6th Exercise sheet Proof Theory 28 Feb 2018

Exercise 1 In this exercise we work in classical natural deduction for propositional logic where we only regard \land and \rightarrow as basic and we have defined disjunction as follows:

$$\varphi \lor \psi := \neg \varphi \to \psi.$$

In addition, we restrict the reduction ad absurdum rule to propositional variables, as follows:

$$\begin{array}{c} [\neg p] \\ \mathcal{D} \\ \underline{\perp} \\ p \end{array}$$

(See Remark 8.1.6 in the notes.)

(a) Show that the reductio ad absurdum rule for general formulas φ

$$\begin{array}{c} [\neg \varphi] \\ \mathcal{D} \\ \underline{\perp} \\ \varphi \end{array}$$

is derivable in this calculus.

- (b) Work with the notion of track as in Definition 8.1.2 in the notes and formulate and prove an appropriate analogue of Proposition 8.1.4.
- (c) Show that in this calculus any formula in a normal derivation of $\Gamma \vdash \varphi$ must be a subformula of some formula in Γ or a subformula of φ or of the form $\neg p$ where p occurs in Γ or φ .

Exercise 2 Use normalisation for natural deduction to show that intuitionistic propositional logic has the disjunction property.

Exercise 3 The class of *Harrop formulas* is defined inductively as follows:

- (i) Any propositional variable p is a Harrop formula.
- (ii) \perp is a Harrop formula.
- (iii) If φ and ψ are Harrop formulas, then $\varphi \wedge \psi$ is a Harrop formula.
- (iv) If φ is an arbitrary formula and ψ is a Harrop formula, then $\varphi \to \psi$ is a Harrop formula.

Use normalisation for natural deduction to argue that if $\Gamma \vdash \varphi \lor \psi$ and Γ is a set of Harrop formulas, then $\Gamma \vdash \varphi$ or $\Gamma \vdash \psi$.