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Goal

Recall our goal was to prove:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

We first prove a lemma.
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A lemma

Lemma

Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied
in (A, a)a∈X is realized in (B, a)a∈X .

Proof.

Let (Γi (xi ))i∈I be the collection of all such 1-types and bi be new
constants. Then every finite subset of

Γ :=
⋃
i∈I

Γi (bi )

is satisfied in (A, a)a∈A, so it has a model B. Since Γ contains ElDiag(A),
the model A embeds into B.
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Existence of rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

Proof.

Let A be an L-structure. We will build an elementary chain of L-structures
(Ai : i ∈ κ+). We set A0 = A, at successor stages we apply the previous
lemma and at limit stages we take the colimit. Now let B be the colimit of
the entire chain. We claim B is κ+-saturated (which is more than we
need).

So let X ⊆ B be a subset of cardinality < κ+ and Γ(x) be a 1-type in LX

that is finitely satisfied in (A, a)a∈X . Since κ+ is regular, there is an
i ∈ κ+ such that X ⊆ Ai . And since A embeds elementarily into Ai , the
type Γ(x) is also finitely satisfied in (Ai , a)a∈X . So it is realized in Ai+1,
and therefore also in B, because Ai+1 embeds elementarily into B.
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Even richer models
Now that we have this we can be even more ambitious:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

We need a lemma:

Lemma

Suppose A is κ-saturated and B is an elementary substructure of A
satisfying |B| < κ. Then any elementary map f between subsets of B can
be extended to an elementary embedding of B into A.

Proof.

If f : S → B is the elementary mapping, then (B, b)b∈S ≡ (A, f (b))b∈S .
Since |S | < κ, also (A, f (b))b∈S is κ-saturated und hence κ+-universal. So
(B, b)b∈S embeds elementarily into (A, f (b))b∈S : so we have an
elementary embedding of B into A extending f .
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Existence of very rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

Proof.

Let A be an L-structure. Again, we will build an elementary chain of
L-structures (Mα : α ∈ κ+). We set M0 = A, at successor stages α+ 1
we take an |Mα|+-saturated elementary extension of Mα and at limit
stages we take the colimit. Now let M be the colimit of the entire chain.
We claim M is as desired.

Any subset of S of M that has cardinality ≤ κ, must be a subset of some
Mα (using again that κ+ is regular). So M is κ+-saturated. It remains to
show that every reduct of M is strongly κ-homogeneous.
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Existence of very rich models, proof finished

Proof.

Let f be any mapping between subsets of M that is elementary, with
domain and range having cardinality < κ. Again, domain and range will
belong to some Mα. Without loss of generality we may assume that α is a
limit ordinal. We extend f to a map fα : Mα → Mα+1 using the lemma.

We will build maps fβ for all α ≤ β < κ+ in such a way that fβ is an
elementary embedding of Mβ in Mβ+1 and fβ+1 extends f −1

β . It follows
that fβ+2 extends fβ and that the union h over all fβ with β even is an
automorphism of M.

The construction is: At limit stages we take unions over all previous even
stages. And at successor stages we apply the lemma.

This argument works equally well for reducts of M.
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Definability

Definition

Let A be an L-structure and R ⊆ An be a relation. The relation R is called
definable, if there a formula ϕ(x1, . . . , xn) such that

R = {(a1, . . . , an) ∈ An : A |= ϕ(a1, . . . , an)}.

A homomorphism f : A → A leaves R setwise invariant if
{(f (a1), . . . , f (an) : (a1, . . . , an) ∈ R} = R.

Proposition

Every elementary embedding from A to itself leaves all definable relations
setwise invariant.
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Definability results

Theorem

Let L be a language and P a predicate not in L. Suppose (A,R) is an
ω-saturated L ∪ {P}-structure and that A is strongly ω-homogeneous.
Then the following are equivalent:

(1) R is definable in A.

(2) every automorphism of A leaves R setwise invariant.

Proof.

(1) ⇒ (2) always holds, because automorphisms are elementary
embeddings.

(2) ⇒ (1): Suppose R is not definable. By the next lemma there are
tuples a and b having the same type such that R(a) is true and R(b) is
false. But then there is an automorphism of A that sends a to b by strong
homogeneity. So R is not setwise invariant under automorphisms of A.
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A lemma

Lemma

Suppose A is a structure and R is not definable in A. If (A,R) is
ω-saturated, then there are tuples a and b having the same n-type in A
such that R(a) is true and R(b) is false.

Proof.

First consider the type
Σ(x) = {ϕ(x) ∈ L : (A,R) |= ∀x

(
¬P(x) → ϕ(x)} ∪ {P(x)}. This type is

finitely satisfiable in (A,R): for if not, then there would be a formula ϕ(x)
such that (A,R) |= ¬P(x) → ϕ(x) and (A,R) |= ¬(ϕ(x) ∧ P(x)). But
then ¬ϕ(x) would define R. By ω-saturation, there is an element a
realizing Σ(x). Now consider the type Γ(x) = tpA(a) ∪ {¬P(x)}. This
type is also finitely satisfiable in (A,R): for if not, then there would be a
formula ϕ(x) ∈ L such that (A,R) |= ϕ(a) and
(A,R) |= ¬(ϕ(x) ∧ ¬P(x)). This is impossible by construction of a. By
ω-saturation there is an element b realizing Γ(x). So we have that a and b
have the same type in A, while R(a) is true and R(b) is false.

10 / 16



Svenonius’ Theorem

Svenonius’ Theorem

Let A be an L-structure and R be a relation on A. Then the following are
equivalent:

(1) R is definable in A.

(2) every automorphism of an elementary extension (B,S) of (A,R)
leaves S setwise invariant.

Proof.

(1) ⇒ (2): If R is definable in A, then S is definable in B by the same
formula; so it will be left setwise invariant by any automorphism.

(2) ⇒ (1): Let (B,S) be an ω-saturated and strongly ω-homogeneous
extension of (A,R). S will be definable in (B,S) by the previous theorem;
but then R in A will be definable by the same formula.
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Omitting types theorem

Definition

Let T be an L-theory and Σ(x) be a partial type. Then Σ(x) is isolated in
T if there is a formula ϕ(x) such that ∃x ϕ(x) is consistent with T and

T |= ϕ(x) → σ(x)

for all σ(x) ∈ Σ(x).

Exercise

A type is isolated iff it is an isolated point in the type space S1(T ).

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Σ(x) is not isolated in T , then there is a countable model of T which
omits Σ(x).
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Reminder

Recall from Grondslagen van de Wiskunde:

Theorem

Suppose T is a consistent theory in a language L and C is a set of
constants in L. If for any formula ψ(x) in the language L there is a
constant c ∈ C such that

T |= ∃x ψ(x) → ψ(c),

then T has a model whose universe consists entirely of interpretations of
elements of C .

Proof.

Extend T to a maximally consistent theory and then build a model from
the constants in C .
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Omitting types theorem, proof

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Σ(x) is not isolated in T , then there is a countable model of T which
omits Σ(x).

Proof.

Let C = {ci ; i ∈ N} be a countable collection of fresh constants and LC

be the language L extending with these constants. Let {ψi (x) : i ∈ N} be
an enumeration of the formulas with one free variable in the language LC .
We will now inductively create a sequence of sentences ϕ0, ϕ1, ϕ2, . . ..
The idea is to apply to previous theorem to T ∪ {ϕ0, ϕ1, . . .}.

If n = 2i , we take a fresh constant c ∈ C (one that does not occur in ϕm

with m < n) and put
ϕn = ∃xψi (x) → ψ(c).

This makes sure we can create a model from the constants in C .
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Omitting types theorem, proof finished

Proof.

If n = 2i + 1 we make sure that ci omits Σ(x), as follows. Consider
δ =

∧
m<n ϕm. δ is really of the form δ(ci , c) where c is a sequence of

constants not containing ci . Since Σ(x) is not isolated, there must be a
formula σ(x) ∈ Σ(x) such that T 6|= ∃y δ(x , y) → σ(x); in other words,
such that T ∪ {∃y δ(x , y)} ∪ {¬σ(x)} is consistent. Put ϕn = ¬σ(ci ).

The proof is now finished by showing by induction that each
T ∪ {ϕ0, . . . , ϕn} is consistent and then applying the theorem from
Grondslagen.
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Exercises

Exercise

Prove the generalised omitting types theorem: Let T be a consistent
theory in a countable language and let {Γi : i ∈ N} be a sequence of
partial ni -types (for varying ni ). If none of the Γi is isolated in T , then
there is a countable model which omits all Γi .

Exercise

Let T be a complete theory. Show that models of T realise all isolated
partial types.

Exercise

Prove that the omitting types theorem is specific to the countable case:
give an example of a consistent theory T in an uncountable language and
a partial type in T which is not isolated, but which is nevertheless realised
in every model of T .
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