Next goals

The next step in the proof of Morley's Theorem is an analysis of nice ω-stable theories. In particular, we need to establish the following three results for such theories T :

Theorem
T is κ-stable for all $\kappa \geq \omega$.

Theorem

Suppose $A \models T$ and $C \subseteq A$, where A is uncountable and $|C|<|A|$. Then there exists a sequence of distinct indiscernibles in $(A, a)_{a \in C}$.

Theorem

Suppose $A \models T$ and $C \subseteq A$. There exists $B \preceq A$ such that $C \subseteq B$ and B is atomic over C.

To prove these results we need the notions of Morley rank and Morley degree.

Definition of $\mathrm{RM} \geq \alpha$

Today we will fix a complete theory T.

Definition

Suppose $A \models T, \varphi(x)$ is an L_{A}-formula, and α is an ordinal. We define $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha$ by induction on α :
(1) $\operatorname{RM}_{x}(A, \varphi(x)) \geq 0$ if $A \models \exists x \varphi(x)$;
(2) $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha+1$ if there is an elementary extension B of A and a sequence $\left(\varphi_{k}(x): k \in \mathbb{N}\right)$ of L_{B}-formulas such that
(1) $B \vDash \forall x\left(\varphi_{k}(x) \rightarrow \varphi(x)\right)$ for all $k \in \mathbb{N}$;
(2) $B \vDash \forall x \neg\left(\varphi_{k}(x) \wedge \varphi_{I}(x)\right)$ for all distinct $k, l \in \mathbb{N}$;
(3) $\mathrm{RM}_{x}\left(B, \varphi_{k}(x)\right) \geq \alpha$ for all $k \in \mathbb{N}$;
(3) for λ a limit ordinal, $\mathrm{RM}_{x}(A, \varphi(x)) \geq \lambda$ if $\mathrm{RM}_{x}(A, \varphi(x)) \geq \alpha$ for all $\alpha<\lambda$.

Main property of $\mathrm{RM} \geq \alpha$

Lemma

Suppose $A \models T$ and $\varphi(x)$ is an L_{A}-formula. Let S be the set of ordinals α such that $\mathrm{RM}_{x}(A, \varphi(x)) \geq \alpha$ holds. Then exactly one of the following alternatives holds:
(1) S is empty;
(2) S is the class of all ordinals;
(3) $S=\{\alpha: \alpha \leq \gamma\}$ for some ordinal γ.

Proof.

This really amounts to showing that $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha$ and $\alpha>\beta \geq 0$ imply $\mathrm{RM}_{x}(A, \varphi(x)) \geq \beta$. We prove this by induction on α and β. The cases where α or β is a limit ordinal are easy, so assume $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha+1$ and $\alpha+1>\beta+1$ (so $\alpha>\beta$). The first assumption implies that there is an elementary extension B of A and a sequence $\left(\varphi_{k}(x): k \in \mathbb{N}\right)$ with $\operatorname{RM}_{x}\left(B, \varphi_{k}(x)\right) \geq \alpha$. But then $\operatorname{RM}_{x}\left(B, \varphi_{k}(x)\right) \geq \beta$ and hence $\operatorname{RM}_{x}(A, \varphi(x)) \geq \beta+1$, as desired.

Morley rank

Definition

Let A be a model of T and let $\varphi(x)$ be an L_{A}-formula. $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha$ is false for all ordinals α, then we write $\operatorname{RM}_{x}(A, \varphi(x))=-\infty$. If $\mathrm{RM}_{x}(A, \varphi(x)) \geq \alpha$ holds for all ordinals α, then we write $\operatorname{RM}_{x}(A, \varphi(x))=+\infty$. Otherwise we define $\operatorname{RM}_{x}(A, \varphi(x))$ to be the greatest ordinal α for which $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha$ holds, and we say that $\varphi(x)$ is ranked.

Morley rank depends on the type only

Lemma

Let A be a model and $\varphi(x, y)$ be an L-formula. If a is a finite tuple of elements of A, then the value of $\mathrm{RM}_{x}(A, \varphi(x, a))$ depends only on $\operatorname{tp}_{A}(a)$.

Proof.

It suffices to prove that the truth value of $\operatorname{RM}_{x}(A, \varphi(x, a)) \geq \alpha$ only depends on the type of a. We prove this by induction on α; the case that $\alpha=0$ or a limit ordinal is trivial. So assume the statement holds for all $\alpha<\beta+1$.

For $j=1,2$, let A_{j} be a model of T and a_{j} be a finite tuples from A_{j} with $\operatorname{tp}_{A_{1}}\left(a_{1}\right)=\operatorname{tp}_{A_{2}}\left(a_{2}\right)$. We assume $\operatorname{RM}_{x}\left(A_{1}, \varphi\left(x, a_{1}\right)\right) \geq \beta+1$ and need to prove $\operatorname{RM}_{x}\left(A_{2}, \varphi\left(x, a_{2}\right)\right) \geq \beta+1$.

The assumption yields an elementary extension B_{1} of A_{1} and a sequence of formulas $\left(\varphi_{k}\left(x, b_{k}\right): k \in \mathbb{N}\right)$ to witness that $\operatorname{RM}_{x}\left(A_{1}, \varphi\left(x, a_{1}\right)\right) \geq \beta+1$, that is, \ldots

Morley rank depends on the type only, continued

Proof.

(1) $B_{1} \models \forall x\left(\varphi_{k}\left(x, b_{k}\right) \rightarrow \varphi\left(x, a_{1}\right)\right)$ for all $k \in \mathbb{N}$;
(2) $B_{1} \models \forall x \neg\left(\varphi_{k}\left(x, b_{k}\right) \wedge \varphi_{I}\left(x, b_{l}\right)\right)$ for all distinct $k, l \in \mathbb{N}$;
(3) $\operatorname{RM}_{x}\left(B_{1}, \varphi_{k}\left(x, b_{k}\right)\right) \geq \beta$ for all $k \in \mathbb{N}$.

Now let B_{2} be any ω-saturated elementary extension of A_{2}. We know that $\operatorname{tp}_{B_{1}}\left(a_{1}\right)=\operatorname{tp}_{B_{2}}\left(a_{2}\right)$. Since B_{2} is ω-saturated, we may construct inductively a sequence ($c_{k}: k \in \mathbb{N}$) of finite tuples from B_{2} such that for all $k \in \mathbb{N}$

$$
\operatorname{tp}_{B_{2}}\left(a_{2} c_{0} \ldots c_{k}\right)=\operatorname{tp}_{B_{1}}\left(a_{1} b_{0} \ldots b_{k}\right)
$$

It follows that
(1) $B_{2} \models \forall x\left(\varphi_{k}\left(x, c_{k}\right) \rightarrow \varphi\left(x, a_{2}\right)\right)$ for all $k \in \mathbb{N}$;
(2) $B_{2} \vDash \forall x \neg\left(\varphi_{k}\left(x, c_{k}\right) \wedge \varphi_{I}\left(x, c_{l}\right)\right)$ for all distinct $k, I \in \mathbb{N}$;
(3) $\operatorname{RM}_{x}\left(B_{2}, \varphi_{k}\left(x, c_{k}\right)\right) \geq \beta$ for all $k \in \mathbb{N}$.
(Statements (1) and (2) are immediate; for (3) use the induction hypothesis.) So $\operatorname{RM}_{x}\left(B_{2}, \varphi_{k}\left(x, a_{2}\right)\right) \geq \beta+1$.

Exercises

Exercise

Let A be an ω-saturated model of T and let $\varphi(x)$ be an L_{A}-formula. In applying the definition of $\operatorname{RM}_{x}(A, \varphi(x)) \geq \alpha$ one may take the elementary extension B to be A itself.

Exercise (Properties of Morley rank)

Let A be a model of T and let $\varphi(x), \psi(x)$ be L_{A}-formulas.
(1) $\mathrm{RM}_{x}(A, \varphi(x))=0$ iff the number of tuples $u \in A$ for which $A \models \varphi(u)$ is finite and >0.
(0) if $A \models \varphi(x) \rightarrow \psi(x)$, then $\mathrm{RM}_{x}(A, \varphi(x)) \leq \mathrm{RM}_{x}(A, \psi(x))$.
(0) $\mathrm{RM}_{x}(A, \varphi(x) \vee \psi(x))=\max \left(\mathrm{RM}_{x}(A, \varphi(x)), \mathrm{RM}_{x}(A, \psi(x))\right)$.
(0) if $\varphi(x)$ is ranked and $\mathrm{RM}_{x}(A, \varphi(x))>\beta$, then there exists an elementary extension B of A and an L_{B}-formula $\chi(x)$ such that $B \models \chi(x) \rightarrow \varphi(x)$ and $\mathrm{RM}_{x}(B, \chi(x))=\beta$.

Towards Morley degree

Lemma

Let A be a model of T and $\varphi(x)$ be a ranked L_{A}-formula. There exists a finite bound on the integers k such that there exists an elementary extension B of A and L_{B}-formulas ($\varphi_{j}(x): 0 \leq j<k$) such that
(1) $\operatorname{RM}_{x}\left(B, \varphi_{j}(x)\right)=\operatorname{RM}_{x}(A, \varphi(x))$ for all $j<k$;
(2) $B \vDash\left(\varphi_{j}(x) \rightarrow \varphi(x)\right)$ for all $j<k$;

- $B \models \neg\left(\varphi_{i}(x) \wedge \varphi_{j}(x)\right)$ for distinct $i, j<k$.

Moreover, the maximum value of k depends only on $\operatorname{tp}_{A}(a)$. And if A is ω-saturated, a maximal sequence can be found for B equal to A itself.

Proof. Write $\varphi(x)=\varphi(x, a)$ where $\varphi(x, y)$ is an L-formula. The existence of an elementary extension B and L_{B}-formulas $\varphi_{j}(x)$ having properties (1)-(3) amounts to the consistency of a certain set of sentences involving a and the parameters from B occurring in the $\varphi_{j}(x)$. So consistency depends solely on the type of a; and these sentences will be realized in any ω-saturated extension of A, if consistent.

Towards Morley degree, continued

Proof.

So we may assume that A is ω-saturated and restrict ourselves to considering sequences of L_{A}-formulas $\left(\varphi_{j}(x): 0 \leq j<k\right)$.

We will create a binary tree of L_{A}-formulas, each having Morley rank α. We put $\varphi_{<>}=\varphi(x)$. If φ_{σ} has been constructed, we check whether there is a formula ψ such that both $\varphi \wedge \psi$ and $\varphi \wedge \neg \psi$ have Morley rank α. If so, we put $\varphi_{\sigma 0}=\varphi \wedge \psi$ and $\varphi_{\sigma 1}=\varphi \wedge \neg \psi$ for some such ψ. Otherwise we stop.

The resulting tree has to be finite: for otherwise it would have (by König's Lemma) an infinite branch α. But then $\varphi_{\bar{\alpha}(n)} \wedge \neg \varphi_{\bar{\alpha}(n+1)}$ would be an infinite sequence witnessing that the Morley rank of φ is $\geq \alpha+1$.

Let L be the collection of leaves of the tree. Then $\left(\varphi_{s}: s \in L\right)$ is a sequence satisfying (1)-(3): in fact, $\varphi \leftrightarrow \bigvee_{s \in L} \varphi_{s}$. We claim it is maximal.

Towards Morley degree, finished

Proof.

For suppose ($\left.\psi_{j}(x): 0 \leq j<k\right)$ is another such sequence satisfying (1)-(3) and $k>\left|S_{0}\right|$. Since $\psi_{i}(x)$ and $\psi_{j}(x)$ are contradictory whenever i and j are distinct, at most one of $\varphi_{s} \wedge \psi_{i}$ and $\varphi_{s} \wedge \psi_{j}$ can have Morley rank α. Since $k>\left|S_{0}\right|$, it follows from the pigeonhole principle that there is a $j<k$ such that $\psi_{j} \wedge \varphi_{s}$ has rank $<\alpha$ for all $s \in S_{0}$. But as ψ_{j} is equivalent to the disjunction of all formulas $\psi_{j} \wedge \varphi_{s}$, it follows that ψ_{j} must itself have Morley rank $<\alpha$. Contradiction!

Definition

Given a ranked L_{A}-formula $\varphi(x)$, the greatest integer whose existence we just proved is called the Morley degree of $\varphi(x)$ and it is denoted by $d M(\varphi(x))$.

Properties of Morley degree

Lemma

Let A be an ω-saturated model of T and let $\varphi(x)$ and $\psi(x)$ be ranked L_{A}-formulas.
(1) If $d M(\varphi(x))=d$ and this is witnessed by the sequence $\left(\varphi_{j}(x): 0 \leq j<d\right)$, then each $\varphi_{j}(x)$ has Morley degree 1 .
(2) If $\mathrm{RM}_{x}(A, \varphi(x))=\mathrm{RM}_{x}(A, \psi(x))$ and $A \models \varphi(x) \rightarrow \psi(x)$, then $d M(\varphi(x)) \leq d M(\psi(x))$.

- If $\operatorname{RM}_{x}(A, \varphi(x))=\operatorname{RM}_{x}(A, \psi(x))$, then
$d M(\varphi(x) \vee \psi(x)) \leq d M(\varphi(x))+d M(\psi(x))$, with equality if $A \models \neg(\varphi(x) \wedge \psi(x))$.
- If $\operatorname{RM}_{x}(A, \varphi(x))<\operatorname{RM}_{x}(A, \psi(x))$, then $d M(\varphi(x) \vee \psi(x))=d M(\varphi(x))$.

Proof.

Exercise!

Types and Morley rank

Lemma

Let $A \models T$ and $C \subseteq A$. Let $p(x)$ be a type in L_{C} that is consistent with $\operatorname{Th}\left((A, a)_{a \in C}\right)$. Assume that some formula in $p(x)$ is ranked. Then there exists a formula $\varphi_{p}(x)$ in $p(x)$ that determines $p(x)$ in the following sense:

$$
\begin{aligned}
& p(x) \text { consists exactly of the } L_{c} \text {-formulas } \psi(x) \text { such that } \\
& \operatorname{RM}\left(\psi(x) \wedge \varphi_{p}(x)\right)=\operatorname{RM}\left(\varphi_{p}(x)\right) \text { and } \\
& d M\left(\psi(x) \wedge \varphi_{p}(x)\right)=d M\left(\varphi_{p}(x)\right) \text {. }
\end{aligned}
$$

Indeed, such a formula can be obtained by taking $\varphi_{p}(x)$ to be a formula $\varphi(x)$ in $p(x)$ with least possible Morley rank and Morley degree, in lexicographic order.

Proof.

Choose $\varphi_{p}(x)$ as in the last sentence of the lemma. Then, if $\psi(x)$ is any formula in $p(x)$, also $\psi(x) \wedge \varphi_{p}(x) \in p(x)$ and hence $\operatorname{RM}\left(\psi(x) \wedge \varphi_{p}(x)\right) \geq \operatorname{RM}\left(\varphi_{p}(x)\right)$ by choice of $\varphi_{p}(x)$. Hence $\operatorname{RM}\left(\psi(x) \wedge \varphi_{p}(x)\right)=\operatorname{RM}\left(\varphi_{p}(x)\right)$. Similarly for Morley degree.

Types and Morley rank, continued

Proof.

Conversely, suppose $\psi(x)$ is any L_{C}-formula with $\operatorname{RM}\left(\psi(x) \wedge \varphi_{p}(x)\right)=\operatorname{RM}\left(\varphi_{p}(x)\right)$ and $d M\left(\psi(x) \wedge \varphi_{p}(x)\right)=d M\left(\varphi_{p}(x)\right)$. By way of contradiction, if $\psi(x) \notin p(x)$, then $\neg \psi(x) \in p(x)$. But then $\operatorname{RM}\left(\neg \psi(x) \wedge \varphi_{p}(x)\right)=\operatorname{RM}\left(\varphi_{p}(x)\right)$, in which case we have $d M\left(\varphi_{p}(x)\right) \geq$ $d M\left(\psi(x) \wedge \varphi_{p}(x)\right)+d M\left(\neg \psi(x) \wedge \varphi_{p}(x)\right)>d M\left(\psi(x) \wedge \varphi_{p}(x)\right)$, which is a contradiction.

Definition

Let $p(x)$ be a type as in the statement of the lemma. Then we define $\mathrm{RM}(p(x))$ to be the least Morley rank of a formula in $p(x)$. If some formula in $p(x)$ is ranked, we define $d M(p(x))$ to be the least Morley degree of a formula $\varphi(x)$ in $p(x)$ that satisfies $\operatorname{RM}(\varphi(x))=\operatorname{RM}(p(x))$.

Totally transcendental theories

Definition

A theory T is totally transcendental if it has no model M with a binary tree of consistent $L(M)$-formulas.

Theorem

Let L be countable. Then the following conditions are equivalent:
(1) T is ω-stable;
(2) T is totally transcendental;
(3) if $A \models T$ and $\varphi(x)$ is an L_{A}-formula which is realized in A, then $\varphi(x)$ is ranked;
(9) T is λ-stable for all $\lambda \geq \omega$.

Proof.

$(1) \Rightarrow(2)$: In a binary tree of consistent $L(M)$-formulas only countably many parameters from M occur; but its existence implies that there are at least 2^{ω} different types over this countable set.

Proof continued

Proof.

(2) \Rightarrow (3): Let M be an ω-saturated model of T and let $\varphi(x)$ be a formula of Morley rank $+\infty$. Since the formulas from L_{M} form a set, there is an ordinal α such that any formula $\psi(x)$ whose Morley rank is $\geq \alpha$ has Morley rank is $+\infty$. So because $\operatorname{RM}(\varphi(x)) \geq \alpha+1$, there must be contradictory formulas $\psi_{1}(x)$ and $\psi_{2}(x)$ with $\operatorname{RM}\left(\psi_{i}(x)\right) \geq \alpha$ and $M \models \psi_{i}(x) \rightarrow \varphi(x)$. So $\varphi(x) \wedge \psi_{1}(x)$ and $\varphi(x) \wedge \psi_{2}(x)$ both have Morley rank $+\infty$. Continuing in this way we create a binary tree of consistent formulas in M.
(3) \Rightarrow (4): Let $A \models T$ and $C \subseteq A$ with $|C| \leq \lambda$. Then every type $p(x)$ is uniquely determined by an L_{C}-formula $\varphi_{p}(x)$. Since there are at most λ many L_{C}-formulas (L is countable!), there are at most λ many types.
$(4) \Rightarrow(1)$ is obvious.

