Types

Fix $n \in \mathbb{N}$ and let x_1, \ldots, x_n be a fixed sequence of distinct variables.

Definition

- A partial n-type in L is a collection of formulas $\varphi(x_1, \ldots, x_n)$ in L.
- If A is an L-structure and a₁,..., a_n ∈ A, then the type of (a₁,..., a_n) in A is the set of L-formulas

$$\{\varphi(x_1,\ldots,x_n): A\models \varphi(a_1,\ldots,a_n)\};$$

we denote this set by $tp_A(a_1, \ldots, a_n)$ or simply by $tp(a_1, \ldots, a_n)$ if A is understood.

 A *n*-type in L is a set of formulas of the form tp_A(a₁,..., a_n) for some L-structure A and some a₁,..., a_n ∈ A.

Realizing and omitting types

Definition

- If Γ(x₁,...,x_n) is a partial *n*-type in L, we say (a₁,..., a_n) realizes Γ in A if every formula in Γ is true of a₁,..., a_n in A.
- If Γ(x₁,..., x_n) is a partial *n*-type in L and A is an L-structure, we say that Γ is *realized or satisfied in A* if there is some *n*-tuple in A that realizes Γ in A. If no such *n*-tuple exists, then we say that A omits Γ.
- If Γ(x₁,...,x_n) is a partial *n*-type in L and A is an L-structure, we say that Γ is *finitely satisfiable in A* if any finite subset of Γ is realized in A.

Exercises

Exercise

Show that a partial *n*-type is an *n*-type iff it is finitely satisfiable and contains $\varphi(x_1, \ldots, x_n)$ or $\neg \varphi(x_1, \ldots, x_n)$ for every *L*-formula φ whose free variables are among the fixed variables x_1, \ldots, x_n .

Exercise

Show that a partial *n*-type can be extended to an *n*-type iff it is satisfiable.

Exercise

Suppose $A \equiv B$. If $\Gamma(x_1, \ldots, x_n)$ is finitely satisfiable in A, then it is also finitely satisfiable in B.

Logic topology

Definition

Let T be a theory in L and let $\Gamma = \Gamma(x_1, \ldots, x_n)$ be a partial *n*-type in L.

- Γ is consistent with T if $T \cup \Gamma$ has a model.
- The set of all *n*-types consistent with T is denoted by $S_n(T)$. These are exactly the *n*-types in L that contain T.

The set $S_n(T)$ can be given the structure of a topological space, where the basic open sets are given by

$$[\varphi(x_1,\ldots,x_n)] = \{ \Gamma(x_1,\ldots,x_n) \in S_n(T) : \varphi \in \Gamma \}.$$

This is called the *logic topology*.

Type spaces

Theorem

The space $S_n(T)$ with the logic topology is a totally disconnected, compact Hausdorff space. Its closed sets are the sets of the form

 $\{\Gamma \in S_n(T) : \Gamma' \subseteq \Gamma\}$

where Γ' is a partial *n*-type. In fact, two partial *n*-types are equivalent over T iff they determine the same closed set. Furthermore, the clopen sets in the type space are precisely the ones of the form $[\varphi(x_1, \ldots, x_n)]$.

$\kappa\text{-saturated}$ models

Let A be an L-structure and X a subset of A. We write L_X for the language L extended with constants for all elements of X and $(A, a)_{a \in X}$ for the L_X -expansion of A where we interpret the constant $a \in X$ as itself.

Definition

Let A be an L-structure and let κ be an infinite cardinal. We say that A is κ -saturated if the following condition holds: if X is any subset of A having cardinality $< \kappa$ and $\Gamma(x)$ is any 1-type in L_X that is finitely satisfiable in $(A, a)_{a \in X}$, then $\Gamma(x)$ is itself satisfied in $(A, a)_{a \in X}$.

Remark

- **1** If A is infinite and κ -saturated, then A has cardinality at least κ .
- **2** If A is finite, then A is κ -saturated for every κ .
- If A is κ-saturated and X is a subset of A having cardinality < κ, then (A, a)_{a∈X} is also κ-saturated.

Property of κ -saturated models

Theorem

Suppose κ is an infinite cardinal, A is κ -saturated and $X \subseteq A$ is a subset of cardinality $< \kappa$. Suppose $\Gamma(y_i : i \in I)$ is a collection of L_X -formulas with $|I| \le \kappa$. If Γ is finitely satisfiable in $(A, a)_{a \in X}$, then Γ is satisfiable in $(A, a)_{a \in X}$.

Proof.

Without loss of generality we may assume that $I = \kappa$ and Γ is complete: contains either φ or $\neg \varphi$ for every L_X -formula φ with free variables among $\{y_i : i \in \kappa\}$.

Write $\Gamma_{\leq j}$ for the collection of those elements of Γ that only contain variables y_i with $i \leq j$. By induction on j we will find an element a_j such that $(a_i)_{i\leq j}$ realizes $\Gamma_{\leq j}$. Consider Γ' which is $\Gamma_{\leq j}$ with all y_i replaced by a_i for i < j. This is a 1-type which is finitely satisfiable in $(A, a)_{a \in X \cup \{a_i : i < j\}}$ (check!). Since $(A, a)_{a \in X \cup \{a_i : i < j\}}$ is κ -saturated, we find a suitable a_j . \Box