u' 
-- 
Flags: -3 
Numeric results -3
 | 
3A8DD | 
 x=
 | 
( x y → x=y ) 
Makes equation out of two expressions.
Equals Analytic Func 
-- 
Returns an equation formed from
the two arguments. 
z1     z2     → 'z1=z2' 
z      'sym'  → 'z=sym' 
'sym'  z      → 'sym=z' 
'sym1' 'sym2' → 'sym1=sym2' 
y      x_u    → 'y=x_u' 
y_u    x      → 'y_u=x' 
y_u    x_u    → 'y_u=x_u' 
'sym'  x_u    → 'sym=x_u' 
x_u    'sym'  → 'x_u=sym' 
-- 
Flags: -3 
Numeric results -3 
-- 
Related: DEFINE,EVAL,-
 | 
3C7B9 | 
 x==
 | 
( x y → 1 ) 
( x y → 0 ) 
Logical Equality Func 
-- 
Tests if two objects are equal. 
obj1   obj2   → 0/1 
(x,0)  x      → 0/1 
x      (x,0)  → 0/1 
z      'sym'  → 'z==sym' 
'sym'  z      → 'sym==z' 
'sym1' 'sym2' → 'sym1==sym2' 
-- 
Flags: -3 
Numeric results -3 
-- 
Related: SAME,TYPE,<,≤,>,≥,≠
 | 
3C729 | 
 x>
 | 
( x y → 1 ) 
( x y → 0 ) 
Greater Than Func 
-- 
Tests whether one object is
greater than another object. 
x      y      → 0/1 
#n1    #n2    → 0/1 
"str1" "str2" → 0/1 
x      'sym'  → 'x>sym' 
'sym'  z      → 'sym>z' 
'sym1' 'sym2' → 'sym1>sym2' 
x_u1   y_u2   → 0/1 
x_u    'sym'  → 'x_u>sym' 
'sym'  x_u    → 'sym>x_u' 
-- 
Flags: -3 
Numeric results -3 
-- 
Related: <,≤,≥,==,≠
;
 |