6th Homework sheet Proof Theory

- Deadline: 12 December.
- Submit your solutions by handing them to the lecturer at the *beginning* of the lecture.
- Good luck!
- (a) (40 points) Show that there is a closed term **lt** of type $0 \to (0 \to 0)$ such that

$$\mathsf{HA}^{\omega} \vdash \forall x^0, y^0 (\operatorname{lt} x \, y = 0 \leftrightarrow \exists n^0 \operatorname{\mathbf{plus}} x \, Sn = y)$$

Instead of $\operatorname{lt} x y = 0$ we will write x < y and we will write $x \leq y$ as abbreviation for $x = y \lor x < y$.

(b) (30 points) Consider the following statement:

 $(\clubsuit) \qquad \forall f^{0 \to 0} \, \exists x_1^0, x_2^0, x_3^0 \, \big(\, x_1 < x_2 < x_3 \wedge f(x_1) \le f(x_2) \le f(x_3) \, \big).$

Give a classical proof, and argue as follows. Let f be an arbitrary object of type $0 \rightarrow 0$. From the Law of Excluded Middle and the De Morgan laws we get:

$$(\exists x^0 \,\forall y^0 \, f(y) \le x) \, \lor \, (\forall x^0 \,\exists y^0 \, x < f(y) \,).$$

Then show (\clubsuit) in both cases.

(c) (30 points) Show that (\clubsuit) is also provable constructively. How does your constructive argument find suitable x_1, x_2, x_3 from f?