4th Homework sheet Proof Theory

- Deadline: 9 March, 13:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the beginning of the exercise class.
- Good luck!

Exercise 1 (50 points) Let T be an arbitrary set and let \succ_{1} be an arbitrary relation on that set. We think of the elements of T as terms (or perhaps derivations) and \succ_{1} as some reduction relation. In that spirit we define a reduction sequence of length n to be a sequence

$$
\left\langle t_{0}, \ldots, t_{n}\right\rangle
$$

with $t_{i} \succ_{1} t_{i+1}$ for every $i<n$. We will write $t \succeq t^{\prime}$ if there is some reduction sequence starting with t and ending with t^{\prime} (so \succeq is the reflexive and transitive closure of \succ_{1}). In addition, we will say that $t \in T$ is in normal form if there is no s such that $t \succ_{1} s$ and we will say that s is a normal form of t if $t \succeq s$ and s is in normal form.

Finally, we will say that $\left(T, \succ_{1}\right)$ is strongly normalising if for every $t \in T$ there is a number $n=\nu(t)$ such that there is a reduction sequence of length n starting from t, but reduction sequences starting from t longer than n do not exist; and we will say that $\left(T, \succ_{1}\right)$ is weakly confluent if for every triple $t, t_{0}, t_{1} \in T$ with $t \succ_{1} t_{0}$ and $t \succ_{1} t_{1}$ there is an $s \in T$ with $t_{0} \succeq s$ and $t_{1} \succeq s$.
Show that if $\left(T, \succ_{1}\right)$ is strongly normalising and weakly confluent, then every $t \in T$ has a unique normal form.

Hint: Use induction on $\nu(t)$.

Exercise 2 (50 points) In this exercise we work in intuitionistic natural deduction and restrict to the fragment of propositional logic only containing conjunction \wedge and implication \rightarrow. In addition, we drop the symbol for falsum \perp and the ex falso rule.

On derivations in this fragment we consider the following reduction steps: in any derivation containing as a subderivation (subtree)

$$
\begin{array}{cc}
\mathcal{D}_{0} & \mathcal{D}_{1} \\
\varphi_{0} & \varphi_{1} \\
\frac{\varphi_{0} \wedge \varphi_{1}}{\varphi_{i}}
\end{array}
$$

we may replace this by \mathcal{D}_{i}, and any subderivation (subtree)

may be replaced by:
\mathcal{D}_{1}
φ
\mathcal{D}_{0}
ψ

Use Theorem 2.1 from Chapter 9 from the handout (strong normalisation) and the previous exercise to show that derivations in this fragment of logic have unique normal forms with respect to these rewriting rules.

