CHAPTER 5

Classical sequent calculus

One of the most important proof systems is the sequent calculus, which, like natural de-
duction, was invented by the German proof-theorist Gerhard Gentzen. Sequent calculus also
resembles natural deduction in that the proofs look like trees. The main difference, however,
is that in the sequent calculus the nodes in the trees are labeled with sequents, not formulas.
A sequent is an expression of the form I' = A where I' and A are finite sets of formulas;
its intuitive meaning is A" — \/ A, that is, the conjunction of all the formulas in I implies
the disjunction of all the formulas in A. In particular, a sequent I' = A is a tautology, or
consistent, or ..., precisely when AT — \/ A is.

1. The rules of the sequent calculus for classical propositional logic

In this chapter we will only look at the classical sequent calculus. This calculus has two
axioms:

L Tip=Ap
Axioms { I 1= A
In addition, it has for each logical connective two inference rules, one introducing it on the left
and one introducing it on the right:

Left Right
A LDopoe=A I=p4 ['=pB2,A
T aiAas=A I'=pB1AB2,A
v r.B3:1=A I, Ba=A I'=aj,a2,A
T',B1VB2=A I'sa1Vas,A
— I'=A,p I',Ba=A T a;=az,A
I'1—=B2=A I'=a;—asz,A

In these rules we divide the formulas in the premise(s) into active and passive formulas, where
in the rules above a1, as, 81, B2 are active, while the others are passive; similarly, we divide the
formulas in the conclusion into two groups, where a10as and 1008y are principal formulas
and the others are side formulas.

Finally, it has the following cut rule:

'=p A Lp=A
I's A
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In this rule the formula ¢ is called the cut formula and we sometimes say that in this rule “we
cut on ¢”.

A sequent which appears as a conclusion of a derivation 7 is often called the endsequent of
the derivation.

THEOREM 1.1. (Soundness of the sequent calculus) If I' = A is derivable in the classical
sequent calculus, then it is a tautology.

The converse (completeness) holds as well and will be proved shortly.
DEFINITION 1.2. A derivation which does not use the cut rule will be called cut free.

LEMMA 1.3. (Weakening) If I' = A is the endsequent of a (cut free) derivation m and
L CTI and A C A/, then I = A’ has a (cut free) derivation as well.

PROOF. Take the derivation 7 and add all the formulas from I'” to the left of the arrow =
and all the formulas from A’ to the right of the arrow = in every sequent in 7. The result is
still a derivation and it has endsequent IV = A’. (Alternatively: prove this by induction on
the derivation 7.) If the original derivation was cut free, so is the resulting one. |

2. The inversion lemma

For any rule in any sound calculus we must have that if all its premises are tautologies, then
so is its conclusion. From this it does not follow that if we have a rule whose conclusion is a
tautology, then all its premises must be tautologies as well. (Of course, if the calculus is complete
then any tautology must be the conclusion of some rule whose premises are tautologies; but
there might be many rules with the same conclusion.) However, let us call a rule invertible if it
has the special property that this does indeed hold: if the conclusion of this rule is a tautology,
then so are all its premises.

It turns out that all the rules in the classical sequent calculus for propositional logic are
invertible. Semantically, this is not so hard to see. Let us state it in dual form, using the notion
of countermodel.

DEFINITION 2.1. A classical model M is a countermodel for a sequent I' = A if in M all
formulas in I" are true and all formulas in A are false.

LEMMA 2.2. (Semantic Inversion Lemma) For any introduction rule in the sequent calculus
for classical propositional logic we have that a countermodel for one of its premises is also a
countermodel for its conclusion.

PROOF. By direction inspection of the rules. ([l

In the remainder of this section we will give a proof-theoretic analogue of this: it will say
that if a conclusion of one of the introduction is derivable, then so are all its premises. The
proof will be effective in that it constructs derivations of the premises from a derivation for the
conclusion.

This proof-theoretic inversion lemma is proved by reasoning backwards: that is, given a
sequent o it investigates how it could be derived by searching through all possible inferences
which have that sequent as its conclusion. Clearly, this can be iterated: one can then proceed
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to study all possible ways of obtaining any sequent from which o can be obtained and so on.
This is really the main proof method in arguing about derivations in the sequent calculus.

But in this process of backwards reasoning there is one error that is quite easy make. It is
easy to believe that the only way to obtain

PAG=D
is from
p,q=p
by applying the LA-rule. That. however, is not true, as it could also have been obtained from

D, ¢, PNq=Dp

(also by the LA-rule): the reason for this is that also this inference step is an instance of

I'p,g = p
LipAg = p

but with ' = {p A ¢} instead of ' = . (Remember that on the left and right of the arrow we
have sets!)

Note that the weakening lemma implies that whenever, for example, I'; ¢, 9 = A is deriv-
able then so is I'; o A 9, p,%0 = A. This has the following slightly paradoxical consequence:
when reasoning backwards we always have to consider the possibility that the formula we are
“building” was already present in all the premises; and sometimes we may reduce, without loss
of generality, the situation where this does not happen to the case where it does.

LEMMA 2.3. (Inversion Lemma) Each of the rules in the classical sequent calculus is in-
vertible: if there is a (cut free) derivation 7 of a sequent o and o can be obtained from sequents
O1,y...,0, by one of the rules, then there are (cut free) derivations w; of the o; as well.

PROOF. We prove this by induction on the derivation .

There are many case to consider, so we will only discuss one illustrative case and leave the
others to the reader (in case he or she is bored). Suppose the conclusion of 7 is T, o A¢p = A
and we want to argue that this means that we must also have a derivation of T', ¢, 1) = A.

First we must consider the case that I, o A = A is axiom, which means either that both
I and A share a propositional variable p or that I' contains L. In both cases also I', ¢, = A
is an axiom.

Let us now the consider the case where ¢ A % is principal in the last inference in 7, which
means that it has been obtained in 7 from either I', o, 9 = A or T'; o A ¢, o, 9 = A. In the
first case we are done immediately; in the second case we can apply the induction hypothesis
on the smaller derivation resulting in I', o A ¢, ¢, 9 = A (that is, the derivation 7 minus the
last step) to deduce that T', ¢, 1 = A is derivable.

In addition, we have to consider the case where @ A1) is a side formula in the last inference in
7. There are many ways in which this could happen, but let us just consider the case where it is
obtained from I', p Ay = A, 51 and T', p A, B2 = A by applying rule introducing — on the left
(so f1 — B2 € T'). By applying the induction hypothesis on the derivations of T', p AtY) = (; and
T, o A, 8o = A we obtain derivations of ', p,¢ = A, 1 and ', ¢, 9, fo = A. Taking those
derivations and applying the rule introducing — on the left gives us a derivation of ', ¢, ) = A
(as B1 — B2 € T') and that is precisely what we want.
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Finally, we consider the case where in the derivation 7 the sequent I', o A ¢ = A has been
obtained by applying the cut rule on sequents I';o Ay = x, A and I';o A ¢, x = A. By
induction hypothesis this means that we have derivations of T', o, = x, A and I, p, 9, x = A
and by applying the cut rules to those we obtain a derivation of ', p,% = A, as desired. [

3. Cut free derivations

In this section we will take a closer look at cut free derivations.

LEMMA 3.1. (Subformula property) Suppose 7 is a cut free derivation with endsequent o.
Then any formula occurring in  is a subformula of some formula in o.

PROOF. By direct inspection of the rules. (Alternatively: by induction on the derivation
7.) O

DEFINITION 3.2. An inference step will be called sensible if its conclusion is distinct from
any of its premises. A derivation will called sensible if along any path from the root to a leaf
no sequents are repeated (so every node along such a path is labelled with a different sequent).

Clearly, a sensible derivation can only contain sensible inferences (but the converse need
not hold), and any derivation can be shortened to a sensible one (with the same endsequent).

PROPOSITION 3.3. For each sequent I' = A one can effectively determine a natural number
n such that any cut free and sensible derivation of I' = A has size at most n.

PROOF. Suppose 7 is a cut free and sensible derivation of I' = A and consider a path from
the root to a leaf in such a derivation. we always see distinct sequents (because the derivation
is sensible) but at the same time every sequent consists of subformulas of formulas in I" and
A. Since there are only finitely many such subformulas, the length of such a path is bounded
by some number effectively computable from the sequent I' = A. This means that one can
compute from a sequent I' = A a bound on the size that any cut free, sensible derivation of
that sequent could possibly have. O

COROLLARY 3.4. The question whether a sequent I' = A has a cut free derivation in
the sequent calculus for classical propositional logic is decidable; that is, there is an effective
procedure for determining whether such a sequent has a cut free derivation or not.

PrOOF. Clearly, we only need to consider derivations of I' = A that are both cut free and
sensible. The previous proposition gives us a number n such that any such derivation has size
at most n: so we can then search through all cut free and sensible derivation of size at most n
and check whether anyone of them has end sequent I' = A. (|

4. Completeness

In fact, to determine whether a sequent I' = A has a cut free proof or not we can do
something more intelligent than searching through all proofs having at most a certain size.
Indeed, the Inversion Lemma implies that the classical sequent calculus is very much amenable
to backwards proof search.

By backwards proof search we mean the following: given a sequent o it investigates how
it could be derived by searching through all possible inferences which have that sequent as



4. COMPLETENESS 5

its conclusion. Clearly, this can be iterated: one can then proceed to study all possible ways
of obtaining any sequent from which ¢ can be obtained and so on. For the classical sequent
calculus, this works especially well, because the Inversion Lemma implies that one can always
just choose one possible way of inferring a sequent and only explore that possibility: it is
impossible to make a wrong choice.

Some rules have more than one premise and in that case one has to explore both premises
(this is called branching). This is clearly not very attractive, so it is a good heuristic to first
try to apply rules which do not branch, branching only when this is unavoidable.

We stop this backwards proof search as soon as we hit an axiom or we hit a sequent which
is not an axiom and which cannot be obtained by a sensible application of an introduction
rule. This process terminates because there is some bound on the size of any sensible cut free
derivation of a sequent.

If at every branch we hit an axiom, we obtain a cut free derivation of the original sequent.
If, however, along one of the branches we hit a sequent which is not axiom and which can also
not arise as the conclusion of a sensible application of an introduction rule, we know (by the
Inversion Lemma) that the original sequent cannot be derivable in the sequent calculus without
the cut rule.

But, actually, we know much more than that, as the following lemma shows:

LEMMA 4.1. Suppose I' = A is a sequent which is not an axiom and which cannot arise
as the conclusion of a sensible application of an introduction rule. Then this sequent is not a
tautology and a countermodel can be read off from the sequent I' = A.

ProOOF. Let M:= {p € P:p € T'}. We now prove by induction on ¢ the following
statement:

if p €T, then M = ¢, and if ¢ € A, then M }~= .

(1) ¢ is a propositional variable p. If p € T, then M = p, by construction. If p € A, then
p € T (otherwise I' = A would be an axiom), so M = p.

(2) pis L. Then L ¢ T (otherwise I' = A would be an axiom); also, we have M [~ L,
whether or not | € A.

(3) o =v Ax. If v A x €T, then we must have ¢, x € I": for otherwise

Ly, x = A
' = A
would be an inference step with I' = A as its conclusion, but with a premise which is
different from I' = A. So we have M = ¢ and M |= ¢ by induction hypothesis, and
hence M = .
If ¥ A x € A, then we must have either ) € A or x € A: for otherwise

I = Ay I = Ax
I = A
would be an inference step with I' = A as its conclusion, but with both premises
different from I" = A. So we have M [~ ¢ or M }= x, and therefore M = .
(4) The cases for the disjunction and the implication are similar to the one for conjunction
and are left to the reader.

O
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This lemma tells us that if in our backwards proof search we hit a sequent which is not
an axiom and cannot be obtained by a sensible application of an introduction rule, then this
sequent has a countermodel. And, indeed, by the Semantic Inversion Lemma this countermodel
must be a countermodel for the original sequent as well.

So we can summarise this discussion with the following theorem:

THEOREM 4.2. There is an effective procedure which for any sequent o in propositional
logic finds either a cut free proof in the classical sequent calculus or a classical countermodel.

Note that this implies in particular that the classical sequent calculus is complete. In fact,
it shows that the classical sequent calculus would have been complete even without the cut
rule. Of course, the cut rule is sound, so its addition is harmless. However, it does show that
in a sense this rule is superfluous: any derivable sequent also has a cut free derivation. This
suggests that it must be possible to systematically eliminate applications of the cut rule from
proofs. This is indeed the case and such a process is called cut elimination. But before we
discuss cut elimimation, let us first look at the intuitionistic sequent calculus and see how much
of this chapter survives if we go intuitionistic.



CHAPTER 6

Intuitionistic sequent calculus

In this chapter we will look at the intuitionistic sequent calculus. If we take the classical
sequent calculus as our starting point, we see that the only rule which is not intuitionistically
valid is the rule for introducing implications on the right. It is possible to weaken this rule to

I'Nag = as
F:>Oél*>042,A

and obtain a sequent calculus for intuitionistic logic which is both sound and complete. However,
in this chapter we will do something different.

Gentzen observed that it is possible to write down a sequent calculus for intuitionistic logic
in which there are always single formulas on the right of the arrow =-. We will follow Gentzen
in this and define an intuitionistic sequent to be an expression of the form I' = ¢ where I' is a
finite set of formulas. We will say it is valid, consistent, et cetera, if AT — ¢ is.

1. Rules of the sequent calculus for intuitionistic propositional logic

The intuitionistic sequent calculus has the following axioms:

. T'p=p
Axioms { T 1=

In addition, it has the following introduction rules:

Left Right
A Dai,as=¢ '=p I'=pB>
INaihas=¢ I'=pB1AB2
\/ I'.pi=¢p T,Bo=¢ I'=a; I'=saq
T,81VBa=p I'=sa;Vas I'=sa1Vas
N F'=p T,Ba=¢ Toi=as
I\B1—=B2=¢ I'=a1—as

Again, in these rules we divide the formulas in the premise(s) into active and passive formulas,
where in the rules above «aq,as, 81,82 are active, while the others are passive; similarly, we
divide the formulas in the conclusion into two groups, where a;as and (10085 are principal
formulas and the others are side formulas.
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Finally, it has the following cut rule:

=y Te=9¢
'=svy

2. Basic properties of the intuitionistic sequent calculus

Let us first of all observe that this sequent calculus is sound:

THEOREM 2.1. If T’ = ¢ is derivable in the intuitionistic sequent calculus, then it is an
intuitionistic tautology.

LEMMA 2.2. (Weakening) If I' = ¢ is the endsequent of a (cut free) derivation 7 in the
intuitionistic sequent calculus and T' C TV, then TV = ¢ is derivable as well.

PROOF. If we simply add all formulas in I to the left of the arrow in all the sequents in
7, we still have a correct derivation. O

The main difference is that the Inversion Lemma no longer holds in full generality.

LEMMA 2.3. (Inversion Lemma) The rules for introducing conjunctions on the left and
right, implications on the right and disjunctions on the left are invertible in the intuitionistic
sequent calculus: if there is a (cut free) derivation m of a sequent o and o can be obtained from
sequents o1,...,0p by one of these rules, then there are (cut free) derivations w; of the o; as
well.

PROOF. Exercise! Also find suitable counterexamples to show that the other rules are not
invertible. ([l

The following lemma still holds:

LEMMA 2.4. (Subformula property) Suppose 7 is a cut free derivation with endsequent o.
Then any formula occurring in w is a subformula of some formula in o.

And therefore we still have:

PROPOSITION 2.5. For each intuitionistic sequent I' = ¢ one can effectively determine a
natural number n such that any cut free and sensible derivation of I' = ¢ has size at most
n. Therefore the question whether a sequent I' = ¢ has a cut free derivation in the sequent
calculus for intuitionistic propositional logic is decidable.

Backwards proof search for cut free proofs is still possible for the intuitionistic sequent
calculus. However, the failure of the Inversion Lemma in its full generality makes it more
complicated. The invertible rules can of course always be applied in the other direction, but
one may reach sequents where the only way forward is to systematically go through all non-
invertible introduction rules which would have that sequent as their conclusion. Clearly, there
are only finitely many ways in which this would be possible, so one would still have a terminating
search procedure, but it would be one of a more complicated kind.
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3. Completeness

One can also show the completeness of intuitionistic sequent calculus without the cut rule.
We will sketch a non-constructive proof here.

THEOREM 3.1. If a sequent I' = ¢ is not derivable in the intuitionistic sequent calculus
without the cut rule, then there is a world w in a Kripke model (W, R, f) such that all formulas
in ' are forced at w, while ¢ is not.

PROOF. Let us temporarily introduce some notation. For an infinite set of propositional
formulas T', we will write I' = ¢ if there is some finite I'g C I' such that I'g = ¢ is derivable
in the intuitionistic sequent calculus without the cut rule. If this is not the case, we will write

T'# .

The desired Kripke model can now be constructed as follows. For W we take the set of
pairs (I', ¢) such that: (1) T' & ¢, and (2) if I',¥ % ¢, then ¢ € T'. In addition, we will put
(T,o)R(IV, ") if I C TV and

f@.¢):={peP:peT}

Claim 1: If T' # ¢, then there exists a set of formulas A such that I' C A and (A, p) € W.
Proof: Let (1, )nen be an enumeration of all formulas in propositional logic. We will construct
an increasing sequence of formulas A, by induction. We start with Ag = I" and we will put

Ant1 A U{thn} if Ay b 7 ¢

Then A:=J,cy Ay is as desired.

Claim 2: For any formula o and any world w = (', ) € W we have that if @ € T then
wlF « and if o = ¢, then w Iff a. Proof: By induction on the structure of a. (Exercise!)

So if a sequent I' = ¢ is not derivable in the intuitionistic sequent calculus without the cut
rule, then by the first claim I" can be extended to a set A such that w = (A, ¢) € W. Then by
the second claim all formulas in A, and hence all formulas in ', are forced in w, while ¢ is not
forced in w. a



