5th Homework sheet Proof Theory

- Deadline: 16 March, 13:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the *beginning of the exercise class*.
- There are some exercises on the other page.
- Good luck!

A formula φ is in *negation normal form* if any implication occurring in φ has an atomic formula on the left and \perp on the right. In classical logic every formula is equivalent to a formula in negation normal form. One way of seeing this is as follows: define for any formula φ two new formulas $\mathbf{T}\varphi$ and $\mathbf{F}\varphi$ by simultaneous recursion, as follows:

It is easy to see that for any formula φ both $\mathbf{T}\varphi$ and $\mathbf{F}\varphi$ are in negation normal form and that $\mathbf{T}\varphi$ is classically equivalent to φ , while $\mathbf{F}\varphi$ is classically equivalent to $\neg \varphi$ (you do not need to prove these facts).

- (a) (40 points) Show that for every formula φ the sequent $\mathbf{T}\varphi, \mathbf{F}\varphi \Rightarrow \bot$ is derivable in the intuitionistic sequent calculus without the cut rule.
- (b) (40 points) Prove the following implication: if the sequent $\varphi_1, \ldots, \varphi_n \Rightarrow \psi_1, \ldots, \psi_m$ is provable in the classical sequent calculus for predicate logic without the cut rule, then the sequent $\mathbf{T}\varphi_1, \ldots, \mathbf{T}\varphi_n, \mathbf{F}\psi_1, \ldots, \mathbf{F}\psi_m \Rightarrow \bot$ is derivable in intuitionistic sequent calculus for predicate logic without the cut rule.

- (c) (20 points) Define $\varphi^* = \neg \mathbf{F} \varphi$. Deduce from (b) that φ is a classical tautology precisely when φ^* is an intuitionistic tautology.
- (d) (Chocolate bar exercise) Is the mapping $\varphi \mapsto \varphi^*$ defined in (c) a negative translation? Justify your answer!