8th Exercise sheet Proof Theory 7 Mar 2018

Exercise 1 Consider the following De Morgan laws:

```
 \begin{array}{l} \neg \exists x \, \varphi \rightarrow \forall x \, \neg \varphi \\ \forall x \, \neg \varphi \rightarrow \neg \exists x \, \varphi \\ \neg \forall x \, \varphi \rightarrow \exists x \, \neg \varphi \\ \exists x \, \neg \varphi \rightarrow \neg \forall x \, \varphi \end{array}
```

Which ones of those are also intuitionistically valid? Give an intuitionistic natural deduction-style proof, if possible; if this is not possible, give a classical proof and a Kripke model refuting the statement.

Exercise 2 Consider the following classical tautologies:

 $\begin{aligned} (\forall x \, \varphi \to \psi) &\to \exists x \, (\varphi \to \psi) \\ (\exists x \, \varphi \to \psi) \to \forall x \, (\varphi \to \psi) \\ (\psi \to \forall x \, \varphi) \to \forall x (\psi \to \varphi) \\ (\psi \to \exists x \, \varphi) \to \exists x (\psi \to \varphi) \end{aligned}$

(Here ψ is a formula in which x does not occur freely.) Which ones of those are also intuitionistically valid? Give an intuitionistic natural deduction-style proof, if possible; if this is not possible, give a classical proof and a Kripke model refuting the statement.

Exercise 3 Construct a Kripke model refuting the intuitionistic validity of the sentence

$$\neg \neg \forall x (A(x) \lor \neg A(x)).$$

This shows that there are formulas φ in predicate logic such that φ is a classical tautology, while not even $\neg \neg \varphi$ is an intuitionistic tautology.

Exercise 4 We extend the theory of nuclei to predicate logic. So now a nucleus is a function ∇ sending formulas in predicate logic to formulas in predicate logic, in such a way that the following statements are provable in intuitionistic logic:

$$\begin{split} & \vdash_{\mathrm{IL}} \varphi \to \nabla \varphi \\ & \vdash_{\mathrm{IL}} \nabla (\varphi \wedge \psi) \leftrightarrow (\, \nabla \varphi \wedge \nabla \psi \,) \\ & \vdash_{\mathrm{IL}} (\varphi \to \nabla \psi) \to (\nabla \varphi \to \nabla \psi) \end{split}$$

In addition, define φ^{∇} by induction on the structure of φ as follows:

 $\begin{array}{rcl} \varphi^{\nabla} & := & \nabla \varphi & \text{if } \varphi \text{ is a propositional variable or } \bot, \\ (\varphi \wedge \psi)^{\nabla} & := & \varphi^{\nabla} \wedge \psi^{\nabla}, \\ (\varphi \vee \psi)^{\nabla} & := & \nabla (\varphi^{\nabla} \vee \psi^{\nabla}), \\ (\varphi \rightarrow \psi)^{\nabla} & := & \varphi^{\nabla} \rightarrow \psi^{\nabla}, \\ (\forall x \, \varphi(x) \,)^{\nabla} & := & \forall x \, (\varphi(x))^{\nabla}, \\ (\exists x \, \varphi(x) \,)^{\nabla} & := & \nabla \exists x \, (\varphi(x))^{\nabla}. \end{array}$

- (a) Show $\vdash_{\mathrm{IL}} \nabla \exists x \, \nabla \varphi \leftrightarrow \nabla \exists x \, \varphi$ and $\vdash_{\mathrm{IL}} \nabla \forall x \, \nabla \varphi \leftrightarrow \forall x \, \nabla \varphi$
- (b) Show that for any formula φ we have $\vdash_{\mathrm{IL}} \nabla \varphi^{\nabla} \leftrightarrow \varphi^{\nabla}$.
- (c) Show that $\varphi_1, \ldots, \varphi_n \vdash_{\mathrm{IL}} \psi$ implies $\varphi_1^{\nabla}, \ldots, \varphi_n^{\nabla} \vdash_{\mathrm{IL}} \psi^{\nabla}$.