Types

Fix $n \in \mathbb{N}$ and let x_{1}, \ldots, x_{n} be a fixed sequence of distinct variables.

Definition

- A partial n-type in L is a collection of formulas $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in L.
- If A is an L-structure and $a_{1}, \ldots, a_{n} \in A$, then the type of $\left(a_{1}, \ldots, a_{n}\right)$ in A is the set of L-formulas

$$
\left\{\varphi\left(x_{1}, \ldots, x_{n}\right): A \models \varphi\left(a_{1}, \ldots, a_{n}\right)\right\} ;
$$

we denote this set by $\operatorname{tp}_{A}\left(a_{1}, \ldots, a_{n}\right)$ or simply by $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$ if A is understood.

- A n-type in L is a set of formulas of the form $\operatorname{tp}_{A}\left(a_{1}, \ldots, a_{n}\right)$ for some L-structure A and some $a_{1}, \ldots, a_{n} \in A$.

Realizing and omitting types

Definition

- If $\Gamma\left(x_{1}, \ldots, x_{n}\right)$ is a partial n-type in L, we say $\left(a_{1}, \ldots, a_{n}\right)$ realizes Γ in A if every formula in Γ is true of a_{1}, \ldots, a_{n} in A.
- If $\Gamma\left(x_{1}, \ldots, x_{n}\right)$ is a partial n-type in L and A is an L-structure, we say that Γ is realized or satisfied in A if there is some n-tuple in A that realizes Γ in A. If no such n-tuple exists, then we say that A omits Γ.
- If $\Gamma\left(x_{1}, \ldots, x_{n}\right)$ is a partial n-type in L and A is an L-structure, we say that Γ is finitely satisfiable in A if any finite subset of Γ is realized in A.

Exercises

Exercise

Show that a partial n-type is an n-type iff it is finitely satisfiable and contains $\varphi\left(x_{1}, \ldots, x_{n}\right)$ or $\neg \varphi\left(x_{1}, \ldots, x_{n}\right)$ for every L-formula φ whose free variables are among the fixed variables x_{1}, \ldots, x_{n}.

Exercise

Show that a partial n-type can be extended to an n-type iff it is satisfiable.

Exercise

Suppose $A \equiv B$. If $\Gamma\left(x_{1}, \ldots, x_{n}\right)$ is finitely satisfiable in A, then it is also finitely satisfiable in B.

Logic topology

Definition

Let T be a theory in L and let $\Gamma=\Gamma\left(x_{1}, \ldots, x_{n}\right)$ be a partial n-type in L.

- Γ is consistent with T if $T \cup \Gamma$ has a model.
- The set of all n-types consistent with T is denoted by $S_{n}(T)$. These are exactly the n-types in L that contain T.

The set $S_{n}(T)$ can be given the structure of a topological space, where the basic open sets are given by

$$
\left[\varphi\left(x_{1}, \ldots, x_{n}\right)\right]=\left\{\Gamma\left(x_{1}, \ldots, x_{n}\right) \in S_{n}(T): \varphi \in \Gamma\right\} .
$$

This is called the logic topology.

Type spaces

Theorem

The space $S_{n}(T)$ with the logic topology is a totally disconnected, compact Hausdorff space. Its closed sets are the sets of the form

$$
\left\{\Gamma \in S_{n}(T): \Gamma^{\prime} \subseteq \Gamma\right\}
$$

where Γ^{\prime} is a partial n-type. In fact, two partial n-types are equivalent over T iff they determine the same closed set. Furthermore, the clopen sets in the type space are precisely the ones of the form $\left[\varphi\left(x_{1}, \ldots, x_{n}\right)\right]$.

κ-saturated models

Let A be an L-structure and X a subset of A. We write L_{X} for the language L extended with constants for all elements of X and $(A, a)_{a \in X}$ for the L_{X}-expansion of A where we interpret the constant $a \in X$ as itself.

Definition

Let A be an L-structure and let κ be an infinite cardinal. We say that A is κ-saturated if the following condition holds: if X is any subset of A having cardinality $<\kappa$ and $\Gamma(x)$ is any 1-type in L_{X} that is finitely satisfiable in $(A, a)_{a \in X}$, then $\Gamma(x)$ is itself satisfied in $(A, a)_{a \in X}$.

Remark

(1) If A is infinite and κ-saturated, then A has cardinality at least κ.
(2) If A is finite, then A is κ-saturated for every κ.
(3) If A is κ-saturated and X is a subset of A having cardinality $<\kappa$, then $(A, a)_{a \in X}$ is also κ-saturated.

Property of κ-saturated models

Theorem

Suppose κ is an infinite cardinal, A is κ-saturated and $X \subseteq A$ is a subset of cardinality $<\kappa$. Suppose $\Gamma\left(y_{i}: i \in I\right)$ is a collection of L_{X}-formulas with $|I| \leq \kappa$. If Γ is finitely satisfiable in $(A, a)_{a \in X}$, then Γ is satisfiable in $(A, a)_{a \in X}$.

Proof.

Without loss of generality we may assume that $I=\kappa$ and Γ is complete: contains either φ or $\neg \varphi$ for every L_{X}-formula φ with free variables among $\left\{y_{i}: i \in \kappa\right\}$.

Write $\Gamma_{\leq j}$ for the collection of those elements of Γ that only contain variables y_{i} with $i \leq j$. By induction on j we will find an element a_{j} such that $\left(a_{i}\right)_{i \leq j}$ realizes $\Gamma_{\leq j}$. Consider Γ^{\prime} which is $\Gamma_{\leq j}$ with all y_{i} replaced by a_{i} for $i<j$. This is a 1-type which is finitely satisfiable in $(A, a)_{a \in X \cup\left\{a_{i}: i<j\right\}}$ (check!). Since $(A, a)_{a \in X \cup\left\{a_{i}: i<j\right\}}$ is κ-saturated, we find a suitable a_{j}.

