$\omega\text{-categoricity}$

Convention

Let us say a theory is *nice* if it

- is complete,
- and formulated in a countable language,
- and has infinite models.

Definition

A theory is ω -categorical if all its countably infinite models are isomorphic.

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

- **1** T is ω -categorical;
- all n-types are isolated;
- **③** all models of T are ω -saturated;
- all countable models of T are ω -saturated.

Remark

Note that for any theory T we have:

Proposition

The following are equivalent: (1) all *n*-types are isolated; (2) every $S_n(T)$ is finite; (3) for every *n* there are only finite many formulas $\varphi(x_1, \ldots, x_n)$ up to equivalence relative to T.

Proof.

(1) \Leftrightarrow (2) holds because $S_n(T)$ is a compact Hausdorff space. (2) \Rightarrow (3): If there are only finitely many types, then each of these isolated, so there are formulas $\psi_1(x_1, \ldots, x_n), \ldots, \psi_m(x_1, \ldots, x_n)$ "isolating" all these types with $T \models \bigvee_i \psi_i$. But then every formula $\varphi(x_1, \ldots, x_n)$ is equivalent to the disjunction of the ψ_i of which it is a consequence.

(3) \Rightarrow (2): If every formula $\varphi(x_1, \ldots, x_n)$ is equivalent modulo T to one of $\psi_1(x_1, \ldots, x_n), \ldots, \psi_m(x_1, \ldots, x_n)$, then every *n*-type is completely determined by saying which ψ_i it does and which it does not contain.

Ryll-Nardzewski Theorem

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

- **1** T is ω -categorical;
- all *n*-types are isolated;
- **③** all models of T are ω -saturated;
- **4** all countable models of T are ω -saturated.

Proof.

(1) \Rightarrow (2): If *T* contains a non-isolated type then there is a model where it is realized and a model where it is not realized (by the Omitting Types Theorem). (2) \Rightarrow (3): If all *n* + 1-types are isolated, then every 1-type with *n* parameters from a model is isolated, hence generated by a single formula. So if such a type is finitely satisfiable in a model, that formula can be satisfied there and then the entire type is realised. (3) \Rightarrow (4) is obvious. (4) \Rightarrow (1): Because elementarily equivalent κ -saturated models of cardinality κ are always isomorphic.

Existence countable saturated models

Corollary

If A is a model and a_1, \ldots, a_n are elements from A, then Th(A) is ω -categorical iff $Th(A, a_1, \ldots, a_n)$ is ω -categorical.

Definition

A theory T is small if all $S_n(T)$ are at most countable.

Theorem

A nice theory is small iff it has a countable ω -saturated model.

Proof.

 \Leftarrow : If *T* is complete and has a countable ω-saturated model, then every type consistent with *T* is realized in that model. So there are at most countable many *n*-types for any *n*.

 \Rightarrow I will do on the next page.

Proof finished

Theorem

A nice theory is small iff it has a countable ω -saturated model.

Proof.

 \Rightarrow : We know that a model A can be elementarily embedded in a model B which realizes all types with parameters from A that are finitely satisfied in A. From the proof of that result we see that if A is a countable and there are at most countably many *n*-types with a finite set of parameters from A, then all of these types can be realized in a *countable* elementary extension B. Building an ω -chain by repeatedly applying this result and then taking the colimit, we see that A can be embedded in a countable ω -saturated elementary extension. So if A is a countable model of T, we obtain the desired result.

Vaught's Theorem

Theorem (Vaught)

A nice theory cannot have exactly two countable models (up to isomorphism).

Proof.

Let T be a nice theory. Without loss of generality we may assume that T is small (why?) and not ω -categorical. We will now show that T has at least three models.

First of all, there is a countable ω -saturated model A. In addition, there is a non-isolated type p which is omitted in some model B. Of course, it is realized in A by some tuple \overline{a} . Since $\operatorname{Th}(A, \overline{a})$ is not ω -categorical (by the corollary from a few slides back), it has a model different from A. Since this model realizes p, it must be different from B as well.

Exercises

Exercise

Write down a theory with exactly two countable models.

Exercise

Show for every n > 2 there is a nice theory having precisely n countable models (up to isomorphism). (Consider $(\mathbb{Q}, P_0, \ldots, P_{n-2}, c_0, c_1, \ldots)$ where the P_i form a partition into dense subsets and the c_i are an increasing sequence of elements of P_0 .)

Exercise

Give an example of a complete theory T in an uncountable language which has exactly one countable model but for which not all $S_n(T)$ are finite.

Prime and atomic models

Definition

Let T be a nice theory.

- A model *M* of *T* is called *prime* if it can be elementarily embedded into any model of *T*.
- A model M of T is called *atomic* if it only realises isolated types (or, put differently, omits all non-isolated types) in $S_n(T)$.

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

 \Rightarrow : Because T is nice it has countable models and non-isolated types can be omitted. For \Leftarrow see the next page.

Proof continued

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

 \Leftarrow : Let *A* be a countable and atomic model of a nice theory *T* and *M* be any other model of *T*. Let $\{a_1, a_2, \ldots\}$ be an enumeration of *A*; by induction on *n* we will construct an increasing sequence of elementary maps $f_n : \{a_1, \ldots, a_n\} \to M$. We start with $f_0 = \emptyset$, which is elementary as *A* and *M* are elementarily equivalent. (They are both models of a complete theory *T*.)

Suppose f_n has been constructed. The type of a_1, \ldots, a_{n+1} in A is isolated, hence generated by a single formula $\varphi(x_1, \ldots, x_{n+1})$. In particular, $A \models \exists x_{n+1} \varphi(a_1, \ldots, a_n, x_{n+1})$, and since f_n is elementary, $M \models \exists x_{n+1} \varphi(f_n(a_1), \ldots, f_n(a_n), x_{n+1})$. So choose $m \in M$ such that $M \models \varphi(f_n(a_1), \ldots, f_n(a_n), m)$ and put $f(a_{n+1}) = m$.

Existence prime models

Theorem

All prime models of a nice theory T are isomorphic. In addition, they are strongly ω -homogeneous.

Proof.

By the familiar back-and-forth techniques. (Exercise!)

Theorem

A nice theory T has a prime model iff the isolated *n*-types are dense in $S_n(T)$ for all *n*.

Remark

Let us call a formula $\varphi(\overline{x})$ complete in T if it generates an isolated type in $S_n(T)$: that is, it is consistent and for any other formula $\psi(\overline{x})$ we have either $T \models \varphi(\overline{x}) \rightarrow \psi(\overline{x})$ or $T \models \varphi(\overline{x}) \rightarrow \neg \psi(\overline{x})$. Then *n*-types are dense iff every consistent formula $\varphi(\overline{x})$ follows from some complete formula.

Existence prime models, proof

Theorem

A nice theory T has a prime model iff the isolated *n*-types are dense in $S_n(T)$ for all *n*.

Proof.

⇒: Let A be a prime model of T. Because a consistent formula $\varphi(\overline{x})$ is realised in *all* models of T, it is realized in A as well, by \overline{a} say. Since A is atomic, $\varphi(\overline{x})$ belongs to the isolated type $tp_A(\overline{a})$. ⇐: Note that a structure A is atomic iff the sets

$$\Sigma_n(x_1,\ldots,x_n) = \{ \neg \varphi(x_1,\ldots,x_n) : \varphi \text{ is complete } \}$$

are omitted in A. So it suffices to show that the Σ_n are not isolated (by the generalised omitting types theorem). But that holds iff for any consistent $\psi(\overline{x})$ there is a complete formula $\varphi(\overline{x})$ such that $T \not\models \psi(\overline{x}) \to \neg \varphi(\overline{x})$. As $\varphi(\overline{x})$ is complete, this is equivalent to $T \models \varphi(\overline{x}) \to \psi(x)$. So the Σ_n are not isolated iff isolated types are dense.