Next goals

The next step in the proof of Morley's Theorem is an analysis of nice ω -stable theories. In particular, we need to establish the following three results for such theories T:

Theorem

T is κ -stable for all $\kappa \geq \omega$.

Theorem

Suppose $A \models T$ and $C \subseteq A$, where A is uncountable and |C| < |A|. Then there exists a sequence of distinct indiscernibles in $(A, a)_{a \in C}$.

Theorem

Suppose $A \models T$ and $C \subseteq A$. There exists $B \preceq A$ such that $C \subseteq B$ and B is atomic over C.

To prove these results we need the notions of *Morley rank* and *Morley degree*.

Definition of $\mathrm{RM} \geq \alpha$

Today we will fix a complete theory T.

Definition

Suppose $A \models T$, $\varphi(x)$ is an L_A -formula, and α is an ordinal. We define $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ by induction on α :

•
$$\operatorname{RM}_{x}(A, \varphi(x)) \geq 0$$
 if $A \models \exists x \varphi(x)$;

 RM_x(A, φ(x)) ≥ α + 1 if there is an elementary extension B of A and a sequence (φ_k(x) : k ∈ ℕ) of L_B-formulas such that

$$B \models \forall x \, (\, \varphi_k(x) \to \varphi(x) \,) \text{ for all } k \in \mathbb{N};$$

2
$$B \models \forall x \neg (\varphi_k(x) \land \varphi_l(x))$$
 for all distinct $k, l \in \mathbb{N}$;

3
$$\operatorname{RM}_{k}(B, \varphi_{k}(x)) \geq \alpha$$
 for all $k \in \mathbb{N}$;

for λ a limit ordinal, RM_x(A, φ(x)) ≥ λ if RM_x(A, φ(x)) ≥ α for all α < λ.

Main property of $RM \ge \alpha$

Lemma

Suppose $A \models T$ and $\varphi(x)$ is an L_A -formula. Let S be the set of ordinals α such that $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ holds. Then exactly one of the following alternatives holds:

- S is empty;
- \bigcirc S is the class of all ordinals;

Proof.

This really amounts to showing that $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ and $\alpha > \beta \ge 0$ imply $\operatorname{RM}_x(A, \varphi(x)) \ge \beta$. We prove this by induction on α and β . The cases where α or β is a limit ordinal are easy, so assume $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha + 1$ and $\alpha + 1 > \beta + 1$ (so $\alpha > \beta$). The first assumption implies that there is an elementary extension *B* of *A* and a sequence $(\varphi_k(x) : k \in \mathbb{N})$ with $\operatorname{RM}_x(B, \varphi_k(x)) \ge \alpha$. But then $\operatorname{RM}_x(B, \varphi_k(x)) \ge \beta$ and hence $\operatorname{RM}_x(A, \varphi(x)) \ge \beta + 1$, as desired.

Morley rank

Definition

Let A be a model of T and let $\varphi(x)$ be an L_A -formula. $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ is false for all ordinals α , then we write $\operatorname{RM}_x(A, \varphi(x)) = -\infty$. If $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ holds for all ordinals α , then we write $\operatorname{RM}_x(A, \varphi(x)) = +\infty$. Otherwise we define $\operatorname{RM}_x(A, \varphi(x))$ to be the greatest ordinal α for which $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ holds, and we say that $\varphi(x)$ is ranked.

Morley rank depends on the type only

Lemma

Let A be a model and $\varphi(x, y)$ be an L-formula. If a is a finite tuple of elements of A, then the value of $RM_x(A, \varphi(x, a))$ depends only on $tp_A(a)$.

Proof.

It suffices to prove that the truth value of $\operatorname{RM}_x(A, \varphi(x, a)) \ge \alpha$ only depends on the type of a. We prove this by induction on α ; the case that $\alpha = 0$ or a limit ordinal is trivial. So assume the statement holds for all $\alpha < \beta + 1$.

For j = 1, 2, let A_j be a model of T and a_j be a finite tuples from A_j with $\operatorname{tp}_{A_1}(a_1) = \operatorname{tp}_{A_2}(a_2)$. We assume $\operatorname{RM}_x(A_1, \varphi(x, a_1)) \ge \beta + 1$ and need to prove $\operatorname{RM}_x(A_2, \varphi(x, a_2)) \ge \beta + 1$.

The assumption yields an elementary extension B_1 of A_1 and a sequence of formulas $(\varphi_k(x, b_k) : k \in \mathbb{N})$ to witness that $\operatorname{RM}_x(A_1, \varphi(x, a_1)) \ge \beta + 1$, that is, ...

Morley rank depends on the type only, continued

Proof.

$$\ \, {\it @} \ \, B_1 \models \forall x \, \neg (\, \varphi_k(x, b_k) \wedge \varphi_l(x, b_l) \,) \ \, {\it for \ all \ \, distinct \ \, k, l \in \mathbb{N}; }$$

■ RM_x(B₁,
$$\varphi_k(x, b_k)$$
) ≥ β for all $k \in \mathbb{N}$.

Now let B_2 be any ω -saturated elementary extension of A_2 . We know that $\operatorname{tp}_{B_1}(a_1) = \operatorname{tp}_{B_2}(a_2)$. Since B_2 is ω -saturated, we may construct inductively a sequence $(c_k : k \in \mathbb{N})$ of finite tuples from B_2 such that for all $k \in \mathbb{N}$

$$\operatorname{tp}_{B_2}(a_2c_0\ldots c_k)=\operatorname{tp}_{B_1}(a_1b_0\ldots b_k).$$

It follows that

$$B_2 \models \forall x (\varphi_k(x, c_k) \to \varphi(x, a_2)) \text{ for all } k \in \mathbb{N};$$

③ RM_x(B₂,
$$φ_k(x, c_k)$$
) ≥ β for all $k \in \mathbb{N}$.

(Statements (1) and (2) are immediate; for (3) use the induction hypothesis.) So $RM_x(B_2, \varphi_k(x, a_2)) \ge \beta + 1$.

Exercises

Exercise

Let A be an ω -saturated model of T and let $\varphi(x)$ be an L_A -formula. In applying the definition of $\operatorname{RM}_x(A, \varphi(x)) \ge \alpha$ one may take the elementary extension B to be A itself.

Exercise (Properties of Morley rank)

Let A be a model of T and let $\varphi(x), \psi(x)$ be L_A-formulas.

- RM_x(A, φ(x)) = 0 iff the number of tuples u ∈ A for which A ⊨ φ(u) is finite and > 0.
- 3 if $A \models \varphi(x) \rightarrow \psi(x)$, then $\operatorname{RM}_x(A, \varphi(x)) \leq \operatorname{RM}_x(A, \psi(x))$.
- if $\varphi(x)$ is ranked and $\operatorname{RM}_x(A, \varphi(x)) > \beta$, then there exists an elementary extension *B* of *A* and an *L*_B-formula $\chi(x)$ such that $B \models \chi(x) \rightarrow \varphi(x)$ and $\operatorname{RM}_x(B, \chi(x)) = \beta$.

Towards Morley degree

Lemma

Let A be a model of T and $\varphi(x)$ be a ranked L_A -formula. There exists a finite bound on the integers k such that there exists an elementary extension B of A and L_B -formulas ($\varphi_j(x) : 0 \le j < k$) such that

• $\operatorname{RM}_{x}(B,\varphi_{j}(x)) = \operatorname{RM}_{x}(A,\varphi(x))$ for all j < k;

2
$$B \models (\varphi_j(x) \rightarrow \varphi(x))$$
 for all $j < k$;

3
$$B \models \neg (\varphi_i(x) \land \varphi_j(x))$$
 for distinct $i, j < k$.

Moreover, the maximum value of k depends only on $tp_A(a)$. And if A is ω -saturated, a maximal sequence can be found for B equal to A itself.

Proof. Write $\varphi(x) = \varphi(x, a)$ where $\varphi(x, y)$ is an *L*-formula. The existence of an elementary extension *B* and *L*_{*B*}-formulas $\varphi_j(x)$ having properties (1)-(3) amounts to the consistency of a certain set of sentences involving *a* and the parameters from *B* occurring in the $\varphi_j(x)$. So consistency depends solely on the type of *a*; and these sentences will be realized in any ω -saturated extension of *A*, if consistent.

Towards Morley degree, continued

Proof.

So we may assume that A is ω -saturated and restrict ourselves to considering sequences of L_A -formulas ($\varphi_j(x) : 0 \le j < k$).

We will create a binary tree of L_A -formulas, each having Morley rank α . We put $\varphi_{<>} = \varphi(x)$. If φ_{σ} has been constructed, we check whether there is a formula ψ such that both $\varphi \wedge \psi$ and $\varphi \wedge \neg \psi$ have Morley rank α . If so, we put $\varphi_{\sigma 0} = \varphi \wedge \psi$ and $\varphi_{\sigma 1} = \varphi \wedge \neg \psi$ for some such ψ . Otherwise we stop.

The resulting tree has to be finite: for otherwise it would have (by König's Lemma) an infinite branch α . But then $\varphi_{\overline{\alpha}(n)} \wedge \neg \varphi_{\overline{\alpha}(n+1)}$ would be an infinite sequence witnessing that the Morley rank of φ is $\geq \alpha + 1$.

Let *L* be the collection of leaves of the tree. Then $(\varphi_s : s \in L)$ is a sequence satisfying (1)-(3): in fact, $\varphi \leftrightarrow \bigvee_{s \in L} \varphi_s$. We claim it is maximal.

Towards Morley degree, finished

Proof.

For suppose $(\psi_j(x) : 0 \le j < k)$ is another such sequence satisfying (1)-(3) and $k > |S_0|$. Since $\psi_i(x)$ and $\psi_j(x)$ are contradictory whenever i and j are distinct, at most one of $\varphi_s \land \psi_i$ and $\varphi_s \land \psi_j$ can have Morley rank α . Since $k > |S_0|$, it follows from the pigeonhole principle that there is a j < k such that $\psi_j \land \varphi_s$ has rank $< \alpha$ for all $s \in S_0$. But as ψ_j is equivalent to the disjunction of all formulas $\psi_j \land \varphi_s$, it follows that ψ_j must itself have Morley rank $< \alpha$. Contradiction!

Definition

Given a ranked L_A -formula $\varphi(x)$, the greatest integer whose existence we just proved is called the *Morley degree* of $\varphi(x)$ and it is denoted by $dM(\varphi(x))$.

Properties of Morley degree

Lemma

Let A be an ω -saturated model of T and let $\varphi(x)$ and $\psi(x)$ be ranked L_A -formulas.

- If $dM(\varphi(x)) = d$ and this is witnessed by the sequence $(\varphi_j(x) : 0 \le j < d)$, then each $\varphi_j(x)$ has Morley degree 1.
- If RM_x(A, $\varphi(x)$) = RM_x(A, $\psi(x)$) and A ⊨ $\varphi(x) \rightarrow \psi(x)$, then $dM(\varphi(x)) \leq dM(\psi(x))$.
- If $\operatorname{RM}_{x}(A, \varphi(x)) = \operatorname{RM}_{x}(A, \psi(x))$, then $dM(\varphi(x) \lor \psi(x)) \le dM(\varphi(x)) + dM(\psi(x))$, with equality if $A \models \neg(\varphi(x) \land \psi(x))$.
- If $\operatorname{RM}_{x}(A, \varphi(x)) < \operatorname{RM}_{x}(A, \psi(x))$, then $dM(\varphi(x) \lor \psi(x)) = dM(\varphi(x)).$

Proof.

Exercise!

Types and Morley rank

Lemma

Let $A \models T$ and $C \subseteq A$. Let p(x) be a type in L_C that is consistent with $Th((A, a)_{a \in C})$. Assume that some formula in p(x) is ranked. Then there exists a formula $\varphi_p(x)$ in p(x) that determines p(x) in the following sense:

p(x) consists exactly of the L_C -formulas $\psi(x)$ such that $\operatorname{RM}(\psi(x) \land \varphi_p(x)) = \operatorname{RM}(\varphi_p(x))$ and $dM(\psi(x) \land \varphi_p(x)) = dM(\varphi_p(x)).$

Indeed, such a formula can be obtained by taking $\varphi_p(x)$ to be a formula $\varphi(x)$ in p(x) with least possible Morley rank and Morley degree, in lexicographic order.

Proof.

Choose $\varphi_p(x)$ as in the last sentence of the lemma. Then, if $\psi(x)$ is any formula in p(x), also $\psi(x) \land \varphi_p(x) \in p(x)$ and hence $\operatorname{RM}(\psi(x) \land \varphi_p(x)) \ge \operatorname{RM}(\varphi_p(x))$ by choice of $\varphi_p(x)$. Hence $\operatorname{RM}(\psi(x) \land \varphi_p(x)) = \operatorname{RM}(\varphi_p(x))$. Similarly for Morley degree.

Types and Morley rank, continued

Proof.

Conversely, suppose $\psi(x)$ is any L_C -formula with $\operatorname{RM}(\psi(x) \land \varphi_p(x)) = \operatorname{RM}(\varphi_p(x))$ and $dM(\psi(x) \land \varphi_p(x)) = dM(\varphi_p(x))$. By way of contradiction, if $\psi(x) \notin p(x)$, then $\neg \psi(x) \in p(x)$. But then $\operatorname{RM}(\neg \psi(x) \land \varphi_p(x)) = \operatorname{RM}(\varphi_p(x))$, in which case we have $dM(\varphi_p(x)) \ge dM(\psi(x) \land \varphi_p(x)) + dM(\neg \psi(x) \land \varphi_p(x)) > dM(\psi(x) \land \varphi_p(x))$, which is a contradiction.

Definition

Let p(x) be a type as in the statement of the lemma. Then we define $\operatorname{RM}(p(x))$ to be the least Morley rank of a formula in p(x). If some formula in p(x) is ranked, we define dM(p(x)) to be the least Morley degree of a formula $\varphi(x)$ in p(x) that satisfies $\operatorname{RM}(\varphi(x)) = \operatorname{RM}(p(x))$.

Totally transcendental theories

Definition

A theory T is *totally transcendental* if it has no model M with a binary tree of consistent L(M)-formulas.

Theorem

Let L be countable. Then the following conditions are equivalent:

- T is ω -stable;
- T is totally transcendental;
- if A ⊨ T and φ(x) is an L_A-formula which is realized in A, then φ(x) is ranked;
- T is λ -stable for all $\lambda \geq \omega$.

Proof.

 $(1) \Rightarrow (2)$: In a binary tree of consistent L(M)-formulas only countably many parameters from M occur; but its existence implies that there are at least 2^{ω} different types over this countable set.

Proof continued

Proof.

(2) \Rightarrow (3): Let M be an ω -saturated model of T and let $\varphi(x)$ be a formula of Morley rank $+\infty$. Since the formulas from L_M form a set, there is an ordinal α such that any formula $\psi(x)$ whose Morley rank is $\geq \alpha$ has Morley rank is $+\infty$. So because $\operatorname{RM}(\varphi(x)) \geq \alpha + 1$, there must be contradictory formulas $\psi_1(x)$ and $\psi_2(x)$ with $\operatorname{RM}(\psi_i(x)) \geq \alpha$ and $M \models \psi_i(x) \rightarrow \varphi(x)$. So $\varphi(x) \land \psi_1(x)$ and $\varphi(x) \land \psi_2(x)$ both have Morley rank $+\infty$. Continuing in this way we create a binary tree of consistent formulas in M.

(3) \Rightarrow (4): Let $A \models T$ and $C \subseteq A$ with $|C| \leq \lambda$. Then every type p(x) is uniquely determined by an L_C -formula $\varphi_p(x)$. Since there are at most λ many L_C -formulas (L is countable!), there are at most λ many types.

 $(4) \Rightarrow (1)$ is obvious.