3rd Exercise sheet Proof Theory 16 Feb 2018

Recall that a nucleus is a function mapping formulas in propositional logic to formulas in propositional logic for which the following statements are provable in intuitionistic logic:

$$\begin{split} & \vdash_{\mathrm{IL}} \varphi \to \nabla \varphi \\ & \vdash_{\mathrm{IL}} \nabla (\varphi \land \psi) \leftrightarrow (\nabla \varphi \land \nabla \psi) \\ & \vdash_{\mathrm{IL}} (\varphi \to \nabla \psi) \to (\nabla \varphi \to \nabla \psi) \end{split}$$

Exercise 1 Let A be some fixed propositional formula. Check that $\nabla \varphi := \varphi \lor A$ and $\nabla \varphi := (\varphi \to A) \to A$ are nuclei.

Exercise 2 Show that for any nucleus ∇ we have:

$$\begin{split} &\vdash_{\mathrm{IL}} (\varphi \to \psi) \to (\nabla \varphi \to \nabla \psi) \\ &\vdash_{\mathrm{IL}} \nabla \varphi \leftrightarrow \nabla \nabla \varphi \\ &\vdash_{\mathrm{IL}} \nabla (\nabla \varphi \lor \nabla \psi) \leftrightarrow \nabla (\varphi \lor \psi) \\ &\vdash_{\mathrm{IL}} \nabla (\varphi \to \nabla \psi) \leftrightarrow (\nabla \varphi \to \nabla \psi) \end{split}$$

Given a nucleus ∇ , let φ^{∇} be the formula obtained from φ by applying ∇ to each propositional variable and each disjunction. More precisely, let φ^{∇} be defined by induction on the structure of φ as follows:

 $\begin{array}{rcl} \varphi^{\nabla} & := & \nabla \varphi & \text{if } \varphi \text{ is a propositional variable or } \bot, \\ (\varphi \wedge \psi)^{\nabla} & := & \varphi^{\nabla} \wedge \psi^{\nabla}, \\ (\varphi \vee \psi)^{\nabla} & := & \nabla (\varphi^{\nabla} \vee \psi^{\nabla}), \\ (\varphi \rightarrow \psi)^{\nabla} & := & \varphi^{\nabla} \rightarrow \psi^{\nabla}. \end{array}$

Exercise 3 (a) Show that for any formula φ we have $\vdash_{\mathrm{IL}} \nabla \varphi^{\nabla} \leftrightarrow \varphi^{\nabla}$. (b) Show that $\varphi_1, \ldots, \varphi_n \vdash_{\mathrm{IL}} \psi$ implies $\varphi_1^{\nabla}, \ldots, \varphi_n^{\nabla} \vdash_{\mathrm{IL}} \psi^{\nabla}$. **Exercise 4** In this exercise we will only consider nuclei of the form $\nabla \varphi := (\varphi \to A) \to A$ for some fixed propositional formula A.

- (a) Show $\vdash_{\mathrm{IL}} \nabla \bot \leftrightarrow A$.
- (b) Show that $\varphi_1, \ldots, \varphi_n \vdash_{\mathrm{CL}} \psi$ implies $\varphi_1^{\nabla}, \ldots, \varphi_n^{\nabla} \vdash_{\mathrm{IL}} \psi^{\nabla}$.
- (c) Show that if $A = \bot$, that is, if $\nabla \varphi = \neg \neg \varphi$, then $\vdash_{\mathrm{CL}} \varphi \leftrightarrow \varphi^{\nabla}$.