
ω-categoricity

Convention

Let us say a theory is nice if it

is complete,

and formulated in a countable language,

and has infinite models.

Definition

A theory is ω-categorical if all its countably infinite models are isomorphic.

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

1 T is ω-categorical;

2 all n-types are isolated;

3 all models of T are ω-saturated;

4 all countable models of T are ω-saturated.
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Remark
Note that for any theory T we have:

Proposition

The following are equivalent: (1) all n-types are isolated; (2) every Sn(T )
is finite; (3) for every n there are only finite many formulas ϕ(x1, . . . , xn)
up to equivalence relative to T .

Proof.

(1) ⇔ (2) holds because Sn(T ) is a compact Hausdorff space.
(2) ⇒ (3): If there are only finitely many types, then each of these
isolated, so there are formulas ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn)
“isolating” all these types with T |=

∨
i ψi . But then every formula

ϕ(x1, . . . , xn) is equivalent to the disjunction of the ψi of which it is a
consequence.
(3) ⇒ (2): If every formula ϕ(x1, . . . , xn) is equivalent modulo T to one
of ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn), then every n-type is completely
determined by saying which ψi it does and which it does not contain.
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Ryll-Nardzewski Theorem

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

1 T is ω-categorical;

2 all n-types are isolated;

3 all models of T are ω-saturated;

4 all countable models of T are ω-saturated.

Proof.

(1) ⇒ (2): If T contains a non-isolated type then there is a model where
it is realized and a model where it is not realized (by the Omitting Types
Theorem). (2) ⇒ (3): If all n + 1-types are isolated, then every 1-type
with n parameters from a model is isolated, hence generated by a single
formula. So if such a type is finitely satisfiable in a model, that formula
can be satisfied there and then the entire type is realised. (3) ⇒ (4) is
obvious. (4) ⇒ (1): Because elementarily equivalent κ-saturated models
of cardinality κ are always isomorphic.
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Existence countable saturated models

Corollary

If A is a model and a1, . . . , an are elements from A, then Th(A) is
ω-categorical iff Th(A, a1, . . . , an) is ω-categorical.

Definition

A theory T is small if all Sn(T ) are at most countable.

Theorem

A nice theory is small iff it has a countable ω-saturated model.

Proof.

⇐: If T is complete and has a countable ω-saturated model, then every
type consistent with T is realized in that model. So there are at most
countable many n-types for any n.

⇒ I will do on the next page.
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Proof finished

Theorem

A nice theory is small iff it has a countable ω-saturated model.

Proof.

⇒: We know that a model A can be elementarily embedded in a model B
which realizes all types with parameters from A that are finitely satisfied in
A. From the proof of that result we see that if A is a countable and there
are at most countably many n-types with a finite set of parameters from
A, then all of these types can be realized in a countable elementary
extension B. Building an ω-chain by repeatedly applying this result and
then taking the colimit, we see that A can be embedded in a countable
ω-saturated elementary extension. So if A is a countable model of T , we
obtain the desired result.
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Vaught’s Theorem

Theorem (Vaught)

A nice theory cannot have exactly two countable models (up to
isomorphism).

Proof.

Let T be a nice theory. Without loss of generality we may assume that T
is small (why?) and not ω-categorical. We will now show that T has at
least three models.

First of all, there is a countable ω-saturated model A. In addition, there is
a non-isolated type p which is omitted in some model B. Of course, it is
realized in A by some tuple a. Since Th(A, a) is not ω-categorical (by the
corollary from a few slides back), it has a model different from A. Since
this model realizes p, it must be different from B as well.
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Exercises

Exercise

Write down a theory with exactly two countable models.

Exercise

Show for every n > 2 there is a nice theory having precisely n countable
models (up to isomorphism). (Consider (Q,P0, . . . ,Pn−2, c0, c1, . . .) where
the Pi form a partition into dense subsets and the ci are an increasing
sequence of elements of P0.)

Exercise

Give an example of a complete theory T in an uncountable language which
has exactly one countable model but for which not all Sn(T ) are finite.
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Prime and atomic models

Definition

Let T be a nice theory.

A model M of T is called prime if it can be elementarily embedded
into any model of T .

A model M of T is called atomic if it only realises isolated types (or,
put differently, omits all non-isolated types) in Sn(T ).

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

⇒: Because T is nice it has countable models and non-isolated types can
be omitted. For ⇐ see the next page.
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Proof continued

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

⇐: Let A be a countable and atomic model of a nice theory T and M be
any other model of T . Let {a1, a2, . . .} be an enumeration of A; by
induction on n we will construct an increasing sequence of elementary
maps fn : {a1, . . . , an} → M. We start with f0 = ∅, which is elementary as
A and M are elementarily equivalent. (They are both models of a
complete theory T .)

Suppose fn has been constructed. The type of a1, . . . , an+1 in A is
isolated, hence generated by a single formula ϕ(x1, . . . , xn+1). In
particular, A |= ∃xn+1 ϕ(a1, . . . , an, xn+1), and since fn is elementary,
M |= ∃xn+1 ϕ(fn(a1), . . . , fn(an), xn+1). So choose m ∈ M such that
M |= ϕ(fn(a1), . . . , fn(an),m) and put f (an+1) = m.

9 / 1



Existence prime models

Theorem

All prime models of a nice theory T are isomorphic. In addition, they are
strongly ω-homogeneous.

Proof.

By the familiar back-and-forth techniques. (Exercise!)

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Remark

Let us call a formula ϕ(x) complete in T if it generates an isolated type in
Sn(T ): that is, it is consistent and for any other formula ψ(x) we have
either T |= ϕ(x) → ψ(x) or T |= ϕ(x) → ¬ψ(x). Then n-types are dense
iff every consistent formula ϕ(x) follows from some complete formula.
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Existence prime models, proof

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Proof.

⇒: Let A be a prime model of T . Because a consistent formula ϕ(x) is
realised in all models of T , it is realized in A as well, by a say. Since A is
atomic, ϕ(x) belongs to the isolated type tpA(a).
⇐: Note that a structure A is atomic iff the sets

Σn(x1, . . . , xn) = {¬ϕ(x1, . . . , xn) : ϕ is complete }

are omitted in A. So it suffices to show that the Σn are not isolated (by the
generalised omitting types theorem). But that holds iff for any consistent
ψ(x) there is a complete formula ϕ(x) such that T 6|= ψ(x) → ¬ϕ(x). As
ϕ(x) is complete, this is equivalent to T |= ϕ(x) → ψ(x). So the Σn are
not isolated iff isolated types are dense.
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