
Next goals

The next step in the proof of Morley’s Theorem is an analysis of nice
ω-stable theories. In particular, we need to establish the following three
results for such theories T :

Theorem

T is κ-stable for all κ ≥ ω.

Theorem

Suppose A |= T and C ⊆ A, where A is uncountable and |C | < |A|. Then
there exists a sequence of distinct indiscernibles in (A, a)a∈C .

Theorem

Suppose A |= T and C ⊆ A. There exists B � A such that C ⊆ B and B
is atomic over C .

To prove these results we need the notions of Morley rank and Morley
degree.
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Definition of RM ≥ α

Today we will fix a complete theory T .

Definition

Suppose A |= T , ϕ(x) is an LA-formula, and α is an ordinal. We define
RMx(A, ϕ(x)) ≥ α by induction on α:

1 RMx(A, ϕ(x)) ≥ 0 if A |= ∃x ϕ(x);
2 RMx(A, ϕ(x)) ≥ α+ 1 if there is an elementary extension B of A and

a sequence (ϕk(x) : k ∈ N) of LB -formulas such that
1 B |= ∀x (ϕk(x) → ϕ(x) ) for all k ∈ N;
2 B |= ∀x ¬(ϕk(x) ∧ ϕl(x) ) for all distinct k, l ∈ N;
3 RMx(B, ϕk(x)) ≥ α for all k ∈ N;

3 for λ a limit ordinal, RMx(A, ϕ(x)) ≥ λ if RMx(A, ϕ(x)) ≥ α for all
α < λ.
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Main property of RM ≥ α

Lemma

Suppose A |= T and ϕ(x) is an LA-formula. Let S be the set of ordinals α
such that RMx(A, ϕ(x)) ≥ α holds. Then exactly one of the following
alternatives holds:

1 S is empty;

2 S is the class of all ordinals;

3 S = {α : α ≤ γ} for some ordinal γ.

Proof.

This really amounts to showing that RMx(A, ϕ(x)) ≥ α and α > β ≥ 0
imply RMx(A, ϕ(x)) ≥ β. We prove this by induction on α and β. The
cases where α or β is a limit ordinal are easy, so assume
RMx(A, ϕ(x)) ≥ α+ 1 and α+ 1 > β + 1 (so α > β). The first
assumption implies that there is an elementary extension B of A and a
sequence (ϕk(x) : k ∈ N) with RMx(B, ϕk(x)) ≥ α. But then
RMx(B, ϕk(x)) ≥ β and hence RMx(A, ϕ(x)) ≥ β + 1, as desired.
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Morley rank

Definition

Let A be a model of T and let ϕ(x) be an LA-formula. RMx(A, ϕ(x)) ≥ α
is false for all ordinals α, then we write RMx(A, ϕ(x)) = −∞. If
RMx(A, ϕ(x)) ≥ α holds for all ordinals α, then we write
RMx(A, ϕ(x)) = +∞. Otherwise we define RMx(A, ϕ(x)) to be the
greatest ordinal α for which RMx(A, ϕ(x)) ≥ α holds, and we say that
ϕ(x) is ranked.
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Morley rank depends on the type only

Lemma

Let A be a model and ϕ(x , y) be an L-formula. If a is a finite tuple of
elements of A, then the value of RMx(A, ϕ(x , a)) depends only on tpA(a).

Proof.

It suffices to prove that the truth value of RMx(A, ϕ(x , a)) ≥ α only
depends on the type of a. We prove this by induction on α; the case that
α = 0 or a limit ordinal is trivial. So assume the statement holds for all
α < β + 1.

For j = 1, 2, let Aj be a model of T and aj be a finite tuples from Aj with
tpA1

(a1) = tpA2
(a2). We assume RMx(A1, ϕ(x , a1)) ≥ β + 1 and need to

prove RMx(A2, ϕ(x , a2)) ≥ β + 1.

The assumption yields an elementary extension B1 of A1 and a sequence
of formulas (ϕk(x , bk) : k ∈ N) to witness that
RMx(A1, ϕ(x , a1)) ≥ β + 1, that is, . . .
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Morley rank depends on the type only, continued

Proof.
1 B1 |= ∀x (ϕk(x , bk) → ϕ(x , a1) ) for all k ∈ N;

2 B1 |= ∀x ¬(ϕk(x , bk) ∧ ϕl(x , bl) ) for all distinct k, l ∈ N;

3 RMx(B1, ϕk(x , bk)) ≥ β for all k ∈ N.

Now let B2 be any ω-saturated elementary extension of A2. We know that
tpB1

(a1) = tpB2
(a2). Since B2 is ω-saturated, we may construct

inductively a sequence (ck : k ∈ N) of finite tuples from B2 such that for
all k ∈ N

tpB2
(a2c0 . . . ck) = tpB1

(a1b0 . . . bk).

It follows that

1 B2 |= ∀x (ϕk(x , ck) → ϕ(x , a2) ) for all k ∈ N;

2 B2 |= ∀x ¬(ϕk(x , ck) ∧ ϕl(x , cl) ) for all distinct k, l ∈ N;

3 RMx(B2, ϕk(x , ck)) ≥ β for all k ∈ N.

(Statements (1) and (2) are immediate; for (3) use the induction
hypothesis.) So RMx(B2, ϕk(x , a2)) ≥ β + 1.
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Exercises

Exercise

Let A be an ω-saturated model of T and let ϕ(x) be an LA-formula. In
applying the definition of RMx(A, ϕ(x)) ≥ α one may take the elementary
extension B to be A itself.

Exercise (Properties of Morley rank)

Let A be a model of T and let ϕ(x), ψ(x) be LA-formulas.

1 RMx(A, ϕ(x)) = 0 iff the number of tuples u ∈ A for which
A |= ϕ(u) is finite and > 0.

2 if A |= ϕ(x) → ψ(x), then RMx(A, ϕ(x)) ≤ RMx(A, ψ(x)).

3 RMx(A, ϕ(x) ∨ ψ(x)) = max(RMx(A, ϕ(x)),RMx(A, ψ(x))).

4 if ϕ(x) is ranked and RMx(A, ϕ(x)) > β, then there exists an
elementary extension B of A and an LB -formula χ(x) such that
B |= χ(x) → ϕ(x) and RMx(B, χ(x)) = β.
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Towards Morley degree

Lemma

Let A be a model of T and ϕ(x) be a ranked LA-formula. There exists a
finite bound on the integers k such that there exists an elementary
extension B of A and LB -formulas (ϕj(x) : 0 ≤ j < k) such that

1 RMx(B, ϕj(x)) = RMx(A, ϕ(x)) for all j < k;

2 B |= (ϕj(x) → ϕ(x) ) for all j < k;

3 B |= ¬(ϕi (x) ∧ ϕj(x)) for distinct i , j < k.

Moreover, the maximum value of k depends only on tpA(a). And if A is
ω-saturated, a maximal sequence can be found for B equal to A itself.

Proof. Write ϕ(x) = ϕ(x , a) where ϕ(x , y) is an L-formula. The existence
of an elementary extension B and LB -formulas ϕj(x) having properties
(1)-(3) amounts to the consistency of a certain set of sentences involving
a and the parameters from B occurring in the ϕj(x). So consistency
depends solely on the type of a; and these sentences will be realized in any
ω-saturated extension of A, if consistent.
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Towards Morley degree, continued

Proof.

So we may assume that A is ω-saturated and restrict ourselves to
considering sequences of LA-formulas (ϕj(x) : 0 ≤ j < k).

We will create a binary tree of LA-formulas, each having Morley rank α.
We put ϕ<> = ϕ(x). If ϕσ has been constructed, we check whether there
is a formula ψ such that both ϕ ∧ ψ and ϕ ∧ ¬ψ have Morley rank α. If
so, we put ϕσ0 = ϕ ∧ ψ and ϕσ1 = ϕ ∧ ¬ψ for some such ψ. Otherwise
we stop.

The resulting tree has to be finite: for otherwise it would have (by König’s
Lemma) an infinite branch α. But then ϕα(n) ∧ ¬ϕα(n+1) would be an
infinite sequence witnessing that the Morley rank of ϕ is ≥ α+ 1.

Let L be the collection of leaves of the tree. Then (ϕs : s ∈ L) is a
sequence satisfying (1)-(3): in fact, ϕ↔

∨
s∈L ϕs . We claim it is

maximal.
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Towards Morley degree, finished

Proof.

For suppose (ψj(x) : 0 ≤ j < k) is another such sequence satisfying
(1)-(3) and k > |S0|. Since ψi (x) and ψj(x) are contradictory whenever i
and j are distinct, at most one of ϕs ∧ ψi and ϕs ∧ ψj can have Morley
rank α. Since k > |S0|, it follows from the pigeonhole principle that there
is a j < k such that ψj ∧ ϕs has rank < α for all s ∈ S0. But as ψj is
equivalent to the disjunction of all formulas ψj ∧ ϕs , it follows that ψj

must itself have Morley rank < α. Contradiction!

Definition

Given a ranked LA-formula ϕ(x), the greatest integer whose existence we
just proved is called the Morley degree of ϕ(x) and it is denoted by
dM(ϕ(x)).
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Properties of Morley degree

Lemma

Let A be an ω-saturated model of T and let ϕ(x) and ψ(x) be ranked
LA-formulas.

1 If dM(ϕ(x)) = d and this is witnessed by the sequence
(ϕj(x) : 0 ≤ j < d), then each ϕj(x) has Morley degree 1.

2 If RMx(A, ϕ(x)) = RMx(A, ψ(x)) and A |= ϕ(x) → ψ(x), then
dM(ϕ(x)) ≤ dM(ψ(x)).

3 If RMx(A, ϕ(x)) = RMx(A, ψ(x)), then
dM(ϕ(x) ∨ ψ(x)) ≤ dM(ϕ(x)) + dM(ψ(x)), with equality if
A |= ¬(ϕ(x) ∧ ψ(x) ).

4 If RMx(A, ϕ(x)) < RMx(A, ψ(x)), then
dM(ϕ(x) ∨ ψ(x)) = dM(ϕ(x)).

Proof.

Exercise!
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Types and Morley rank

Lemma

Let A |= T and C ⊆ A. Let p(x) be a type in LC that is consistent with
Th((A, a)a∈C ). Assume that some formula in p(x) is ranked. Then there
exists a formula ϕp(x) in p(x) that determines p(x) in the following sense:

p(x) consists exactly of the LC -formulas ψ(x) such that
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)) and
dM(ψ(x) ∧ ϕp(x)) = dM(ϕp(x)).

Indeed, such a formula can be obtained by taking ϕp(x) to be a formula
ϕ(x) in p(x) with least possible Morley rank and Morley degree, in
lexicographic order.

Proof.

Choose ϕp(x) as in the last sentence of the lemma. Then, if ψ(x) is any
formula in p(x), also ψ(x) ∧ ϕp(x) ∈ p(x) and hence
RM(ψ(x) ∧ ϕp(x)) ≥ RM(ϕp(x)) by choice of ϕp(x). Hence
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)). Similarly for Morley degree.
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Types and Morley rank, continued

Proof.

Conversely, suppose ψ(x) is any LC -formula with
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)) and dM(ψ(x) ∧ ϕp(x)) = dM(ϕp(x)).
By way of contradiction, if ψ(x) 6∈ p(x), then ¬ψ(x) ∈ p(x). But then
RM(¬ψ(x) ∧ ϕp(x)) = RM(ϕp(x)), in which case we have dM(ϕp(x)) ≥
dM(ψ(x)∧ϕp(x)) + dM(¬ψ(x)∧ϕp(x)) > dM(ψ(x)∧ϕp(x)), which is a
contradiction.

Definition

Let p(x) be a type as in the statement of the lemma. Then we define
RM(p(x)) to be the least Morley rank of a formula in p(x). If some
formula in p(x) is ranked, we define dM(p(x)) to be the least Morley
degree of a formula ϕ(x) in p(x) that satisfies RM(ϕ(x)) = RM(p(x)).

13 / 15



Totally transcendental theories

Definition

A theory T is totally transcendental if it has no model M with a binary
tree of consistent L(M)-formulas.

Theorem

Let L be countable. Then the following conditions are equivalent:

1 T is ω-stable;

2 T is totally transcendental;

3 if A |= T and ϕ(x) is an LA-formula which is realized in A, then ϕ(x)
is ranked;

4 T is λ-stable for all λ ≥ ω.

Proof.

(1) ⇒ (2): In a binary tree of consistent L(M)-formulas only countably
many parameters from M occur; but its existence implies that there are at
least 2ω different types over this countable set.
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Proof continued

Proof.

(2) ⇒ (3): Let M be an ω-saturated model of T and let ϕ(x) be a
formula of Morley rank +∞. Since the formulas from LM form a set, there
is an ordinal α such that any formula ψ(x) whose Morley rank is ≥ α has
Morley rank is +∞. So because RM(ϕ(x)) ≥ α+ 1, there must be
contradictory formulas ψ1(x) and ψ2(x) with RM(ψi (x)) ≥ α and
M |= ψi (x) → ϕ(x). So ϕ(x) ∧ ψ1(x) and ϕ(x) ∧ ψ2(x) both have Morley
rank +∞. Continuing in this way we create a binary tree of consistent
formulas in M.

(3) ⇒ (4): Let A |= T and C ⊆ A with |C | ≤ λ. Then every type p(x) is
uniquely determined by an LC -formula ϕp(x). Since there are at most λ
many LC -formulas (L is countable!), there are at most λ many types.

(4) ⇒ (1) is obvious.
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