3rd Homework sheet Proof Theory

- Deadline: 2 March 2018.
- Submit your solutions by handing them to the TA at the beginning of the exercise class.
- Good luck!

In this exercise we work in intuitionistic propositional logic. The aim of this exercise is to give two proofs of the following fact:

Let $\Gamma=\left\{A_{1} \rightarrow B_{1}, \ldots, A_{n} \rightarrow B_{n}\right\}$ and C be a formula not containing \rightarrow. If $\Gamma \vdash C$, then $\Gamma \vdash A_{i}$ for some $i \leq n$.
(a) (50 points) Give an effective argument using the intuitionistic sequent calculus: that is, show that one can effectively compute from a derivation π of $\Gamma \Rightarrow C$ in the intuitionistic sequent calculus a natural number $i \leq n$ as well as a derivation π^{\prime} of $\Gamma \Rightarrow A_{i}$ in the same calculus.
(b) (50 points) Also give a purely semantic proof of this fact using Kripke models (that is, without using completeness and part (a)).

