Next goals

The next step in the proof of Morley's Theorem is an analysis of nice
w-stable theories. In particular, we need to establish the following three
results for such theories T:

Theorem

T is x-stable for all K > w.

Theorem

Suppose A= T and C C A, where A is uncountable and |C| < |A|. Then
there exists a sequence of distinct indiscernibles in (A, a).cc-

Theorem

Suppose A= T and C C A. There exists B < A such that C C B and B
is atomic over C.

To prove these results we need the notions of Morley rank and Morley
degree.
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Definition of RM > «

Today we will fix a complete theory T.
Definition

Suppose A |= T, ¢(x) is an La-formula, and « is an ordinal. We define
RM, (A, ¢(x)) > o by induction on a

QO RM,(A, p(x)) > 0if A= Ixp(x);

@ RM,(A, p(x)) > a+ 1 if there is an elementary extension B of A and

a sequence (px(x) : k € N) of Lg-formulas such that
@ B EVx(pi(x) — ¢(x)) for all k € N;
@ B E Vx—(pr(x) A wi(x)) for all distinct k,/ € N;
© RM,(B, pk(x)) > a for all k € N;

@ for A a limit ordinal, RM, (A, ¢(x)) > X if RM(A, ¢(x)) > «a for all
a < A\
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Main property of RM > «

Lemma

Suppose A = T and ¢(x) is an La-formula. Let S be the set of ordinals «

X
such that RM, (A, ¢(x)) > a holds. Then exactly one of the following
alternatives holds:

Q S is empty;
@ S is the class of all ordinals;

Q@ S={a: a <~} for some ordinal ~.

Proof.

This really amounts to showing that RM«(A, ¢(x)) > aand a > >0
imply RM, (A, ¢(x)) > 5. We prove this by induction on « and . The
cases where o or (3 is a limit ordinal are easy, so assume

RM, (A, ¢(x)) >a+1and a+1> F+1 (soa> ). The first
assumption implies that there is an elementary extension B of A and a
sequence (p(x) : k € N) with RM, (B, pk(x)) > a. But then
RM, (B, v«k(x)) > 3 and hence RM,(A, ¢(x)) > [+ 1, as desired.
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Morley rank

Definition

Let A be a model of T and let p(x) be an La-formula. RM (A, p(x)) > «
is false for all ordinals «, then we write RM, (A, ¢(x)) = —oco. If

RM, (A, ¢(x)) > « holds for all ordinals «, then we write

RM, (A, p(x)) = +o00. Otherwise we define RM, (A, p(x)) to be the
greatest ordinal « for which RM«(A, ¢(x)) > « holds, and we say that
©(x) is ranked.




Morley rank depends on the type only

Lemma

Let A be a model and ¢(x, y) be an L-formula. If a is a finite tuple of
elements of A, then the value of RM,(A, ¢(x, a)) depends only on tp,(a).

Proof.

It suffices to prove that the truth value of RM, (A, ¢(x,a)) > « only
depends on the type of a. We prove this by induction on «; the case that
« = 0 or a limit ordinal is trivial. So assume the statement holds for all
a< B+ 1

For j = 1,2, let A; be a model of T and a; be a finite tuples from A; with
tpa,(a1) = tpa,(a2). We assume RM, (A1, p(x,a1)) > B+ 1 and need to
prove RM, (A2, p(x, a2)) > 5+ 1.

The assumption yields an elementary extension B; of A; and a sequence
of formulas (¢k(x, bk) : k € N) to witness that
RM, (A1, p(x,a1)) > B+ 1, thatis, ... iy




Morley rank depends on the type only, continued

Proof.
Q Bi E Vx(wk(x,bk) — ¢(x,a1)) for all k € N;
Q Bi = Vx(pk(x, bk) A gi(x, b)) for all distinct k,/ € N;
© RM,(By, vx(x, bx)) = 8 for all k € N.

Now let B> be any w-saturated elementary extension of A>. We know that

tpg,(a1) = tpg,(a2). Since By is w-saturated, we may construct

inductively a sequence (¢ : k € N) of finite tuples from B; such that for

all ke N
tpg,(a2co ... ck) = tpg,(a1bo . .. by).
It follows that
Q By = Vx(wk(x, ck) — ¢(x,az)) for all k € N;
Q By = Vx(pk(x, ck) A @i(x, ¢)) for all distinct k,/ € N;
@ RM,(Bz, vk(x,ck)) > f for all k € N.

(Statements (1) and (2) are immediate; for (3) use the induction
hypothesis.) So RM,(Bz, vk(x,az)) > [+ 1.
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Exercises

Exercise

Let A be an w-saturated model of T and let ¢(x) be an La-formula. In

applying the definition of RM (A, ¢(x)) > « one may take the elementary
extension B to be A itself.

Exercise (Properties of Morley rank)

Let A be a model of T and let ¢(x), ¥ (x) be La-formulas.

@ RM, (A, p(x)) = 0 iff the number of tuples u € A for which
A = ¢(u) is finite and > 0.

Q if AE p(x) — ¥(x), then RM, (A, o(x)) < RM(A, ¥(x)).
© RM, (A, p(x) V 1h(x)) = max(RMy(A, p(x)), RMx(A, 1(x)))-
Q if ¢(x) is ranked and RM, (A, ¢(x)) > [, then there exists an

elementary extension B of A and an Lg-formula x(x) such that
B = x(x) — ¢(x) and RM(B, x(x)) = 6.




Towards Morley degree

Lemma

Let A be a model of T and ¢(x) be a ranked La-formula. There exists a
finite bound on the integers k such that there exists an elementary
extension B of A and Lg-formulas (p;(x) : 0 <j < k) such that

Q@ RM, (B, pj(x)) = RML(A, ¢(x)) for all j < k;

Q@ BE (¢j(x) = ¢(x)) forall j < k;

Q B E —(¢i(x) A gj(x)) for distinct i,j < k.
Moreover, the maximum value of k depends only on tps(a). And if A'is
w-saturated, a maximal sequence can be found for B equal to A itself.

Proof. Write p(x) = ¢(x, a) where ¢(x, y) is an L-formula. The existence
of an elementary extension B and Lg-formulas ¢;(x) having properties
(1)-(3) amounts to the consistency of a certain set of sentences involving
a and the parameters from B occurring in the ¢;(x). So consistency
depends solely on the type of a; and these sentences will be realized in any

w-saturated extension of A, if consistent.
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Towards Morley degree, continued

Proof.

So we may assume that A is w-saturated and restrict ourselves to
considering sequences of La-formulas (pj(x) : 0 < j < k).

We will create a binary tree of La-formulas, each having Morley rank «.
We put o<~ = ¢(x). If ¢, has been constructed, we check whether there
is a formula v such that both ¢ A 1) and ¢ A =¢) have Morley rank a. If
so, we put w,0 = @ A and p,1 = @ A =) for some such 1. Otherwise
we stop.

The resulting tree has to be finite: for otherwise it would have (by Konig's
Lemma) an infinite branch «. But then Pa(n) N\ "Pa(nt1) Would be an
infinite sequence witnessing that the Morley rank of ¢ is > a + 1.

Let L be the collection of leaves of the tree. Then (¢s : s€ L) is a
sequence satisfying (1)-(3): in fact, ¢ < \/,, ps. We claim it is
maximal. ]




Towards Morley degree, finished

Proof.

For suppose (¢j(x) : 0 < j < k) is another such sequence satisfying
(1)-(3) and k > |Sp|. Since 1;(x) and 1)(x) are contradictory whenever i
and j are distinct, at most one of s A %; and ¢s A 1); can have Morley
rank . Since k > |Sp|, it follows from the pigeonhole principle that there
is a j < k such that ¥; A ¢s has rank < a for all s € Sp. But as 7); is
equivalent to the disjunction of all formulas 1); A s, it follows that );
must itself have Morley rank < «. Contradiction! O

Definition
Given a ranked La-formula ¢(x), the greatest integer whose existence we
just proved is called the Morley degree of p(x) and it is denoted by

dM(p(x))-
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Properties of Morley degree

Lemma

Let A be an w-saturated model of T and let ¢(x) and 1(x) be ranked
L a-formulas.

2]

o

o

If dM(p(x)) = d and this is witnessed by the sequence

(pj(x) : 0 <j < d), then each pj(x) has Morley degree 1.

If RMx(A, p(x)) = RMy (A, ¥(x)) and A = ¢(x) — 1(x), then
dM(p(x)) < dM(u;( ))-

If RMx(A, p(x)) = RM,(A,¥(x)), then

dM(p(x) V 1(x)) < dl\/l(tp(x)) + dM(3(x)), with equality if

A ~(p(x) Ad(x)).

If RM(A, p(x)) < RMy(A,(x)), then

dM(p(x) V 9(x)) = dM((x)).

Proof.
Exercisel OJ
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Types and Morley rank

Lemma

Let A= T and C C A. Let p(x) be a type in L¢ that is consistent with
Th((A, a)scc). Assume that some formula in p(x) is ranked. Then there
exists a formula ¢p(x) in p(x) that determines p(x) in the following sense:

p(x) consists exactly of the Lc-formulas 1)(x) such that
RM(1(x) A 5(x)) = RM(p,(x)) and
dM(p(x) A op(x)) = dM(ipp(x))-

Indeed, such a formula can be obtained by taking ¢,(x) to be a formula
©(x) in p(x) with least possible Morley rank and Morley degree, in
lexicographic order.

Proof.

Choose @p(x) as in the last sentence of the lemma. Then, if ¥(x) is any
formula in p(x), also ©¥(x) A ¢p(x) € p(x) and hence

RM(¢(x) A pp(x)) > RM(pp(x)) by choice of ¢p(x). Hence

RM((x) A pp(x)) = RM(pp(x)). Similarly for Morley degree. my




Types and Morley rank, continued

Proof.

Conversely, suppose ¥(x) is any Lc-formula with

RM((x) A p(x)) = RM(g(x)) and dM(1(x) A 9p(x)) = dM(p(x)).
By way of contradiction, if ¢¥(x) & p(x), then —¢(x) € p(x). But then
RM(—9(x) A ¢p(x)) = RM(¢p(x)), in which case we have dM(pp(x)) >
dM(h(x) A p(x)) + dM(=p(x) A p(x)) > dM(1)(x) A pp(x)), which is a
contradiction. Ol

Definition

Let p(x) be a type as in the statement of the lemma. Then we define
RM(p(x)) to be the least Morley rank of a formula in p(x). If some
formula in p(x) is ranked, we define dM(p(x)) to be the least Morley
degree of a formula ¢(x) in p(x) that satisfies RM(p(x)) = RM(p(x)).
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Totally transcendental theories

Definition
A theory T is totally transcendental if it has no model M with a binary
tree of consistent L(M)-formulas.

Theorem

Let L be countable. Then the following conditions are equivalent:
Q T is w-stable;
@ T is totally transcendental;

@ if A= T and ¢(x) is an La-formula which is realized in A, then ¢(x)
is ranked;

@ T is \-stable for all A > w.

Proof.

(1) = (2): In a binary tree of consistent L(M)-formulas only countably
many parameters from M occur; but its existence implies that there are at

least 2% different types over this countable set. O
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Proof continued

Proof.

(2) = (3): Let M be an w-saturated model of T and let ¢(x) be a
formula of Morley rank 4+o00. Since the formulas from Ly, form a set, there
is an ordinal « such that any formula 1(x) whose Morley rank is > « has
Morley rank is +00. So because RM(¢(x)) > « + 1, there must be
contradictory formulas 11(x) and 2 (x) with RM(¢;(x)) > « and

M = ¢i(x) — ¢(x). So ¢o(x) A 1(x) and p(x) A P2(x) both have Morley
rank +o0o. Continuing in this way we create a binary tree of consistent
formulas in M.

(3) = (4): Let Al=T and C C A with |C| < A. Then every type p(x) is
uniquely determined by an Lc-formula ¢p(x). Since there are at most A
many Lc-formulas (L is countable!), there are at most A many types.

(4) = (1) is obvious. O
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