2nd Homework sheet Proof Theory

- Deadline: 23 February 2018.
- Submit your solutions by handing them to the TA at the beginning of the exercise class.
- The homework sheet consists of two pages and there are exercises on the other side.
- Good luck!

In this exercise we work in intuitionistic propositional logic and the following Hilbert-style system for intuitionistic propositional logic:

- (i) Its axiom schemes are: $\varphi \lor \varphi \to \varphi$, $\varphi \to \varphi \land \varphi$, $\varphi \to \varphi \lor \psi$, $\varphi \land \psi \to \varphi$, $\varphi \lor \psi \to \psi \lor \varphi$, $\varphi \land \psi \to \psi \land \varphi$, $\bot \to \varphi$.
- (ii) Its inference rules are: from φ and $\varphi \to \psi$ infer ψ ; from $\varphi \to \psi$ and $\psi \to \chi$ infer $\varphi \to \chi$; from $\varphi \land \psi \to \chi$, infer $\varphi \to (\psi \to \chi)$; from $\varphi \to (\psi \to \chi)$, infer $\varphi \land \psi \to \chi$; from $\varphi \to \psi$ infer $\varphi \lor \chi \to \psi \lor \chi$.

In particular, $\Gamma \vdash_{\text{IL}} \varphi$ will mean that there is a proof in this Hilbert-style proof calculus for intuitionistic propositional logic of φ from Γ .

The aim of the exercise is to give a syntactic (and effective) proof of the disjunction property for intuitionistic logic. If Γ is a set of propositional formulas and φ is a formula, then we define a new relation $\Gamma|\varphi$ by induction of φ , as follows:

 $\begin{array}{rcl} \Gamma|p & := & \Gamma \vdash_{\operatorname{IL}} p \text{ for any propositional variable } p \\ \Gamma|\bot & := & \Gamma \vdash_{\operatorname{IL}} \bot \\ \Gamma|\psi \land \chi & := & \Gamma|\psi \text{ and } \Gamma|\chi \\ \Gamma|\psi \lor \chi & := & \Gamma|\psi \text{ or } \Gamma|\chi \\ \Gamma|\psi \to \chi & := & (\Gamma|\psi \text{ implies } \Gamma|\chi) \text{ and } \Gamma \vdash_{\operatorname{IL}} \psi \to \chi \end{array}$

(a) (30 points) Show by induction on the structure of φ that $\Gamma|\varphi$ implies $\Gamma \vdash_{\text{IL}} \varphi$.

- (b) (20 points) Show that $\Gamma | \bot$ implies $\Gamma | \varphi$ for any formula φ .
- (c) (40 points) Show that if $\Gamma|\gamma$ for all $\gamma \in \Gamma$ and $\Gamma \vdash_{\text{IL}} \varphi$, then $\Gamma|\varphi$. Hint: Use induction the derivation of $\Gamma \vdash_{\text{IL}} \varphi$. You do not have to treat all cases: only discuss the axiom schemes $\varphi \to \varphi \lor \psi$ and $\varphi \land \psi \to \varphi$ and the first and the last inference rule (that is, from φ and $\varphi \to \psi$ infer ψ , and from $\varphi \to \psi$ infer $\varphi \lor \chi \to \psi \lor \chi$).
- (d) (10 points) Deduce from (a) and (c) that $\vdash_{\text{IL}} \varphi \lor \psi$ implies $\vdash_{\text{IL}} \varphi$ or $\vdash_{\text{IL}} \psi$.