
Second theorem
Today all theories are assumed to be nice.

Notation

Let A be an L-structure. If b is a tuple in A and B is any subset of A, we
will write tpA(b/B) for the type in LB realized by b.

Theorem

Assume T is an ω-stable theory, and suppose A |= T and C ⊆ A. If A is
uncountable and |C | < |A|, then there is a nonconstant sequence of
indiscernibles in (A, a)a∈C .

Proof.

We may assume C is infinite. Write λ = |C |. The formula x = x is
satisfied by > λ many elements, so choose an LA-formula ϕ(x) that is
satisfied by > λ many elements and has minimum possible Morley rank
and degree; say these are (α, d). Note that α > 0 since ϕ(x) is satisfied
by infinitely many elements. By adding finitely many elements to C we
may assume that ϕ(x) is an LC -formula.
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Second theorem, proof continued

Proof.

We will construct a sequence (ak : k ∈ N) of elements of A that satisfy
ϕ(x) and such that Morley rank and degree of tpA(ak/C ∪ {a0, . . . , ak−1})
is exactly (α, d).

First we claim that there is an a0 with this property. For if no such
element would exist, we would have that Morley rank and degree of
tpA(a/C ) is < (α, d) for all a ∈ A satisfying ϕ(x). So each a ∈ A which
satisfies ϕ(x) also satisfies an LC -formula ψa(x) with Morley degree and
rank < (α, d). But since there are at most λ many LC -formulas and more
than λ many a satisfying ϕ(x), there must be a formula with Morley rank
and degree < (α, d) satisfied by > λ many a. Contradiction! The
construction of ak given a0, . . . , ak−1 is similar. So the result follows from
the following technical lemma.
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Technical lemma

Lemma

Assume T is ω-stable and suppose A |= T and C ⊆ A. Let ϕ(x) be a
ranked LC -formula, and set (α, d) = (RM(ϕ(x)), dM(ϕ(x))). Suppose
(ak : k ∈ N) is a sequence of tuples and write
pk(x) = tpA(ak/C ∪ {a0, . . . , ak−1}). If A |= ϕ(ak) and
(RM(pk(x)), dM(pk(x))) = (α, d), then (ak : k ∈ N) is an indiscernible
sequence in (A, a)a∈C .

Proof.

Exercise! Hint: Prove by induction on n that whenever i0 < . . . < in, then
tp(ai0 , . . . , ain/C ) = tp(a0, . . . , an/C ) and use the lemma on types and
Morley rank and degree.
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Third goal

Recall that the third goal was:

Theorem

Assume T is ω-stable. If A |= T and C ⊆ A, then there exists B � A such
that C ⊆ B and B is atomic over C .

We do this in two steps: first we show that we can find such a B where B
is constructible over C ; and then we show that constructible extensions
have to be atomic.

Definition

Let A be an L-structure and C ⊆ A. We say that A is constructible over C
if there is an ordinal γ and an enumeration A = (aα : α < γ) such that
each aα is atomic over C ∪ Aα, where Aα = {aµ : µ < α}.
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Existence constructible extensions

Theorem

Assume T is ω-stable. If A |= T and C ⊆ A, then there exists B � A such
that C ⊆ B and B is constructible over C .

Proof.

T is totally transcendental, so if B is a subset of a model A of T , then
Th(AB) has no binary tree of consistent formulas. So isolated types in
Th(AB) are dense.

Now use Zorn’s Lemma to find a maximal construction (aα)a<λ which
cannot be prolonged by an element aλ ∈ M. Clearly C is contained in Aλ.
We show that Aλ is the universe of an elementary substructure by using
the Tarski-Vaught Test. So assume ϕ(x) is an LAλ

-formula and
A |= ∃x ϕ(x). Since isolated types over Aλ are dense, there is an isolated
p(x) ∈ S(Aλ) with ϕ(x) ∈ p(x). Let b be a realisation of p(x) in A. If
b 6∈ Aλ, then we could prolong our construction by aλ = b; thus b ∈ Aλ

and ϕ(x) is realised in Aλ.
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Useful lemma

Lemma

Let a and b be two finite tuples of elements of a structure M. Then
tp(ab) is atomic if and only if tp(a/b) and tp(b) are atomic.

Proof.

First assume that ϕ(x , y) isolates tp(a, b). Then ϕ(x , b) isolates tp(a/b)
and we claim ∃x ϕ(x , y) isolates p(y) = tp(b): we have ∃x ϕ(x , y) ∈ p(y)
and if σ(y) ∈ p(y), then M |= ∀x , y (ϕ(x , y) → σ(y) ) and hence
M |= ∀y (∃x ϕ(x , y) → σ(y) ).

Conversely, suppose ρ(x , b) isolates tp(a/b) and σ(y) isolates
p(y) = tp(b). Then ρ(x , y) ∧ σ(y) isolates tp(a, b). For if
ϕ(x , y) ∈ tp(a, b), then ϕ(x , b) belongs to tp(a/b) and
M |= ∀x ( ρ(x , b) → ϕ(x , b) ). Hence ∀x ( ρ(x , y) → ϕ(x , y)) ∈ p(y) and
so it follows that M |= ∀y (σ(y) → ∀x ( ρ(x , y) → ϕ(x , y) ). Thus
M |= ∀x , y ( ρ(x , y) ∧ σ(y) → ϕ(x , y) ).
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Constructible extensions are atomic

Lemma

Constructible extensions are atomic.

Proof.

Let M0 be a constructible extension of A and let a be a tuple from M0.
We have to show that a is atomic over A. We can clearly assume that the
elements of a are pairwise distinct and do not belong to A. We can
permute the elements of a so that

a = aαb

for some tuple b ∈ Aα. Let ϕ(x , c) be an L(Aα)-formula which is complete
over Aα and satisfied by aα. The aα is also atomic over A ∪ {bc}. Using
induction, we know that bc is atomic over A. So by the previous lemma
aαbc and a = aαb are atomic over A.
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κ-categoricity and saturation

Theorem

A theory T is κ-categorical if and only if all models of cardinality κ are
κ-saturated.

For the proof we need a lemma:

Lemma

If T is κ-stable, then for all regular λ ≤ κ there is a model of cardinality κ
which is λ-saturated.

Proof.

We constuct a sequence (Mα : α ∈ λ) of models of T of cardinality κ: we
start with any model M0 of cardinality κ of T ; at limit stages we take the
colimit and at successor stages we take a model Mα+1 which realises all
types in S(Mα). This we can do with a model of cardinality κ since
|S(Mα)| ≤ κ. The colimit of the entire chain will be λ-saturated.
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κ-categoricity and saturation: proof

Theorem

A theory T is κ-categorical if and only if all models of cardinality κ are
κ-saturated.

Proof.

Note that we already proved this result for κ = ω and that we also know
that any two κ-saturated models of cardinality κ are isomorphic. So we
only need to show that if T is κ-categorical for some uncountable cardinal
κ, then all models of cardinality κ are κ-saturated.

But then T is ω-stable, hence totally transcendental, hence κ-stable. So
by the lemma the unique model of T of cardinality κ is µ+-saturated for
all µ < κ. So this model is κ-saturated.
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A theorem implying Morley’s theorem

So Morley’s Theorem will follow from:

Theorem

Suppose T is ω-stable and assume κ is an uncountable cardinal and that
every model of T of cardinality κ is κ-saturated. Then every uncountable
model of T is saturated.

Proof.

Suppose T is ω-stable and T has a model of cardinality λ that is not
λ-saturated. (Goal is to construct a model of cardinality κ that is not
κ-saturated.) So there is a subset C of A of cardinality < λ and a type
p(x) over C such that p(x) is consistent with Th((A, a)a∈C ) but not
realized in (A, a)a∈C . We know that there is a nonconstant sequence
(ak : k ∈ N) of indiscernibles in (A, a)a∈C (second goal). Write
I = {ak : k ∈ N} and note that (*): for each L(C ∪ I )-formula ϕ(x) that
is satisfiable in (A, a)a∈C∪I there exists ψ(x) ∈ p(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C∪I . (For otherwise p(x) would be
realized in (A, a)a∈C .)
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A theorem implying Morley’s theorem, proof continued

Proof.

We have (*): for each L(C ∪ I )-formula ϕ(x) that is satisfiable in
(A, a)a∈C∪I there exists ψ(x) ∈ p(x) such that ϕ(x) ∧ ¬ψ(x) is satisfiable
in (A, a)a∈C∪I .

Let C0 be any countable subset of C . For each L(C0 ∪ I ) formula ϕ(x)
that is satisfiable in (A, a)a∈C0∪I let ψϕ be one of the formulas satisfying
(*) for ϕ. Since C0 ∪ I is countable, there is a countable set C1 such that
C0 ⊆ C1 ⊆ C and such that the parameters of ψϕ are in C1. Continuing in
this way to create sets Ck , let C ′ =

⋃
{Ck : k ∈ N}. Let p′(x) be

restriction of p(x) to C ′. We have (**): for each L(C ′ ∪ I )-formula ϕ(x)
that is satisfiable in (A, a)a∈C ′∪I there exists ψ(x) ∈ p′(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C ′∪I . Note also that (ak : k ∈ N) is
a sequence of indiscernibles in (A, a)a∈C ′ .
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A theorem implying Morley’s theorem, proof continued

Proof.

By the Standard Lemma there is a model B of Th((A, a)a∈C ′) that
contains a family (bα : α < κ) realising the Ehrenfeucht-Mostowski type
of (ak : k ∈ N). We may assume this model is of the form (B, a)a∈C ′ .
Using the Third Goal we know that there is an elementary substructure B ′

of B which is atomic over C ′ ∪ {bα : α < κ}.

The proof will be finished once we show that p′(x) is not realised in
(B ′, a)a∈C ′ . For then the downward Löwenheim-Skolem Theorem implies
that B ′ has an elementary substructure B ′′ of cardinality κ which contains
C ′. Then B ′′ is a model of cardinality κ which is not κ-saturated. (In fact,
it is not even ω1-saturated.)

12 / 14



A theorem implying Morley’s theorem, proof finished

Claim

The type p′(x) is not realised in (B ′, a)a∈C ′ .

Proof.

Recall that we have (**): for each L(C ′ ∪ I )-formula ϕ(x) that is
satisfiable in (A, a)a∈C ′∪I there exists ψ(x) ∈ p′(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C ′∪I .

So suppose p′(x) is realised in (B ′, a)a∈C ′ by some tuple b. We have that
tpB′(b/C ′ ∪ {bα : α < κ}) is isolated so it contains a complete formula
ϕ(x , bα0 , . . . , bαn). So we have that ϕ(x , bα0 , . . . , bαn) → ψ(x) holds in B ′

for every ψ(x) ∈ p′(x). But since bα0 , . . . , bαn and a0, . . . , an realize the
same Ehrenfeucht-Mostowski type over C ′, we have that
ϕ(x , a0, . . . , an) → ψ(x) is valid in A for each formula ψ(x) ∈ p′(x). But
that contradicts (**).
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Morley’s Theorem

Morley’s Theorem

If a countable theory T is λ-categorical for an uncountable cardinal λ,
then it is λ-categorical for all uncountable cardinal λ.

End of the course. And Merry Christmas and Happy New Year!
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