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Abstract

The paper uses the formalism of indexed categories to recover the proof of
a standard final coalgebra theorem, thus showing existence of final coal-
gebras for a special class of functors on finitely complete and cocomplete
categories. As an instance of this result, we build the final coalgebra for
the powerclass functor, in the context of a Heyting pretopos with a class
of small maps. This is then proved to provide models for various non-
well-founded set theories, depending on the chosen axiomatisation for the
class of small maps.

1 Introduction

The explicit use of bisimulation for set theory goes back to the work
on non-wellfounded sets by Aczel (1988). It would be of interest to
construct sheaf models for the theory of non-wellfounded sets from
our axioms for small maps.

– Joyal and Moerdijk, 1995

Since its first appearance in the book by Joyal and Moerdijk [15], algebraic
set theory has always claimed the virtue of being able to describe, in a single
framework, various different set theories. In fact, the correspondence between
axiom systems for a class of small maps and formal set theories has been put
to work first in the aforementioned book, and then in the work by Simpson [25]
and Awodey et al. [5], thus modelling such theories as CZF, IZF, BIST, CST
and so on. However, despite the suggestion in [15], it appears that up until now
no one ever tried to put small maps to use in order to model a set theory which
includes the Anti-Foundation Axiom AFA.
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This papers provides a first step in this direction. In particular, we build
a categorical model of the weak constructive theory CZF0 of (possibly) non-
well-founded sets, studied by Aczel and Rathjen in [3] . Classically, the universe
of non-well-founded sets is known to be the final coalgebra of the powerclass
functor [1]. Therefore, it should come as no surprise that we can build such a
model from the final coalgebra for the functor Ps determined by a class of small
maps.

Perhaps more surprising is the fact that such a coalgebra always exists. We
prove this by means of a final coalgebra theorem, for a certain class of functors
on a finitely complete and cocomplete category. The intuition that guided us
along the argument is a standard proof of a final coalgebra theorem by Aczel
[1] for set-based functors on the category of classes that preserve inclusions and
weak pullbacks. Given one such functor, he first considers the coproduct of all
small coalgebras, and shows that this is a weakly terminal coalgebra. Then,
he quotients by the largest bisimulation on it, to obtain a final coalgebra. The
argument works more generally for any functor of which we know that there is
a generating family of coalgebras, for in that case we can take the coproduct of
that family, and perform the construction as above. The condition of a functor
being set-based assures that we are in such a situation.

Our argument is a recasting of the given one in the internal language of
a category. Unfortunately, the technicalities that arise when externalising an
argument which is given in the internal language can be off-putting, at times.
For instance, the externalisation of internal colimits forces us to work in the
context of indexed categories and indexed functors. Within this context, we say
that an indexed functor (preserving weak pullbacks) is generated when there
is a “generating family” of coalgebras. For such functors we prove an indexed
final coalgebra theorem. We then apply our machinery to the case of a Heyting
pretopos with a class of small maps, to show that the functor Ps is generated
and therefore has a final coalgebra. As a byproduct, we are able to build the so-
called “M-type” for any small map f (i.e. the final coalgebra for the polynomial
functor Pf associated to f).

For sake of clarity, we have tried to collect as much indexed category theory
as we could in a separate section. This forms the content of Section 2, and we
advise the inexperienced reader to skip all the details of the proofs therein. This
should not affect readability of Section 3, where we prove our final coalgebra
results. Finally, in Section 4 we prove that the final Ps-coalgebra is a model of
the theory CZF0+AFA.

Our choice to focus on a weak set theory such as CZF0 is deliberate, since
stronger theories can be modelled simply by adding extra requirements for the
class of small maps. For example, we can model the theory CST of Myhill [19]
(plus AFA), by adding the Exponentiation Axiom, or IZF−+AFA by adding
the Powerset, Separation and Collection axioms from [15, p. 65]. And we can
force the theory to be classical by working in a Boolean pretopos. This gives a
model of ZF−+AFA, the theory presented in Aczel’s book [1], apart from the
Axiom of Choice. Finally, by adding appropriate axioms for the class of small
maps, we build a model of the theory CZF−+AFA, which was extensively
studied by M. Rathjen in [22, 23].
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As a final remark, we would like to point out that the present results fit
in the general picture described by the two present authors in [8]. (Inciden-
tally, we expect that, together with the results on sheaves therein, they should
yield an answer to the question by Joyal and Moerdijk which we quoted in
opening this introduction.) There, we suggested that the established connec-
tion between Martin-Löf type theory, constructive set theory and the theory of
ΠW -pretoposes had an analogous version in the case of non-well-founded struc-
tures. While trying to make the correspondence between the categorical and
the set theoretical sides of the picture precise, it turned out that the M-types in
ΠM -pretoposes are not necessary, in order to obtain a model of some non-well-
founded set theory. This phenomenon resembles the situation in [17], where
Lindström built a model of CZF−+AFA out of a Martin-Löf type theory with
one universe, without making any use of M-types.

An earlier version of this paper appeared as a chapter in the first author’s
Ph.D. thesis written at the University of Utrecht [7]. The authors would like to
thank Thomas Streicher and the anonymous referee for helpful comments.

2 An indexed terminal object theorem

As we mentioned before, our aim is to prove a final coalgebra theorem for a
special class of functors on Heyting pretoposes. The proof of this result will be
carried out by repeating in the internal language of such a category C a classical
set-theoretic argument. This forces us to consider C as an indexed category,
via its canonical indexing C, whose fibre over an object X is the slice category
C/X. We shall then focus on endofunctors on C which are components over 1
of indexed endofunctors on C. For such functors, we shall prove the existence
of an indexed final coalgebra, under suitable assumptions. The component over
1 of this indexed final coalgebra will be the final coalgebra of the original C-
endofunctor.

Although in Section 3 we will apply our results only in a very specific setting,
it turns out that all the basic machinery needed for the proofs can be stated
in a more general context, and can be understood as proving the existence of
terminal objects in certain indexed categories:

Theorem 2.1 ( = Theorem 2.18) Let C be an S-cocomplete indexed category
with a generating object. If regular epimorphisms are closed under composition
in C1, then C has an indexed terminal object.

The terminology will be explained in due course. This section aims towards
proving this result, thereby collecting as much of the indexed category theoretic
material as possible, in this way hoping to leave the other sections easier to
follow for a less experienced reader.

So, for this section, S will be a cartesian category, which we use as a base
for indexing. Our notations for indexed categories and functors follow those
of [13, Chapters B1 and B2], to which we refer the reader for all the relevant
definitions.
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We will mostly be concerned with S-cocomplete categories, i.e. S-indexed
categories in which each fibre is finitely cocomplete, finite colimits are preserved
by reindexing functors, and these functors have left adjoints satisfying the Beck-
Chevalley condition. Under these assumptions it immediately follows that:

Lemma 2.2 If the fibre C = C1 of an S-cocomplete S-indexed category C has a
terminal object T , then this is an indexed terminal object, i.e. X∗T is terminal
in CX for all X in S.

The first step, in the set-theoretic argument to build the final coalgebra, is
to identify a “generating family” of coalgebras, in the sense that any other coal-
gebra is the colimit of all coalgebras in that family which map to it. Therefore
our first aim is to develop the concepts that allow us to formulate precisely the
following idea: all the objects in the fibre over 1 can be obtained as an internal
colimit of a “generating object” living in a (possibly) different fibre. So, we
need to introduce the concept of internal colimits in indexed categories. To this
end, we first recall that an internal category K in S consists of a diagram

K1

d1 //

d0

// K0,

where d1 is the domain map, d0 is the codomain one and they have a common
left inverse i, satisfying the usual conditions. There is also a notion of internal
functor between internal categories, and this gives rise to the category of internal
categories in S (see [13, Section B2.3] for the details).

An internal diagram L of shape K in an S-indexed category C consists of
an internal S-category K, an object L in CK0 , and a map d∗1L // d∗0L in CK1

which interacts properly with the categorical structure of K. Moreover, one can
consider the notion of morphism of internal diagrams, and these data define the
category CK of internal diagrams of shape K in C.

An indexed functor F : C //D induces an ordinary functor FK: CK //DK

between the corresponding categories of internal diagrams of shape K. Du-
ally, given an internal functor F : K // J, this (contravariantly) determines by
reindexing of C an ordinary functor on the corresponding categories of internal
diagrams: F ∗: CJ //CK. We say that C has internal left Kan extensions if
these reindexing functors have left adjoints, denoted by LanF . In the partic-
ular case where J = 1, the trivial internal category with one object, we write
K∗: C //CK for the functor, and colimK for its left adjoint LanK, and we call
colimKL the internal colimit of L.

Definition 2.3 Let C and D be S-indexed categories with internal colimits of
shape K. We say that an S-indexed functor F : C //D preserves colimits if the
canonical natural transformation filling the square

CK

colimK

��

F K
// DK

↙ colimK

��

C
F
// D
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is an isomorphism.

It follows at once from Proposition B2.3.20 in [13] that:

Proposition 2.4 If C is an S-cocomplete S-indexed category, then it has co-
limits of internal diagrams and left Kan extensions along internal functors in
S. Moreover, if an indexed functor F : C //D between S-cocomplete categories
preserves S-indexed colimits, then it also preserves internal colimits.

In order to form the internal diagram consisting of those elements in a “gen-
erating family” E that map into an object A, we need to have available an
internal object of morphisms from E to A. This is made precise by the fol-
lowing concept (compare the notion of local smallness for fibrations, in, say,
[10]):

Definition 2.5 Let E and A be two objects in the fibre CU of an S-indexed
category C. Whenever it exists, the object HomU (E,A) in S is called the fibred
internal homset from E to A (in S), if there is a morphism

HomU (E,A)
t // U

in S and there is a generic arrow ε: t∗E // t∗A in CHomU (E,A), with the following
universal property: for any other morphism in S

V
s // U

and any arrow ψ: s∗E // s∗A in CV , there is a unique arrow χ:V //HomU (E,A)
in S such that tχ = s and χ∗ε ∼= ψ (via the canonical isomorphisms arising from
the previous equality). The object E is called exponentiable, if HomU (E,A) ex-
ists for all A in the fibre CU . The object E is called stably exponentiable, when
f∗E is exponentiable for any f :W //U .

Remark 2.6 We advise the reader to check that, in case C is a cartesian cat-
egory and C is its canonical indexing over itself, the notion of exponentiable
object agrees with that of an exponentiable map. A map is exponentiable if it
has any of the two equivalent properties in the following lemma.

Lemma 2.7 The following properties are equivalent for a morphism f :X //Y
in a cartesian category C:

1. The functor (−)× f : C/Y // C/Y has a right adjoint (−)f .

2. The functor f∗: C/Y // C/X has a right adjoint Πf .

Proof. For the direction (1) ⇒ (2), construct Πf (g:A //X) as the pullback

Πf (g:A→ X) //

��

(fg:A→ Y )f

gf

��

(id:Y → Y ) // (f :X → Y )f
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in C/Y . For the converse, (h:A→ Y )f can be obtained as Πf (f∗h). �
Also notice that Joyal and Moerdijk in [15, Lemma 1.2] prove that exponentiable
maps are stable in a cartesian category C.

Remark 2.8 In what follows, we will mainly be concerned with stably expo-
nentiable objects. Their universal property can be stated more explicitly, and
it is this characterisation that will usually be invoked. An object E in a fibre
CU is stably exponential, when for every object A in some fibre CI , there exists
an object Hom(E,A) in S, to be called the (unfibred) internal homset from E
to A (in S), fitting into a span

U Hom(E,A)soo t // I (1)

in S, and there exists a generic arrow ε: s∗E // t∗A in CHom(E,A), with the
following universal property: for any other span in S

U J
xoo

y
// I

and any arrow ψ:x∗E // y∗A in CJ , there is a unique arrow χ: J //Hom(E,A)
in S such that sχ = x, tχ = y and χ∗ε ∼= ψ (via the canonical isomorphisms
arising from the two previous equalities).

Given a stably exponentiable object E in CU and an object A in CI , the
canonical cocone from E to A is the diagram of morphisms from E to A. For-
mally, it is described as the internal diagram (K[A], L[A]), where the internal
category K[A] and the diagram object L[A] are defined as follows. K[A]0 is the
object Hom(E,A), with arrows s and t as in (1), and K[A]1 is the pullback

K[A]1
d0 //

x

��

K[A]0

s

��

Hom(E,E)
t

// U,

where

U Hom(E,E)soo t // U

is the internal hom of E with itself. In the fibres over Hom(E,A) and Hom(E,E)
one has generic maps ε: s∗E // t∗A and ε: s∗E // t

∗
E, respectively.

The codomain map d0 of K[A] is the top row of the pullback above, whereas
d1 is induced by the composite

(sx)∗E x∗ε−−→ (tx)∗E ∼= (sd0)∗E
d∗0ε−−→ (td0)∗A

via the universal property of Hom(E,A) and ε.

The internal diagram L[A] is now the object s∗E in CK[A]0 , and the arrow
from d∗1L[A] to d∗0L[A] is (modulo the coherence isomorphisms) x∗ε.

When the colimit of the canonical cocone from E to A is A itself, we can
think of A as being generated by the maps from E to it. Hence we introduce
the following terminology.

6



Definition 2.9 A stably exponentiable object E is called generating if, for any
A in C = C1, A = colimK[A]L[A].

Later, we shall see how F -coalgebras form an indexed category. Then, a gen-
erating object for this category will provide, in the internal language, a “gener-
ating family” of coalgebras. The set-theoretic argument then goes on by taking
the coproduct of all coalgebras in that family. This provides a weakly terminal
coalgebra. Categorically, the argument translates to the following result.

Proposition 2.10 Let C be an S-cocomplete S-indexed category with a gener-
ating object E in CU . Then, C = C1 has a weakly terminal object.

Proof. We build a weakly terminal object in C by taking the internal colimit Q
of the diagram (K, L) in C, where K0 = U , K1 = Hom(E,E) (with domain and
codomain maps s and t, respectively), L = E and the map from d∗0L to d∗1L is
precisely ε.

Given an object A = colimK[A]L[A] in C, notice that the serially commuting
diagram

K[A]1
d0

//

d1 //

x

��

K[A]0

s

��

Hom(E,E)
t

//

s //
U

defines an internal functor J : K[A] //K. We have a commuting triangle of
internal S-categories

K[A] J //

!!C
CC

CC
CC

C K

����
��

��
��

1.

Taking left adjoint along the reindexing functors these arrows induce on cate-
gories of internal diagrams, we get that colimK[A]

∼= colimK ◦ LanJ . Hence, to
give a map from A = colimK[A]L[A] to Q = colimKL it is sufficient to give a
morphism of internal diagrams from (K, LanJL[A]) to (K, L), or, equivalently,
from (K[A], L[A]) to (K[A], J∗L), but the reader can easily check that these two
diagrams are in fact the same. �

Once the coproduct of coalgebras in the “generating family” is formed, the
set-theoretic argument is concluded by quotienting it by its largest bisimulation.
One way to build such a bisimulation constructively is to identify a generating
family of bisimulations and then taking their coproduct.

This suggests that we apply Proposition 2.10 twice; first in the indexed
category C itself in order to obtain a weakly terminal coalgebra W , and then in
the (indexed) category of spans over W . And this we wish to apply in particular
in the case where C is the indexed category of coalgebras. To this end, we need
to prove cocompleteness and existence of a generating object for the indexed
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category of coalgebras, and the indexed category of spans. The language of
inserters allows us to do that in a uniform way.

Instead of giving the general definition of an inserter in a 2-category, we
describe it here explicitly for the 2-category of S-indexed categories.

Definition 2.11 Given two S-indexed categories C and D and two parallel S-
indexed functors F,G: C //D, the inserter I = Ins(F,G) of F and G has as
fibre IX the category whose objects are pairs (A,α) consisting of an object A
in CX and an arrow in DX from FXA to GXA, an arrow φ: (A,α) // (B, β)
being a map φ:A //B in CX such that GX(φ)α = βFX(φ).

The reindexing functor for a map f :Y //X in S takes an object (A,α) in
IX to the object (f∗A, f∗α), where f∗α has to be read modulo the coherence
isomorphisms of D, but we shall ignore these thoroughly.

There is an indexed forgetful functor V : Ins(F,G) //C which takes a pair
(A,α) to its carrier A; the maps α determine an indexed natural transformation
FV //GV . The triple (Ins(F,G), V, FV //GV ) has a universal property, like
any good categorical construction, but we will not use it in this paper. The
situation is depicted as below:

Ins(F,G) V // C
F //

G
// D. (2)

A tedious but otherwise straightforward computation, yields the proof of the
following:

Lemma 2.12 Given an inserter as in (2), if C and D are S-cocomplete and
F preserves indexed colimits, then Ins(F,G) is S-cocomplete and V preserves
colimits (in other words, V creates colimits). In particular, Ins(F,G) has all
internal colimits, and V preserves them.

Example 2.13 As said, we shall be interested in two particular inserters, dur-
ing our work. One is the indexed category F−Coalg of coalgebras for an indexed
endofunctor F on C, which can be presented as the inserter

Ins(Id, F ) V // C
Id //

F
// C. (3)

More concretely, (F−Coalg)I = F I−coalg consists of pairs (A,α) where A is
an object and α:A //F IA a map in CI , and morphisms from such an (A,α)
to a pair (B, β) are morphisms φ:A //B in CI such that F I(φ)α = βφ. The
reindexing functors are the obvious ones.

The other inserter we shall need is the indexed category Span(M,N) of spans
over two objects M and N in C1 of an indexed category. This is the inserter

Ins(∆, 〈M,N〉) V // C
∆ //

〈M,N〉
// C×C (4)
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Where C×C is the product of C with itself (which is defined fibrewise), ∆ is
the diagonal functor (also defined fibrewise), and 〈M,N〉 is the pairing of the
two constant indexed functors determined by M and N . By this we mean that
an object in C is mapped to the pair (M,N) and an object in CX is mapped to
the pair (X∗M,X∗N).

Remark 2.14 Notice that, in both cases, the forgetful functors preserve S-
indexed colimits in C, hence both F−Coalg and Span(M,N) are S-cocomplete,
and also internally cocomplete, if C is.

In order to apply Proposition 2.10 to our inserter categories, we will need
to find a generating object for them. This will be achieved by means of the
following construction, whose adequacy is proved in the subsequent lemmas.

First of all, consider an S-indexed inserter I = Ins(F,G) as in (2), such that
F preserves exponentiable objects (notice that this assumption implies preser-
vation of stably exponentiable objects, and that it is satisfied in our two ex-
amples). Then, given a stably exponentiable object E in CU , we can define an
arrow U

r−→ U in S and an object (E, ε) in IU , as follows.

We form the generic map ε: s∗FUE // t∗GUE associated to the internal
hom of FUE and GUE (which exists because F preserves stably exponentiable
objects), and then define U as the equaliser of the following diagram

U
e // Hom(FUE,GUE)

s //

t
// U, (5)

the arrow r:U //U being one of the two equal composites se = te.

We then put E = r∗E and

ε = FU (r∗E)
∼= // e∗s∗FUE

e∗ε // e∗t∗GUE
∼= // GU (r∗E).

The pair (E, ε) defines an object in IU .

Lemma 2.15 The object (E, ε) is stably exponentiable in Ins(F,G).

Proof. Consider an object (A,α) in a fibre IX . Then, we define the internal
hom Hom((E, ε), (A,α)) as follows.

First, we build the internal homset

U L = Hom(E,A)
soo t // X

of A and E in C, with generic map χ: s∗E // t∗A. Because F preserves stably
exponentiable objects, it is also possible to form the internal hom in D

U Hom(FUE,GXA)
soo t // X
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with generic map χ: s∗FUE // t
∗
GXA. By the universal property of χ, the two

composites in DL

s∗FUE
∼= // FLs∗E

F Lχ
// FL(t∗A)

∼= // t∗FXA
t∗α // t∗GXA

and

s∗FUE
s∗ε //

s∗GUE
∼= // GLs∗E

GLχ
// GLt∗A

∼= // t∗GXA

give rise to two maps

p1, p2:L //Hom(FUE,GXA)

in S, whose equaliser i:M //L has as domain Hom((E, ε), (A,α)).

The generic map (si)∗(E, ε) // (ti)∗(A,α) in IM associated to this internal hom
forms the central square of the following diagram, and this commutes because
its outer sides are the reindexing along the maps p1i = p2i of the generic map
χ above:

(si)∗FUE
(si)∗ε

//

∼=
��

(si)∗GUE

∼=
��

FM (si)∗E
(si)∗(E,ε)

//

F M i∗χ

��

GM (si)∗E

GM i∗χ

��

FM (ti)∗A
(ti)∗(A,α)

//

∼=
��

GM (ti)∗A

∼=
��

(ti)∗FXA
(ti)∗α

// (ti)∗GXA.

The verification of its universal property is a lengthy but straightforward exer-
cise. �

Next, we find a criterion for a stably exponentiable object (E, ε) to be gen-
erating.

Lemma 2.16 Consider an inserter of S-indexed categories as in (2), where C
and D are S-cocomplete, and F preserves S-indexed colimits. If (E, ε) is a stably
exponentiable object in IU and for any (A,α) in I1 the equation

colimK[A,α]V
K[A,α]L[A,α] ∼= V (A,α) = A

holds, where (K[A,α], L[A,α]) is the canonical cocone from (E, ε) to (A,α), then
(E, ε) is generating in Ins(F,G).

Proof. Recall from Lemma 2.12 that Ins(F,G) is internally cocomplete and
the forgetful functor V : Ins(F,G) //C preserves internal colimits. Therefore,
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given an arbitrary object (A,α) in I1, we can always form the colimit (B, β) =
colimK[A,α]L[A,α]. All we need to show is that (B, β) ∼= (A,α). The isomor-
phism between B and A exists because, by the assumption,

B = V (B, β) = V colimK[A,α]L[A,α] ∼= colimK[A,α]V
K[A,α]L[A,α] ∼= A.

Now, it is not too hard to show that the transpose of the composite of

colimK[A,α](FV )K[A,α]L[A,α] ∼= FV colimK[A,α]L[A,α]

with β:FV (B, β) //GV (B, β) is the transpose of α, modulo isomorphisms pre-
served through the adjunction colimK[A,α] a K[A,α]∗. Hence, β ∼= α and we are
done. �

As an immediate application, we can show the desired result about the
indexed category of spans:

Proposition 2.17 Given an S-cocomplete indexed category C and two objects
M and N in C1, if C has a generating object, then so does the indexed category
of spans P = Span(M,N).

Proof. Recall from Example 2.13 that the functor V : Span(M,N) //C creates
indexed and internal colimits. If E in CU is a generating object for C, then, by
Lemma 2.15 we can build a stably exponentiable object

(E, ε) = M E
ε1oo

ε2 // N

in PU . We are now going to prove that Span(M,N) meets the requirements of
Lemma 2.16 to show that E is a generating object.

To this end, consider a span

(A,α) = M A
α1oo

α2 // N

in P1. Then, we can form the canonical cocone (K[A,α], L[A,α]) from (E, ε)
to (A,α) in Span(M,N), and the canonical cocone (K[A], L[A]) from E to A in
C. The map r:U //U of (5) induces an internal functor u: K[A,α] //K[A],
which is an isomorphism. Therefore, the induced reindexing functor

u∗: CK[A] //CK[A,α]

between the categories of internal diagrams in C is also an isomorphism, and
hence colimK[A,α]u

∗ ∼= colimK[A]. Moreover, it is easily checked that u∗L[A] =
V K[A,α]L[A,α]. Therefore, we have

colimK[A,α]V
K[A,α]L[A,α] ∼= colimK[A,α]u

∗L[A] ∼= colimK[A]L[A] ∼= A

and this finishes the proof. �

We can now prove the main theorem of this section, which concludes our
exercise in indexed category theory. Recall that a morphism f :B //A is called
a regular epimorphism if it arises as a coequaliser.
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Theorem 2.18 ( = Theorem 2.1) Let C be an S-cocomplete indexed category
with a generating object. If regular epimorphisms are closed under composition
in C1, then C has an indexed terminal object.

Proof. By Proposition 2.10, we know that C1 has a weakly terminal object
W . Then, build the S-indexed category P = Span(W,W ). By Remark 2.14,
P is S-cocomplete, and it has a generating object by the previous proposition.
This time, applying Proposition 2.10 to P, we see that it has a weakly terminal
object

B
//
// W. (6)

We claim that the coequaliser T of this diagram in C1 is a terminal object in C1.
It is obviously weakly terminal, because of the existence of the quotient map
q:W //T . Therefore consider two morphisms

X
s //

t
// T.

Our aim is to show they are equal. For this purpose, we construct the quotient
p:T //Q of these two maps. Since regular epimorphisms are closed under
composition by assumption, the composite pq:W //Q is regular. It therefore
arises as the coequaliser of another span

A
//
// W (7)

on W , and by weak finality of the span in (6), there exists a morphism of spans
A //B. Therefore q equalises the span in (7), which implies that p has an
inverse. So s = t, and T is final. It is automatically an indexed terminal object
by Lemma 2.2. �

3 Final coalgebra theorems

In this section, we are going to use the machinery of Section 2 in order to prove
an indexed final coalgebra theorem. We then introduce the notion of a class of
small maps for a Heyting pretopos with an (indexed) natural number object,
and apply the theorem in order to derive existence of final coalgebras for various
functors in this context. In more detail, we shall show that every small map has
an M-type, and that the functor Ps has a final coalgebra.

3.1 An indexed final coalgebra theorem

In this section, C is a category with finite limits and stable finite colimits. As
mentioned before, C can be regarded as a category indexed over itself. The base
S is C itself, and the fibre CI is the slice category C/I. Reindexing is then given
by pullback. We refer to this indexed category C as the canonical indexing of C
over itself. Notice that left adjoints to reindexing functors always exist, as they
are given simply by composition. In the present case, more is true, since our
assumption on C means precisely that C is a C-cocomplete C-indexed category.
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The purpose of the present discussion is to find conditions on an endofunctor
F on C that will guarantee the existence of a final F -coalgebra. Our first as-
sumption is that the functor F is indexed, where this has to be understood with
respect to the canonical indexing. The second assumption is that F = F 1 pre-
serves weak pullbacks (the necessity of this assumption will be discussed below,
see Remark 3.8).

Lemma 3.1 Let F be an endofunctor on C preserving weak pullbacks.

(i) F preserves monomorphisms [14].

(ii) A morphism f : (B, β) // (A,α) of F -coalgebras is a regular epi if, and
only if, the underlying morphism V f in C is.

(iii) In the category of F -coalgebras, regular epimorphisms compose.

Proof. For (i), observe that m:X //Y is a monomorphism if, and only if, the
square

X
id //

id

��

X

m

��

X m
// Y

is a weak pullback.

The “only if” part of (ii) follows immediately from the observation that the for-
getful functor V creates, and hence preserves colimits. Conversely, suppose that
f : (B, β) // (A,α) is a morphism of F -coalgebras such that V f is a coequaliser.
Since C has pullbacks, V f is the coequaliser of its kernel pair

R
d0 //

d1

// B
V f
// A.

Now, since F turns pullbacks into weak pullbacks, there is a map ρ:R //FR,
making both d0 and d1 into coalgebra morphisms.

Since regular epis are stable in C, and stable regular epis compose in a cartesian
category (see [20, Proposition VIII.1.3]), regular epis compose in C. So (iii)
follows from (ii). �

The third assumption is the existence of a generating object in the indexed
category F−Coalg of F -coalgebras. Call F generated whenever there is a stably
exponentiable object (E, ε) in FU−coalg such that, for any other F -coalgebra
(A,α), the canonical cocone (K[A,α], L[A,α]) from (E, ε) to (A,α) has the
property that

colimK[A,α]V
K[A,α]L[A,α] ∼= V (A,α) = A. (8)

It is immediate from Example 2.13 and Lemma 2.16 that, whenever there is
a pair (E, ε) making F generated, this is automatically a generating object in
F−Coalg. Therefore the following theorem is a straightforward application of
Theorem 2.1.
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Theorem 3.2 Let F be a generated indexed endofunctor on a category C with
finite limits and stable finite colimits. If F 1 preserves weak pullbacks, then F
has an indexed final coalgebra.

Proof. We check that F−Coalg satisfies the hypotheses of Theorem 2.1. It is
C-cocomplete by Remark 2.14, and has a generating object, since F is gener-
ated. Finally, regular epimorphisms compose in the fibre over 1 by the previous
lemma. �

3.2 A final coalgebra theorem for AST

We are now going to specialise our indexed final coalgebra theorem to the setting
of algebraic set theory. We recall the basic setting from [15].

From now on, C will be a Heyting pretopos with an (indexed) natural numbers
object. That is, an object N, together with maps 0: 1 //N and s: N //N such
that, for any object P and any pair of arrows f :P //Y and t:P ×Y //Y ,
there is a unique arrow f :P×N //Y such that the following commutes:

P×1

∼=
��

id×0
// P×N

〈p1,f〉
��

id×s
// P×N

f

��

P
〈id,f〉

// P×Y
t
// Y.

It then follows that each slice C/X has a natural numbers object X×N //X
in the usual sense.

We fix a class of morphisms S whose fibres we think of as being “small” in
some intuitive sense. These should satisfy the axioms for a class of open maps:

(A1) (Pullback stability) In any pullback square

D

g

��

// B

f

��

C p
// A

where f ∈ S, also g ∈ S.

(A2) (Descent) Whenever in a pullback square as above, g ∈ S and p is an epi,
f ∈ S.

(A3) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does their sum
X +X ′ //Y + Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 2 = 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.
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(A6) (Quotients) In any commutative triangle

Z
p

//

g
  

@@
@@

@@
@ Y

f
~~~~

~~
~~

~

X

where p is an epi and g belongs to S, so does f .

And two more axioms:

(ΠE) (Exponentiability) Morphisms f ∈ S are exponentiable.

(R) (Representability) There exists a map π:E //U in S (a “universal small
map”) such that for every map f :X //Y in S there is a diagram of shape

X

f

��

A

��

//oo E

π

��

Y B //
p

oo U

where both squares are pullbacks and p is an epi.

The attentive reader may have noticed that we have dropped the Collection
Axiom (A7) from the axiomatisation in [15], as we will not need it.

It can now be proved that a class S satisfying these axioms induces on each
slice C/X a class of maps S/X satisfying the same axioms, by declaring that
f ∈ S/X in case ΣXf ∈ S.

When a class of maps S has been fixed, we say that an arrow in S is small.
We call X a small object if the unique map X // 1 is small. A small subobject
R of an object A is a subobject R ⊆ A in which R is small. A small relation
between objects A and B is a subobject R ⊆ A × B such that its composite
with the projection on B is small (notice that this does not mean that R is a
small subobject of A×B).

As shown by Joyal and Moerdijk in [15], the axioms for a class of small maps
imply for every object X in C the existence of a powerclass object Ps(X). It has
the property that there is a natural correspondence between maps I //Ps(X)
and small relations from X to I. In particular, the identity on Ps(X) determines
a small relation ∈X⊆ X×Ps(X). We think of Ps(X) as the object of all small
subobjects ofX; the relation ∈X then becomes the membership relation between
elements of X and small subobjects of X. The association C 7→ Ps(C) defines
a covariant functor (in fact, a monad) on C, which is indexed.

In the sequel we will rely on the following two facts. Recall that an object
X is separated, whenever the diagonal X //X ×X belongs to S.
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Lemma 3.3 Whenever in a pullback diagram

D //

��

C

g

��

B
f
// A

C and B are small, and A is separated, then D is small.

Proof. The object D can also be obtained as the pullback

D //

m

��

A

��

B × C
f×g
// A×A.

Therefore by (A1), m is small, and so is B × C // 1. By (A5) also their
composite D // 1 is small, which means that D is a small object. �

Proposition 3.4 Any Heyting pretopos C with a natural numbers object and a
class of small maps S has stable colimits.

Proof. What needs to be shown is that C has (stable) coequalisers. The point
is that any coequaliser of a diagram

B
f
//

g
// A

can be constructed as a coequaliser of an equivalence relation on A. To construct
this equivalence relation, consider the relation R on A that is given by aRa′ if,
and only if, f(b) = a and g(b) = a′ for some b ∈ B. We would like to build
its reflexive, symmetric and transitive closure. The proof that this can be done
relies on the fact that the second projection

p: {(m,n) |m ≤ n} //N

is exponentiable. One proves by induction on n ∈ N that the fibre p−1(n) is
small, and therefore the map is exponentiable by axiom (ΠE) for the class of
small maps. Then the closure S of R can be defined by: aSa′ if, and only if,
there is a map φ: p−1(n) //A such that:

1. φ(0) = a and φ(n) = a′, and

2. for all i < n, either φ(i)Rφ(i+ 1) or φ(i+ 1)Rφ(i).

�
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Definition 3.5 An indexed functor F on C will be called small-generated, in
case for any F -coalgebra α:A //FA the following statement holds in the in-
ternal logic of C:

For any a ∈ A there is a small coalgebra t:E //FE and an F -
coalgebra morphism m:E //A such that m(e) = a for some e ∈ E.

It is not obvious that this can be expressed in the internal logic of C. First of
all, in writing the formula above, we have used the functor F in the internal
language of C; we can safely do that because the functor is assumed to be
indexed. And to see that one can sensibly quantify over all small coalgebras in
the internal logic of C, we have to make use of the existence of the universal
small map π:E //U . Through it, one can construct an object of all small
coalgebras:

(FU (π) //U)(π:E // U).

For this purpose, we again use the fact that F is indexed.

Theorem 3.6 Small-generated indexed functors F that preserve weak pullbacks
in every fibre are generated. Therefore they have indexed final coalgebras.

Proof. We wish to apply Theorem 3.2. We know that C is finitely complete
with stable finite colimits, therefore it remains to verify that F satisfies the
assumptions in that theorem.

We need to exhibit a stably exponentiable object (E, ε) in some fibre of F−Coalg
such that, for any F -coalgebra (A,α), the canonical cocone

(K[A,α], L[A,α])

from (E, ε) to (A,α) has the property that

colimK[A,α]V
K[A,α]L[A,α] ∼= V (A,α) = A. (9)

Consider the universal small map π:E //U . By axioms (ΠE) and (A1) it is
stably exponentiable, and therefore we can construct the object (E, ε) in the
fibre U of F−Coalg as outlined before Lemma 2.16. Using the internal language
of C, U can be written as:

U = {(u ∈ U, t:Eu
//FEu)},

where Eu is the fibre of π over u ∈ U , while E is now defined as

E = {(u ∈ U, t:Eu
//FEu, e ∈ Eu)}.

The coalgebra structure ε:E //FUE takes a triple (u, t, e) to (u, t, te). From
Lemma 2.16 we know (E, ε) to be stably exponentiable, so it only remains to
be verified that it satisfies (9).

Given a coalgebra (A,α), the canonical cocone from (E, ε) to it takes the fol-
lowing form. The internal category K[A,α] is given by

K[A,α]0 = {(u ∈ U, t:Eu → F (Eu),m:Eu → A) | (Fm)t = αm};
K[A,α]1 = {(u, t,m, u′, t′,m′, φ:Eu → Eu′) | (u, t,m), (u′, t′,m′) ∈ K[A,α]0,

t′φ = (Fφ)t and m′φ = m}.
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The diagram L[A,α] is specified by a coalgebra over K[A,α]0, but for our pur-
poses we only need to consider its carrier, which is

V L[A,α] = {(u, t,m, e) | (u, t,m) ∈ K[A,α]0 and e ∈ Eu}.

Condition (9) says that the colimit of this internal diagram in C is A, but this
follows from the following two observations.

1. For every a ∈ A there is a (u, t,m, e) ∈ V L[A,α] such that me = a.
Because this is precisely what we assumed when we took F to be small-
generated.

2. For any two small coalgebras ti:Ei
//FEi and F -coalgebra morphisms

mi:Ei
//A (i = 0, 1), if m0e0 = m1e1 for some ei ∈ Ei, then there

is a small coalgebra t:E //FE, a morphism of coalgebras m:E //A,
and two F -coalgebra morphisms li:Ei

//E (i = 0, 1) such that mi =
mli (i = 0, 1) and l0e0 = l1e1. What one does, is first form the small
coproduct E′ = E0+E1, which carries a coalgebra structure, such that the
inclusions and copairing [m0,m1] are coalgebra maps, because U creates
colimits. Then, one forms the small image E = Im([m0,m1]:E′ //A),
which is also the image in the category of coalgebras, because F preserves
monomorphisms in every fibre. Put differently, we may assume that both
coalgebra morphismsmi:Ei

//A are monic, and then take E to be simply
the union of E0 and E1.

�

From this result we can recover Aczel’s classical final coalgebra theorem [1,
p. 87]. Let κ be an infinite regular cardinal. A functor F on the category of
sets is κ-based in case:

F (X) =
⋃
{Im Φa | a:Y //X and |Y | < κ},

for all sets X. In other words, for any x ∈ FX, there exist a function a:Y //X
whose domain has cardinality less than κ, and an element y ∈ Y such that
(Fa)y = x.

Corollary 3.7 (Classical Final Coalgebra Theorem) Let F be a κ-based
functor on the category of sets. If F preserves weak pullbacks, then it has a
final coalgebra.

Proof. The category of sets carries a class of small maps S by declaring those
maps to be small whose fibres have cardinality less than κ.

Any functor on the category of sets is automatically the component over 1 of an
indexed functor, since on a family of objects (Xi | i ∈ I) the functor F I can be
defined as simply (F (Xi) | i ∈ I). Finally, in [2] Aczel and Mendler prove that
any κ-based functor is small-generated in our sense. �
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Remark 3.8 With a bit of effort, the reader can see in the present proof of
Theorem 3.6 an abstract categorical reformulation of the classical argument
given by Aczel in his book [1]. In order for that to work, he had to assume
that the functor preserves weak pullbacks (and so did we, in our reformulation).
Later, in a joint paper with Nax Mendler [2], he gave a different construction
of final coalgebras using what they call congruences, which allowed him to drop
this assumption. We believe that our result could be sharpened in a similar
way, however at a considerable price. For reformulating these arguments on
congruences in an indexed setting would add another layer of technicalities.
Since the functors in our examples preserve weak pullbacks, we preferred sticking
to the original version of the result, thereby avoiding such complications.

More recently, the work of Adámek, et al. [4] has shown that for an infi-
nite regular cardinal κ with the property that κλ = κ when 0 < λ < κ, any
endofunctor on the category Sets≤κ of sets with cardinality at most κ, is κ-
based, thereby proving that it has a final coalgebra (by Aczel and Mendler’s
result). Their proof makes a heavy use of set theoretic machinery, which would
be interesting to analyse in the setting of algebraic set theory.

3.3 Applications

We present two application of our Final Coalgebra Theorem (that is, Theorem
3.6). For that purpose, we need to make additional requirements for our class
of small maps S. From now on, we will assume:

(NS) The morphism N // 1 belongs to S.

Let us recall from [8] that an exponentiable map f :D //C in a cartesian
category C induces on it a polynomial endofunctor Pf , defined by

Pf (X) =
∑
c∈C

XDc .

Its final coalgebra, when it exists, is called the M-type associated to f . In fact,
the functor Pf is the component over 1 of an indexed polynomial endofunctor,
still denoted by Pf , that is polynomial on every fibre. The indexed M-type of f
is by definition the indexed final coalgebra of Pf . As Pf can be presented as the
composite ΣCΠfD

∗, it follows at once that Pf preserves pullbacks in every fibre.
The intuitive idea behind an M-type is that the morphism f :B //A represents
a signature: the elements a ∈ A are to be thought of as term constructors, with
the fibres Ba as arities. Then Mf is the object of all “infinite terms” over this
signature. By this we mean that the syntax trees of the terms can be non-
well-founded. The terms whose syntax trees are well-founded form the initial
algebra for the polynomial functor, and are called W-types (see [18]). For more
on M-types, we refer to [8].

Theorem 3.9 If the map f :D //C belongs to a class of small maps satisfying
(NS), then f has an (indexed) M-type.
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Proof. We need to check that the functor Pf associated to small f is small-
generated. So, assume we are given a coalgebra (A,α), and an element a ∈ A.
We build a subobject 〈a〉 of A inductively, as follows:

〈a〉0 = {a};
〈a〉n+1 =

⋃
a′∈〈a〉n

t(Dc) where αa′ = (c, t:Dc
//A).

Then, each 〈a〉n is a small object, because it is a small-indexed union of small
objects. For the same reason (since, by axiom (NS), N is a small object) their
union 〈a〉 =

⋃
n∈N〈a〉n is small, and it is a subobject of A. It is not hard to see

that the coalgebra structure α induces a coalgebra α′ on 〈a〉 (in fact, 〈a〉 is the
smallest subcoalgebra of (A,α) containing a, i.e. the subcoalgebra generated by
a). �

The following result depends on another axiom for our class of small maps:

(M) All monomorphisms belong to S.

Observe that (M) implies that all objects are separated, since diagonals are
monomorphisms.

Theorem 3.10 When the class of small maps S satisfies (NS) and (M), the
powerclass functor Ps has an (indexed) final coalgebra.

Proof. The functor Ps is the component on 1 of an indexed functor, since
classes of small maps are stable under slicing. We use (M) to show that it
maps weak pullbacks to weak pullbacks. For this purpose it suffices to show
that for any pullback square

D //

��

C

g

��

B
f
// A

there is an appropriate function PsB ×PsA PsC //PsD. Such a function can
be obtained by mapping a pair (b ∈ PsB, c ∈ PsC) with f(b) = g(c) = a ∈ PsA
to the pullback d = b×a c, which is in PsD by Lemma 3.3.

Therefore, once again, we just need to verify that Ps is small-generated. We
proceed exactly like in the proof of Theorem 3.9 above, trying to construct the
subcoalgebra (〈a〉, α′) of (A,α) generated by an element a ∈ A. First, we define
inductively the subobjects

〈a〉0 = {a};
〈a〉n+1 =

⋃
a′∈〈a〉n

α(a′).

Each 〈a〉n is a small object, and so is their union 〈a〉 =
⋃

n∈N〈a〉n. The coalge-
bra structure α′ is again induced by restriction of α on 〈a〉. �

20



Remark 3.11 The assumption (NS) is necessary for both Theorem 3.9 and
Theorem 3.10. For a counterexample, consider the category Sets≤ω of countable
sets, which carries a class of small maps S consisting of those functions all whose
fibres are finite. There, we have functions with finite fibres that fail to have an
M-type, as these would have to be uncountable. Also, the final Ps-coalgebra
fails to exist, for the same reason.

Corollary 3.12 Under the assumption that (NS) holds for the class of small
maps and C has a subobject classifier, indexed W-types exist for all small maps
f :B //A.

Proof. The idea is to select from (M,σ), the M-type associated to f , those
m ∈ M for which 〈m〉 is well-founded. In the presence of a subobject classifier
this can be expressed, using that 〈m〉 is small, and therefore exponentiable. �

Corollary 3.13 When the class of small maps S satisfies (NS) and (M), the
powerclass functor Ps has an (indexed) initial algebra.

Proof. As (M) holds, the object Ps1 is a subobject classifier. So one can
again select those elements v in the final Ps-algebra (V,E) for which 〈v〉 is well-
founded. �

Remark 3.14 Corollary 3.13 was first proved by Joyal and Moerdijk in [15],
without assuming either (NS) or (M), but instead requiring only the existence
of a subobject classifier. In fact, the applications that we have presented could
be derived using their methods involving trees, forests and bisimulations, but
here we derive them from a general theorem on the existence of final coalgebras,
giving a more conceptual explanation of these results.

4 The final Ps-coalgebra as a model of AFA

Our standing assumption in this section is that C is a Heyting pretopos with an
(indexed) natural number object and a class S of small maps, satisfying (NS).
In the last section, we proved that under an additional assumption the Ps-
functor has a final coalgebra in C. Now, we will explain how a final coalgebra
can be used to model various set theories with the Anti-Foundation Axiom.
First we work out the case for the weak constructive theory CZF0, and then
we indicate how the same method can be applied to obtain models for stronger,
better known or classical set theories.

Our presentation of CZF0 follows that of Aczel and Rathjen in [3]. It is a
first-order theory whose underlying logic is intuitionistic; its non-logical symbols
are a binary relation symbol ε and a constant ω, to be thought of as membership
and the set of (von Neumann) natural numbers, respectively. Two more symbols
will be added for sake of readability, as we proceed to state the axioms. In order
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to mark the distinction between the membership relation of the set theory and
that induced by the powerclass functor inside the category, we shall denote the
former by ε and the latter by the already seen ∈.

The axioms for CZF0 are (the universal closures) of the following statements:

(Extensionality) ∀x (xεa↔ xεb) → a = b

(Pairing) ∃ t∀z (z εt↔ (z = x ∨ z = y))

(Union) ∃ t∀z (z εt↔ ∃y (z εy ∧ y εx))

(Emptyset) ∃x∀z (z εx↔ ⊥)

(Intersection) ∃ t∀z (z εt↔ (z εa ∧ z εb))

(Replacement) ∀xεa∃!y φ→ ∃z∀y (y εz ↔ ∃xεa φ)

Two more axioms will be added, but before we do so, we want to point out that
all instances of ∆0-separation follow from these axioms, i.e. we can deduce all
instances of

(∆0-Separation) ∃ t∀x (xεt↔ (xεa ∧ φ))

where φ is a formula in which t does not occur and all quantifiers are bounded
(see [6]). Furthermore, in view of the above axioms, we can introduce a new
constant ∅ to denote the empty set, and a function symbol s which maps a set x
to its “successor” x∪{x}. This allows us to formulate concisely our last axioms:

(Infinity-1) ∅εω ∧ ∀xεω (sxεω)

(Infinity-2) ψ(∅) ∧ ∀xεω (ψ(x) → ψ(sx)) → ∀xεω ψ(x).

It is an old observation by Rieger [24] that models for set theory can be
obtained as fixpoints for the powerclass functor. The same is true in the context
of algebraic set theory (see [11] for a similar result).

Theorem 4.1 Every Ps-fixpoint in C is a model of the axioms of CZF0, with
the exception of Intersection. If it is also separated, it models Intersection as
well, and provides one with a model of full CZF0.

Proof. Suppose we have a fixpoint E:V //PsV , with inverse I. We call y
the name of a small subobject A ⊆ V , when E(y) is its corresponding element
in Ps(V ). We interpret the predicate x ε y as an abbreviation of the sentence
x ∈ E(y) in the internal language of C. Then, the validation of the axioms for
CZF0 goes as follows.

Extensionality holds because two small subobjects E(x) and E(y) of V are equal
if and only if, in the internal language of C, z ∈ E(x) ↔ z ∈ E(y). The pairing of
two elements x and y represented by two arrows 1 //V , is given by I(l), where
l is the name of the (small) image of their copairing [x, y]: 1+1 //V . The union
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of the sets contained in a set x is interpreted by applying the multiplication of
the monad Ps to (PsE)(E(x)). The least subobject 0 ⊆ V is small, and its
name ∅: 1 //V models the empty set.

For the Replacement axiom, consider a, and suppose that for every x ε a there
exists a unique y such that φ. Then, the subobject {y | ∃xεa φ} of V is covered
by E(a), hence small. Applying I to its name, we get the image of φ.

The Infinity axioms follow from the axiom (NS). The morphism ∅: 1 //V ,
together with the map s:V //V which takes an element x to x ∪ {x}, yields
a morphism α: N //V . Since N is small, so is the image of α, as a subobject
of V , and applying I to its name we get an ω in V which validates the axioms
Infinity-1 and Infinity-2.

Finally, if the fixpoint is separated, the intersection of two elements x and y in
V is given by I(E(x) ∩ E(y)). That E(x) ∩ E(y) is small follows from Lemma
3.3. �

Remark 4.2 This means that every Heyting pretopos C with a class of small
maps S satisfying (M) contains a model of CZF0. But when (M) is satisfied,
any Ps-fixpoint will also model the impredicative Full Separation Scheme:

(Full Separation) ∃y ∀z (z εy ↔ z εx ∧ φ),

where y is not allowed to occur in φ. While (M) is satisfied in all the examples
we have in mind (see Examples 4.10-13), its presence is unsatisfactory from a
theoretical point of view, since it prevents us from obtaining models for fully
predicative set theories. We have some ideas on how additional axioms for our
class of small maps S that are predicativily acceptable (unlike (M)) could lead
to the existence of a final Ps-coalgebra, but discussing these would be beyond
the scope of this paper. In general, the status of the Anti-Foundation Axiom
in a predicative context remains less than completely clear, despite the work of
Rathjen in particular (see [21, 22, 23]).

This also means that in the presence of (M) the well-founded and non-
well-founded versions of CZF0 are equiconsistent, but in a more predicative
setting that does not seem to be the case. (As an indication for this, one can
mention that in [22], Rathjen proves that CZF− + AFA has a much weaker
proof strength than ordinary CZF.)

The theorem shows how every Ps-fixpoint models a very basic set theory.
Now, imposing extra properties on a fixpoint, we can deduce the validity of
further axioms. For example, in [15] it is shown how the initial Ps-algebra
(which is a fixpoint, by Lambek’s lemma [16]) models the Foundation Axiom.
Here, we show how the final Ps-coalgebra satisfies the Anti-Foundation Axiom.
To formulate this axiom, we define the following notions. For us, a (directed)
graph consists of a (possibly class-sized) collection n of nodes and a (possibly
class-sized) collection e ⊆ n× n of edges such that for every xεn the collection
{y | (x, y) εe} is a set. A decoration of such a graph is a function c assigning to
every node xεn a set d(x) such that

d(x) = {d(y) | (x, y)εe}.
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This can be formulated solely in terms of ε using the standard encoding of pairs
and functions. In ordinary set theory (with classical logic and the Foundation
Axiom), the only graphs that have a decoration are well-founded forests and
these decorations are then necessarily unique.

The Anti-Foundation Axiom AFA says:

(Anti-Foundation Axiom) Every graph has a unique decoration.

Proposition 4.3 If C has an (indexed) final Ps-coalgebra, then this models
(AFA). Therefore, it is a model for the theory CZF0+AFA, provided it is
separated.

Proof. We clearly have to check just AFA, since any final coalgebra is a
fixpoint. To this end, note first of all that, because (V,E) is an indexed final
coalgebra, we can think of it as a final Ps-coalgebra in the internal logic of C.

So, suppose we have a graph (n, e) in V . Then, n (internally) has the structure
of a Ps-coalgebra ν:n //Psn, by sending a node x ε n to the (small) set of
nodes y εn such that (x, y) ε e. The decoration of n is now given by the unique
Ps-coalgebra map d:n //V . �

Our results can be extended to theories stronger than CZF0. For example, to
the set theory CST introduced by Myhill in [19]. This theory is closely related
to (in fact, intertranslatable with) CZF0+Exp, where Exp is (the universal
closure of) the following axiom:

(Exponentiation) ∃ t∀f (f εt↔ Fun(f, x, y))

Here, the predicate Fun(f, x, y) expresses the property that f is a function from
x to y, and it can be formally written as the conjunction of ∀aεx∃!bεy (a, b)εf
and ∀z εf ∃aεx, bεy (z = (a, b)).

Proposition 4.4 Assume the class S of small maps satisfies

(ΠS) The functor (−)f preserves small objects in C/A for any f :B //A in S.

Then, any fixpoint for the Ps-functor in C models Exponentiation. Therefore,
the final Ps-algebra is a model of CST+AFA, provided it is separated.

Proof. We already saw how the any Ps-fixpoint (V,E) models CZF0+AFA,
except for Intersection. Now, (ΠS) implies that AB is small, if A and B are,
so, in E(y)E(x) is always small. This gives rise to a small subobject of V , by
considering the image of the morphism that sends a function f ∈ E(y)E(x) to
the element in V representing its graph. The image under I of the name of this
small object is the desired exponential t. �

Another example of a stronger theory which can be obtained by impos-
ing further axioms for to CZF0 by Aczel’s set theory CZF. The set theory
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CZF−+AFA, studied by M. Rathjen in [22, 23], is obtained by adding to
CZF0 the axiom AFA, as well as the following:

(Strong Collection) ∀xεa ∃y φ(x, y) → ∃b B(xεa, y εb) φ(x, y)

(Fullness) ∃z (z ⊆ mv(a, b) ∧ ∀xεmv(a, b)∃cεz (c ⊆ x))

Here, B(xεa, y εb) φ abbreviates:

∀xεa ∃y εb φ ∧ ∀y εb ∃xεa φ,

while mv(a, b) is an abbreviation for the class of all multi-valued functions from
a set a to a set b, i.e. relations R such that ∀xεa∃yεb (a, b)εR.

In order for a class of small maps to give a model Fullness, the class has to
satisfy a rather involved axiom which will be called (F). In order to formulate it,
we need to introduce some notation. For two morphisms A //X and B //X,
MX(A,B) will denote the poset of multi-valued functions from A to B over X,
i.e. jointly monic spans in C/X,

A Poooo // B

with P //X small and the map to A epic. By pullback, any f :Y //X deter-
mines an order preserving function

f∗:MX(A,B) //MY (f∗A, f∗B).

In the following proposition, we call a commutative square

A //

��

B

f

��

C g
// D

a quasi-pullback if the mediating arrow from A to the pullback of f and g is
epic.

Proposition 4.5 Assume the class S of small maps satisfies the following ax-
ioms:

(C) for any two arrows p:Y //X and f :X //A where p is epi and f belongs
to S, there exists a quasi-pullback square of the form

Z

g

��

// Y
p
// X

f

��

B
h

// A

where h is epi and g belongs to S.
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(F) for any two small maps A //X and B //X, there are an epi p:X ′ //X,
a small map f :C //X ′ and an element P ∈ MC(f∗p∗A, f∗p∗B), such
that for any g:D //X ′ and Q ∈MD(g∗p∗A, g∗p∗B), there are morphisms
x:E //D and y:E //C, with x epi, such that x∗Q ≥ y∗P .

Then, any Ps-fixpoint in C models Strong Collection and Fullness. Therefore,
the final Ps-coalgebra in C is a model of CZF−+ AFA, provided it is separated.

Proof. Any fixpoint for Ps will model Strong Collection in virtue of property
(C) of the class of small maps. Because of (F), the fixpoint will also model the
Fullness axiom. �

Finally, we apply our results to IZF−, which is intuitionistic ZF without ε-
Induction. It is obtained by adding to CZF0 the Collection and Full Separation
Axioms, as well as the following axiom:

(Powerset) ∃y ∀z (z εy ↔ ∀wεz (wεx))

By now, the proof of the statement should be routine:

Theorem 4.6 Assume the class of small maps S satisfies (M), (C) and

(PS) if X //B belongs to S, then so does Ps(X //B).

Then, any Ps-fixpoint in C is a model of IZF−. Therefore, the final Ps-coalgebra
in C (which always exists) models IZF−+AFA.

Remark 4.7 This is to be compared with a key result of Joyal and Moerdijk in
[15]. There they prove the existence of an inital Ps-algebra in C which models
ordinary IZF. We can recover this result as well, since the axiom (M) implies
that Ps1 is a subobject classifier, so we can apply Corollary 3.13.

The applications of the theory we have developed are not restricted to con-
structive set theories only. For example, we can easily derive:

Corollary 4.8 If the pretopos C is Boolean, then classical logic is also true in
the final Ps-algebra, which will therefore validate ZF−+AFA, Zermelo-Fraenkel
set theory with Anti-Foundation instead of Foundation.

We conclude the paper by presenting several examples of categories that
satisfy our axioms. Of course, this is not the place to study them in detail, but
we would like to give at least a sketchy presentation. For a more complete treat-
ment, the reader is advised to look at [15]. A thorough study of the properties
of the models they lead to is the subject for future research.

Example 4.9 The most obvious example is clearly the category of classes,
where the notion of smallness is precisely that of a class function having as
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fibres just sets. This satisfies all the presented axioms, with one complication
having to do with the exactness of the category of classes.

To prove that any equivalence relation R ⊆ X×X has a quotient in the cat-
egory of classes, we cannot perform the usual construction, for the equivalence
classes may indeed be genuine classes. Therefore one has to pick representatives
(using some form of global choice), or select those with minimal rank (using the
Foundation Axiom). It is not clear to us whether any of these methods can be
avoided.

This issue becomes especially pertinent in a constructive setting. But in the
way we have set things up here, one can always make the category of classes
exact by taking its ex/reg-completion (see [9]).

Example 4.10 Along the same lines, one can consider the category of sets,
where the class of small maps consists of those functions whose fibres have
cardinality at most κ, for a fixed infinite regular cardinal κ. This satisfies the
basic axioms (A1-6), (ΠE) and (R), as well as (M) and (C). When κ > ω,
it will also satisfy (NS). When moreover κ is (strongly) inaccessible, it will
validate all the axioms that we have mentioned.

Example 4.11 Consider the topos Sh(C) of sheaves over a site C, with pull-
backs and a subcanonical topology. Then, for an infinite regular cardinal κ
greater than the number of arrows in C, define the notion of smallness (relative
to κ) following [15, Chapter IV.3]. This satisfies the basic axioms, and (M).
Moreover, if κ > ω, (NS) will hold, and when κ is also inaccessible, it satisfies
all the axioms that we have mentioned.

Example 4.12 Finally, on the effective topos Eff [12] one can define a class
of small maps in at least two different ways. For the first, consider the global
section functor Γ: Eff //Sets, and fix a regular cardinal κ > ω. Then, say that
a map f :X //Y is small if it fits in a quasi-pullback

P // //

g

��

X

f

��

Q // // Y

where P and Q are projectives and Γ(g) is κ-small in Sets. With this definition,
the class of small maps satisfies all the basic axioms, as well as (NS), (C) and
(M). If κ is also inaccessible, it also satisfies all the other axioms.

Alternatively, we can define a map to be small if internally its fibres are
quotients of a subobject of the natural number object of Eff . This notion of
smallness satisfies all the axioms we mentioned apart from (PS).
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