3B178 |
x^
|
( y x → y^x )
Power Analytic Func
--
Returns the value of the level 2
object raised to the power of the
level 1 object.
w z → w^z
z 'sym' → 'z^sym'
'sym' z → '(sym )^z'
'sym1' 'sym2' → 'sym1^(sym2)'
x_u y → xy_uy
x_u 'sym' → '(x_u)^(sym )'
--
Flags: -1 -3
Principal soln -1
Numeric results -3
--
Related: EXP,ISOL,LN,XROOT
|
3B639 |
xSQRT
|
( x → x' )
Square Root Analytic Func
--
Returns the (+ve) square root of
the argument.
--
z → √z
x_u → √(x)_u
'sym' → 'SQRT(sym )'
--
Flags: -1 -3
--
Related: SQ,^,ISOL
UserRPL: x√
|
3AAF5 |
xPI
|
( → π )
PI Func
--
Returns the symbolic constant 'π'
or its numerical representation,
3.14159265359.
→ 'π'
→ 3.14159265359
--
Flags: -2 -3
--
Related: e,i,MAXR,MINR,→Qπ
UserRPL: xπ
|
3E049 |
x<=?
|
( x y → 1 )
( x y → 0 )
Less Than or Equal Func
--
Tests whether one object is less
than or equal to another object.
--
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x<=sym'
'sym' z → 'sym<=z'
'sym1' 'sym2' → 'sym1<=sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_unit<=sym'
'sym' x_u → 'sym<=x_unit'
--
Flags: -3
--
Related: <,>,≥,==,≠
UserRPL: x≤
|
3E0ED |
x>=?
|
( x y → 1 )
( x y → 0 )
Greater Than or Equal Func
--
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x≥sym'
'sym' z → 'sym≥z'
'sym1' 'sym2' → 'sym1≥sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u≥sym'
'sym' x_u → 'sym≥x_u'
--
Flags: -3
--
Related: <,≤,>,==,≠
UserRPL: x≥
|
3DF0F |
x#?
|
( x y → 1 )
( x y → 0 )
Not Equal Func
--
Tests if two objects are equal.
obj1 obj2 → 0/1
(x,0) x → 0/1
x (x,0) → 0/1
z 'sym' → 'z≠sym'
'sym' z → 'sym≠z'
'sym1' 'sym2' → 'sym1≠sym2'
--
Flags: -3
--
Related: SAME ,TYPE ,<,≤,>,≥, ==
UserRPL: x≠
|
3EC15 |
xRPN->
|
( ob1 .. obn → )
Create Local Variables Cmd
--
Creates local variables.
obj1 ... objn →
--
Syntax:
→ name1 name2 ... nameN « prog »
→ name1 name2 ... nameN 'Expr'
--
Related: DEFINE,STO
UserRPL: x→
|
3E57E |
xALG->
|
Create local variable comand.
<REF>xRPN->
UserRPL: x→
|
3BD96 |
xFACT
|
( x → x' )
Factorial (Gamma) Func
--
Returns the factorial n! of a
positive integer argument n, or
the gamma function ¢(x+1) of a
non-integer argument x.
n → n!
x → ¢(x+1)
'sym' → '(sym!)'
--
Flags: -3 -20 -21
Numerical Results -3
Underflow exception -20
Overflow exception -21
--
Related: COMB,PERM
UserRPL: x!
|
3C452 |
x%
|
( x y → xy/100 )
Percent Func
--
Returns x (level 2) percent of y
(level 1).
x y → xy/100
x 'sym' → '%(x,sym )'
'sym' x → '%(sym ,x)'
'sym1' 'sym2' → '%(sym1,sym2)'
x y_unit → (xy/100)_unit
x_unit y → (xy/100)_unit
'sym' x_unit → '%(sym ,x_unit)'
x_unit 'sym' → '%(x_unit,sym )'
--
Flags:
Numerical Results -3
--
Related: %CH ,%T
|
3AB9F |
x+
|
( x y → x+y )
Add Analytic Func
--
Returns the sum of the arguments.
Addition. If one arg is list, insert element
in list or concatenate lists. <REF>xADD
z1 z2 → z1+z2
[ arr ]1 [ arr ]2 → [ arr ]1+2
z 'sym' → 'z+(sym )'
'symb' z → 'sym+z'
'sym1' 'sym2' → 'sym1 + sym2'
{ lst1 } { lst2 } → { lst1 lst2 }
obj { o... } → { obj o... }
{ o... } o → { o... obj }
"str1" "str2" → "str1str2"
obj "str" → "obj str"
"str" obj → "str obj"
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x1_u1 y_u2 → (x2+y)_u2
'sym' x_u → 'sym+x_u'
x_u 'sym' → 'x_u+sym'
grob1 grob2 → grob'
--
Flags: -3 -4 -5 -6 -7 -8 -9 -10
Numeric results -3
Bint wordsize -5 → -10
--
Related: -,*,/,=
|
3AD68 |
x-
|
( x y → x-y )
Subtract Analytic Func
--
Returns the difference of the
arguments: the object in level 1
is subtracted from the object in
level 2.
z1 z2 → z1-z2
[ arr ]1 [ arr ]2 → [ arr ]1_2
z 'sym' → 'z-sym'
'sym' z → 'sym-z'
'sym1' 'sym2' → 'sym1 - sym2'
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x1_u1 y_u2 → (x2-y)_u2
'sym' x_u → 'sym-x_u'
x_u 'sym' → 'x_u-sym'
--
Flags: -3
Numeric results -3
--
Related: +,*,/,=
|
3AFCA |
x/
|
( x y → x/y )
Divide Analytic Func
--
Returns the quotient of the
arguments: the level 2 object
divided by the level 1 object.
(Abbrev. _u = _unit)
z1 z2 → z1 / z2
[ arr ] [[ mat ]] → [[mat^-1×arr]]
[ arr ] z → [ arr / z ]
z 'sym' → 'z / sym'
'sym' z → 'sym / z'
'sym1' 'sym2' → 'sym1 / sym2'
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x_u1 y_u2 → (x/y)_u1/u2
x y_u → (x/y)_1/u
x_u y → (x/y)_u
'sym' x_u → 'sym/x_u'
x_u 'sym' → 'x_u/sym'
--
Related: +,-,*,=,RATIO
|
3C685 |
x<
|
( x y → 1 )
( x y → 0 )
Less Than Func
--
Tests whether one object is less
than another object.
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x<sym'
'sym' x → 'sym<z'
'sym1' 'sym2' → 'sym1<sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u<sym'
'sym' x_u → 'sym<x_u'
--
Flags: -3
Numeric results -3
|
3A8DD |
x=
|
( x y → x=y )
Makes equation out of two expressions.
Equals Analytic Func
--
Returns an equation formed from
the two arguments.
z1 z2 → 'z1=z2'
z 'sym' → 'z=sym'
'sym' z → 'sym=z'
'sym1' 'sym2' → 'sym1=sym2'
y x_u → 'y=x_u'
y_u x → 'y_u=x'
y_u x_u → 'y_u=x_u'
'sym' x_u → 'sym=x_u'
x_u 'sym' → 'x_u=sym'
--
Flags: -3
Numeric results -3
--
Related: DEFINE,EVAL ,-
|
3C7B9 |
x==
|
( x y → 1 )
( x y → 0 )
Logical Equality Func
--
Tests if two objects are equal.
obj1 obj2 → 0/1
(x,0) x → 0/1
x (x,0) → 0/1
z 'sym' → 'z==sym'
'sym' z → 'sym==z'
'sym1' 'sym2' → 'sym1==sym2'
--
Flags: -3
Numeric results -3
--
Related: SAME ,TYPE ,<,≤,>,≥,≠
|
3C729 |
x>
|
( x y → 1 )
( x y → 0 )
Greater Than Func
--
Tests whether one object is
greater than another object.
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x>sym'
'sym' z → 'sym>z'
'sym1' 'sym2' → 'sym1>sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u>sym'
'sym' x_u → 'sym>x_u'
--
Flags: -3
Numeric results -3
--
Related: <,≤,≥,==,≠
;
|