Second theorem

Today all theories are assumed to be nice.

Notation

Let A be an L-structure. If b is a tuple in A and B is any subset of A, we will write $tp_A(b/B)$ for the type in L_B realized by b.

Theorem

Assume T is an ω -stable theory, and suppose $A \models T$ and $C \subseteq A$. If A is uncountable and |C| < |A|, then there is a nonconstant sequence of indiscernibles in $(A, a)_{a \in C}$.

Proof.

We may assume *C* is infinite. Write $\lambda = |C|$. The formula x = x is satisfied by $> \lambda$ many elements, so choose an L_A -formula $\varphi(x)$ that is satisfied by $> \lambda$ many elements and has minimum possible Morley rank and degree; say these are (α, d) . Note that $\alpha > 0$ since $\varphi(x)$ is satisfied by infinitely many elements. By adding finitely many elements to *C* we may assume that $\varphi(x)$ is an L_C -formula.

Second theorem, proof continued

Proof.

We will construct a sequence $(a_k : k \in \mathbb{N})$ of elements of A that satisfy $\varphi(x)$ and such that Morley rank and degree of $\operatorname{tp}_A(a_k/C \cup \{a_0, \ldots, a_{k-1}\})$ is exactly (α, d) .

First we claim that there is an a_0 with this property. For if no such element would exist, we would have that Morley rank and degree of $tp_A(a/C)$ is $< (\alpha, d)$ for all $a \in A$ satisfying $\varphi(x)$. So each $a \in A$ which satisfies $\varphi(x)$ also satisfies an L_C -formula $\psi_a(x)$ with Morley degree and rank $< (\alpha, d)$. But since there are at most λ many L_C -formulas and more than λ many a satisfying $\varphi(x)$, there must be a formula with Morley rank and degree $< (\alpha, d)$ satisfied by $> \lambda$ many a. Contradiction! The construction of a_k given a_0, \ldots, a_{k-1} is similar. So the result follows from the following technical lemma.

Technical lemma

Lemma

Assume T is ω -stable and suppose $A \models T$ and $C \subseteq A$. Let $\varphi(x)$ be a ranked L_C -formula, and set $(\alpha, d) = (\operatorname{RM}(\varphi(x)), dM(\varphi(x)))$. Suppose $(a_k : k \in \mathbb{N})$ is a sequence of tuples and write $p_k(x) = \operatorname{tp}_A(a_k/C \cup \{a_0, \ldots, a_{k-1}\})$. If $A \models \varphi(a_k)$ and $(\operatorname{RM}(p_k(x)), dM(p_k(x))) = (\alpha, d)$, then $(a_k : k \in \mathbb{N})$ is an indiscernible sequence in $(A, a)_{a \in C}$.

Proof.

Exercise! Hint: Prove by induction on *n* that whenever $i_0 < \ldots < i_n$, then $\operatorname{tp}(a_{i_0}, \ldots, a_{i_n}/C) = \operatorname{tp}(a_0, \ldots, a_n/C)$ and use the lemma on types and Morley rank and degree.

Third goal

Recall that the third goal was:

Theorem

Assume T is ω -stable. If $A \models T$ and $C \subseteq A$, then there exists $B \preceq A$ such that $C \subseteq B$ and B is atomic over C.

We do this in two steps: first we show that we can find such a B where B is *constructible* over C; and then we show that constructible extensions have to be atomic.

Definition

Let A be an L-structure and $C \subseteq A$. We say that A is constructible over C if there is an ordinal γ and an enumeration $A = (a_{\alpha} : \alpha < \gamma)$ such that each a_{α} is atomic over $C \cup A_{\alpha}$, where $A_{\alpha} = \{a_{\mu} : \mu < \alpha\}$.

Existence constructible extensions

Theorem

Assume T is ω -stable. If $A \models T$ and $C \subseteq A$, then there exists $B \preceq A$ such that $C \subseteq B$ and B is constructible over C.

Proof.

T is totally transcendental, so if B is a subset of a model A of T, then $Th(A_B)$ has no binary tree of consistent formulas. So isolated types in $Th(A_B)$ are dense.

Now use Zorn's Lemma to find a maximal construction $(a_{\alpha})_{a<\lambda}$ which cannot be prolonged by an element $a_{\lambda} \in M$. Clearly *C* is contained in A_{λ} . We show that A_{λ} is the universe of an elementary substructure by using the Tarski-Vaught Test. So assume $\varphi(x)$ is an $L_{A_{\lambda}}$ -formula and $A \models \exists x \varphi(x)$. Since isolated types over A_{λ} are dense, there is an isolated $p(x) \in S(A_{\lambda})$ with $\varphi(x) \in p(x)$. Let *b* be a realisation of p(x) in *A*. If $b \notin A_{\lambda}$, then we could prolong our construction by $a_{\lambda} = b$; thus $b \in A_{\lambda}$ and $\varphi(x)$ is realised in A_{λ} .

Useful lemma

Lemma

Let *a* and *b* be two finite tuples of elements of a structure *M*. Then tp(ab) is atomic if and only if tp(a/b) and tp(b) are atomic.

Proof.

First assume that $\varphi(x, y)$ isolates $\operatorname{tp}(a, b)$. Then $\varphi(x, b)$ isolates $\operatorname{tp}(a/b)$ and we claim $\exists x \, \varphi(x, y)$ isolates $p(y) = \operatorname{tp}(b)$: we have $\exists x \, \varphi(x, y) \in p(y)$ and if $\sigma(y) \in p(y)$, then $M \models \forall x, y \, (\varphi(x, y) \to \sigma(y))$ and hence $M \models \forall y \, (\exists x \, \varphi(x, y) \to \sigma(y)).$

Conversely, suppose $\rho(x, b)$ isolates $\operatorname{tp}(a/b)$ and $\sigma(y)$ isolates $p(y) = \operatorname{tp}(b)$. Then $\rho(x, y) \wedge \sigma(y)$ isolates $\operatorname{tp}(a, b)$. For if $\varphi(x, y) \in \operatorname{tp}(a, b)$, then $\varphi(x, b)$ belongs to $\operatorname{tp}(a/b)$ and $M \models \forall x (\rho(x, b) \rightarrow \varphi(x, b))$. Hence $\forall x (\rho(x, y) \rightarrow \varphi(x, y)) \in p(y)$ and so it follows that $M \models \forall y (\sigma(y) \rightarrow \forall x (\rho(x, y) \rightarrow \varphi(x, y)))$. Thus $M \models \forall x, y (\rho(x, y) \wedge \sigma(y) \rightarrow \varphi(x, y))$.

Constructible extensions are atomic

Lemma

Constructible extensions are atomic.

Proof.

Let M_0 be a constructible extension of A and let \overline{a} be a tuple from M_0 . We have to show that \overline{a} is atomic over A. We can clearly assume that the elements of \overline{a} are pairwise distinct and do not belong to A. We can permute the elements of \overline{a} so that

$$\overline{a} = a_{lpha}\overline{b}$$

for some tuple $\overline{b} \in A_{\alpha}$. Let $\varphi(x, \overline{c})$ be an $L(A_{\alpha})$ -formula which is complete over A_{α} and satisfied by a_{α} . The a_{α} is also atomic over $A \cup \{\overline{b}\overline{c}\}$. Using induction, we know that $\overline{b}\overline{c}$ is atomic over A. So by the previous lemma $a_{\alpha}\overline{b}\overline{c}$ and $\overline{a} = a_{\alpha}\overline{b}$ are atomic over A.

$\kappa\text{-}\mathsf{categoricity}$ and saturation

Theorem

A theory T is κ -categorical if and only if all models of cardinality κ are κ -saturated.

For the proof we need a lemma:

Lemma

If T is κ -stable, then for all regular $\lambda \leq \kappa$ there is a model of cardinality κ which is λ -saturated.

Proof.

We constuct a sequence $(M_{\alpha} : \alpha \in \lambda)$ of models of T of cardinality κ : we start with any model M_0 of cardinality κ of T; at limit stages we take the colimit and at successor stages we take a model $M_{\alpha+1}$ which realises all types in $S(M_{\alpha})$. This we can do with a model of cardinality κ since $|S(M_{\alpha})| \leq \kappa$. The colimit of the entire chain will be λ -saturated.

$\kappa\text{-}categoricity and saturation: proof$

Theorem

A theory T is κ -categorical if and only if all models of cardinality κ are κ -saturated.

Proof.

Note that we already proved this result for $\kappa = \omega$ and that we also know that any two κ -saturated models of cardinality κ are isomorphic. So we only need to show that if T is κ -categorical for some uncountable cardinal κ , then all models of cardinality κ are κ -saturated.

But then T is ω -stable, hence totally transcendental, hence κ -stable. So by the lemma the unique model of T of cardinality κ is μ^+ -saturated for all $\mu < \kappa$. So this model is κ -saturated.

A theorem implying Morley's theorem

So Morley's Theorem will follow from:

Theorem

Suppose T is ω -stable and assume κ is an uncountable cardinal and that every model of T of cardinality κ is κ -saturated. Then every uncountable model of T is saturated.

Proof.

Suppose *T* is ω -stable and *T* has a model of cardinality λ that is not λ -saturated. (Goal is to construct a model of cardinality κ that is not κ -saturated.) So there is a subset *C* of *A* of cardinality $<\lambda$ and a type p(x) over *C* such that p(x) is consistent with $\operatorname{Th}((A, a)_{a \in C})$ but not realized in $(A, a)_{a \in C}$. We know that there is a nonconstant sequence $(a_k : k \in \mathbb{N})$ of indiscernibles in $(A, a)_{a \in C}$ (second goal). Write $I = \{a_k : k \in \mathbb{N}\}$ and note that (*): for each $L(C \cup I)$ -formula $\varphi(x)$ that is satisfiable in $(A, a)_{a \in C \cup I}$ there exists $\psi(x) \in p(x)$ such that $\varphi(x) \land \neg \psi(x)$ is satisfiable in $(A, a)_{a \in C \cup I}$. (For otherwise p(x) would be realized in $(A, a)_{a \in C}$.)

A theorem implying Morley's theorem, proof continued

Proof.

We have (*): for each $L(C \cup I)$ -formula $\varphi(x)$ that is satisfiable in $(A, a)_{a \in C \cup I}$ there exists $\psi(x) \in p(x)$ such that $\varphi(x) \land \neg \psi(x)$ is satisfiable in $(A, a)_{a \in C \cup I}$.

Let C_0 be any countable subset of C. For each $L(C_0 \cup I)$ formula $\varphi(x)$ that is satisfiable in $(A, a)_{a \in C_0 \cup I}$ let ψ_{φ} be one of the formulas satisfying (*) for φ . Since $C_0 \cup I$ is countable, there is a countable set C_1 such that $C_0 \subseteq C_1 \subseteq C$ and such that the parameters of ψ_{φ} are in C_1 . Continuing in this way to create sets C_k , let $C' = \bigcup \{C_k : k \in \mathbb{N}\}$. Let p'(x) be restriction of p(x) to C'. We have (**): for each $L(C' \cup I)$ -formula $\varphi(x)$ that is satisfiable in $(A, a)_{a \in C' \cup I}$ there exists $\psi(x) \in p'(x)$ such that $\varphi(x) \land \neg \psi(x)$ is satisfiable in $(A, a)_{a \in C' \cup I}$. Note also that $(a_k : k \in \mathbb{N})$ is a sequence of indiscernibles in $(A, a)_{a \in C'}$.

A theorem implying Morley's theorem, proof continued

Proof.

By the Standard Lemma there is a model B of $\operatorname{Th}((A, a)_{a \in C'})$ that contains a family $(b_{\alpha} : \alpha < \kappa)$ realising the Ehrenfeucht-Mostowski type of $(a_k : k \in \mathbb{N})$. We may assume this model is of the form $(B, a)_{a \in C'}$. Using the Third Goal we know that there is an elementary substructure B'of B which is atomic over $C' \cup \{b_{\alpha} : \alpha < \kappa\}$.

The proof will be finished once we show that p'(x) is not realised in $(B', a)_{a \in C'}$. For then the downward Löwenheim-Skolem Theorem implies that B' has an elementary substructure B'' of cardinality κ which contains C'. Then B'' is a model of cardinality κ which is not κ -saturated. (In fact, it is not even ω_1 -saturated.)

A theorem implying Morley's theorem, proof finished

Claim

The type p'(x) is not realised in $(B', a)_{a \in C'}$.

Proof.

Recall that we have (**): for each $L(C' \cup I)$ -formula $\varphi(x)$ that is satisfiable in $(A, a)_{a \in C' \cup I}$ there exists $\psi(x) \in p'(x)$ such that $\varphi(x) \land \neg \psi(x)$ is satisfiable in $(A, a)_{a \in C' \cup I}$.

So suppose p'(x) is realised in $(B', a)_{a \in C'}$ by some tuple *b*. We have that $\operatorname{tp}_{B'}(b/C' \cup \{b_{\alpha} : \alpha < \kappa\})$ is isolated so it contains a complete formula $\varphi(x, b_{\alpha_0}, \ldots, b_{\alpha_n})$. So we have that $\varphi(x, b_{\alpha_0}, \ldots, b_{\alpha_n}) \to \psi(x)$ holds in B' for every $\psi(x) \in p'(x)$. But since $b_{\alpha_0}, \ldots, b_{\alpha_n}$ and a_0, \ldots, a_n realize the same Ehrenfeucht-Mostowski type over C', we have that $\varphi(x, a_0, \ldots, a_n) \to \psi(x)$ is valid in *A* for each formula $\psi(x) \in p'(x)$. But that contradicts (**).

Morley's Theorem

Morley's Theorem

If a countable theory T is λ -categorical for an uncountable cardinal λ , then it is λ -categorical for all uncountable cardinal λ .

End of the course. And Merry Christmas and Happy New Year!