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Quick history of logic

Aristotle (384-322 BC): idea of formal logic. Syllogisms.

Chryssipus (mid 3rd century BC): propositional logic.

Frege (1848-1924): quantifiers, first-order logic.

Gödel (1906-1978): completeness theorem.
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Tarski and Robinson

Founding father of model theory: Alfred Tarski (1901-1983). Created a
school in Berkeley in the sixties.

Another important name is Abraham Robinson (1918-1974).
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Stability theory

Morley’s Theorem (1965): starting point for stability theory.

Shelah: classification theory.

More applied direction (geometric stability theory): Zil’ber and Hrushovski.
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Applications

1968: Ax-Kochen-Ershov proof of Artin’s conjecture.

1993: Hrushovski’s proof of the Mordell-Lang conjecture for function
fields.

2009: Pila’s work on the Andre-Oort conjecture.
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Literature

Wilfrid Hodges, A shorter model theory. CUP 1997.

David Marker, Model theory: an introduction. Springer 2002.

Tent and Ziegler. A course in model theory. Lecture Notes in Logic,
2012.

Free internet sources:

Achim Blumensath, Logic, algebra and geometry.
http://www.mathematik.tu-darmstadt.de/∼blumensath/
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Ebbinghaus and Flum, Finite model theory. Springer, 1995.
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Language

A language or signature consists of:

1 constants.

2 function symbols.

3 relation symbols.

Once and for all, we fix a countably infinite set of variables. The terms are
the smallest set such that:

1 all constants are terms.

2 all variables are terms.

3 if t1, . . . , tn are terms and f is an n-ary function symbol, then also
f (t1, . . . , tn) is a term.

Terms which do not contain any variables are called closed.
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Formulas and sentences

The atomic formulas are:

1 s = t, where s and t are terms.

2 P(t1, . . . , tn), where t1, . . . , tn are terms and P is a predicate symbol.

The set of formulas is the smallest set which:

1 contains the atomic formulas.

2 is closed under the propositional connectives ∧,∨,→,¬.

3 contains ∃x ϕ and ∀x ϕ, if ϕ is a formula.

A formula which does not contain any quantifiers is called quantifier-free.
A sentence is a formula which does not contain any free variables. A set of
sentences is called a theory.

Convention: If we write ϕ(x1, . . . , xn), this is supposed to mean: ϕ is a
formula and its free variables are contained in {x1, . . . , xn}.
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Models

A structure or model M in a language L consists of:

1 a set M (the domain or the universe).

2 interpretations cM ∈ M of all the constants in L,

3 interpretations f M : Mn → M of all function symbols in L,

4 interpretations RM ⊆ Mn of all relation symbols in L.

The interpretation can then be extended to all terms in the language:

f (t1, . . . , tn)
M = f M(tM

1 , . . . , f
M
n ).
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Tarski’s truth definition

Let M be a model in a language L. Let LM be the language obtained by
adding fresh constants {cm : m ∈ M} to the language L, with cm to be
interpreted as m. We will seldom distinguish between cm and m.

Validity or truth

If M is a model and ϕ is a sentence in the language LM , then:

M |= s = t iff sM = tM ;

M |= P(t1, . . . , tn) iff (t1, . . . , tn) ∈ PM ;

M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ;

M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ;

M |= ϕ→ ψ iff M |= ϕ implies M |= ψ;

M |= ¬ϕ iff not M |= ϕ;

M |= ∃x ϕ(x) iff there is an m ∈ M such that M |= ϕ(m);

M |= ∀x ϕ(x) iff for all m ∈ M we have M |= ϕ(m).
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Semantic implication

Definition

If M is a model in a language L, then Th(M) is the collection L-sentences
true in M. If N is another model in the language L, then we write M ≡ N
and call M and N elementary equivalent, whenever Th(M) = Th(N).

Definition

Let Γ and ∆ be theories. If M |= ϕ for all ϕ ∈ Γ, then M is called a model
of Γ. We will write Γ |= ∆ if every model of Γ is a model of ∆ as well. We
write Γ |= ϕ for Γ |= {ϕ}, et cetera.
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Expansions and reducts

If L ⊆ L′ and M is an L′-structure, then we can obtain an L-structure N by
taking the universe of M and forgetting the interpretations of the symbols
which do not occur in L. In that case, M is an expansion of N and N is
the L-reduct of M.

Lemma

If L ⊆ L′ and M is an L-structure and N is its L-reduct, then we have
N |= ϕ(m1, . . . ,mn) iff M |= ϕ(m1, . . . ,mn) for all formulas ϕ(x1, . . . , xn)
in the language L.
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Homomorphisms

Let M and N be two L-structures. A homomorphism h : M → N is a
function h : M → N such that:

1 h(cM) = cN for all constants c in L;

2 h(f M(m1, . . . ,mn)) = f N(h(m1), . . . , h(mn)) for all function symbols
f in L and elements m1, . . . ,mn ∈ M;

3 (m1, . . . ,mn) ∈ RM implies (h(m1), . . . , h(mn)) ∈ RN .

A homomorphism which is bijective and whose inverse f −1 is also a
homomorphism is called an isomorphism. If an isomorphism exists between
structures M and N, then M and N are called isomorphic. An
isomorphism from a structure to itself is called an automorphism.
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Embeddings

A homomorphism h : M → N is an embedding if

1 h is injective;

2 (h(m1), . . . , h(mn)) ∈ RN implies (m1, . . . ,mn) ∈ RM .

Lemma

The following are equivalent for a homomorphism h : M → N:

1 it is an embedding.

2 M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all
m1, . . . ,mn ∈ M and atomic formulas ϕ(x1, . . . , xn).

3 M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all
m1, . . . ,mn ∈ M and quantifier-free formulas ϕ(x1, . . . , xn).

If M and N are two models and the inclusion M ⊆ N is an embedding,
then M is a substructure of N and N is an extension of M.
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Elementary embeddings

An embedding is called elementary, if

M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn))

for all m1, . . . ,mn ∈ M and all formulas ϕ(x1, . . . , xn).

Lemma

If h is an isomorphism, then h is an elementary embedding. If there is an
elementary embedding h : M → N, then M ≡ N.

Tarski-Vaught Test

If h : M → N is an embedding, then it is elementary iff for any formula
ϕ(y , x1, . . . , xk) and m1, . . . ,mk ∈ M and n ∈ N such that
N |= ϕ(n, h(m1), . . . , h(mk)), there is an m ∈ M such that
N |= ϕ(h(m), h(m1), . . . , h(mk)).
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Recap on cardinal numbers

Two sets X and Y are equinumerous if there is a bijection from X to Y .
Equinumerosity is an equivalence relation. For every set X there is an
equinumerous set |X | such that X and Y are equinumerous iff |X | = |Y |.
A set of the form |X | is called a cardinal number and |X | is the cardinality
of X . We will use small Greek letters κ, λ . . . for cardinal numbers.

We write κ ≤ λ if there is an injection from κ to λ. This gives the
cardinals numbers the structure of a linear order. In fact, it is a well-order:
every non-empty class of cardinal numbers has a least element.
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Recap on cardinal numbers, continued

The smallest infinite cardinal number is |N|, often written ℵ0 or ω. Sets
which have this cardinality are called countably infinite. Smaller sets are
finite and bigger sets uncountable. A set which is either finite or countably
infinite is called countable.

The cardinality of 2N is often called the continuum. The continuum
hypothesis says it is smallest uncountable cardinal.
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Recap on cardinal numbers, continued

Cardinal arithmetic is easy: define κ+ λ to be the cardinality of disjoint
union of κ and λ and κ · λ to be the cardinality of the cartesian product of
κ and λ. Then we have

κ+ λ = κ · λ = max(κ, λ)

if at least one of κ, λ is infinite. Of course, cardinal exponentiation is hard!

If X is an infinite set, then X and the collection of finite subsets of X have
the same cardinality.
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Cardinality of model and language

Definition

The cardinality of a model is the cardinality of its underlying domain. The
cardinality of a language L is the sums of the cardinalities of its sets of
constants, function symbols and relation symbols.
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Universal theories

Universal theory

A sentence is universal if it starts with a string of universal quantifiers
followed by a quantifier-free formula. A theory is universal if it consists of
universal sentences. A theory has a universal axiomatisation if it has the
same class of models as a universal theory in the same language.

Examples of theories which have a universal axiomatisation:

Groups

Rings

Commutative rings

Vector spaces

Directed and undirected graphs

Non-example:

Fields
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Exercises

Proposition

If T has a universal axiomatisation, then its class of models is closed under
substructures.

Proof.

Exercise! (Challenge: Prove the converse!)

Proposition

The theory of fields has no universal axiomatisation.

Proof.

Exercise!
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Skolem’s Theorem

Theorem (Skolem)

Let L be a language. Then there is a language L′ ⊇ L with |L′| ≤ |L|+ ℵ0

and a universal theory SkL in the language L′ such that:

1 every L-formula is equivalent over SkL to a quantifier-free L′-formula.

2 every L-structure has an expansion to an L′-structure which is a
model of SkL.

Proof.

For every quantifier-free formula ϕ(x1, . . . , xn, y) in the language L with at
least one free variable we add to L′ the n-ary function symbol fϕ and to
SkL the universal sentence

∀x1, . . . , xn ∀y
(
ϕ(x1, . . . , xn, y) → ϕ(x1, . . . , xn, fϕ(x1, . . . , xn))

)
.
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Skolem theories

Definition

An L-theory T is a Skolem theory or has built-in Skolem functions if for
every formula ϕ(x1, . . . , xn, y) there is a function symbol f such that

T |= ∀x1, . . . , xn

(
∃y ϕ(x1, . . . , xn, y) → ϕ(x1, . . . , xn, f (x1, . . . , xn)

)
.

It is sufficient to require this for quantifier-free ϕ. (Exercise!)

Theorem

For every theory T in a language L there is a Skolem theory T ′ ⊇ T in a
language L′ ⊇ L with |L′| ≤ |L|+ ℵ0 such that every model of T has an
expansion to a model of T ′.

Proof.

Write L0 = L. Then let Ln+1 be the language of SkLn and put L′ =
⋃

Ln

and T ′ = T ∪
⋃

SkLn .

A theory T ′ as in the theorem is called a skolemisation of T .
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Skolem hulls

Let M be a model of a Skolem theory T . Then for every subset X ⊆ M the
smallest subset of M containing X and closed under all the interpretations
of the function symbols can be given the structure of a submodel of M.
This is called the Skolem hull generated by X and denoted by 〈X 〉.

Proposition

〈X 〉 is an elementary substructure of M.

Proof.

Exercise! (Hint: use Tarski-Vaught.)
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Downward Löwenheim-Skolem

Downward Löwenheim-Skolem

Suppose M is an L-structure and X ⊆ M. Then there is an elementary
substructure N of M with X ⊆ N and |N| ≤ |X |+ |L|+ ℵ0.

Proof.

Let T be the skolemisation of the empty theory in the language L and M ′

the expansion of M to a model of T . Then let N ′ be the Skolem hull
generated by X . Then N ′ is an elementary substructure of M ′, and the
reduct N of N ′ to the language L is an elementary substructure of M.
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Exercises

Proposition

A Skolem theory has a universal axiomatisation.

Proof.

Exercise!

Proposition

A Skolem theory has quantifier-elimination.

Proof.

Exercise!
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Compactness Theorem

Definition

A theory T is consistent if every finite subset of T has a model.

Compactness Theorem

If a theory in a language L is consistent, then it has a model of cardinality
≤ |L|+ ℵ0.

We will first prove this for universal theories.
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Compactness theorem for universal theories

Compactness theorem for universal theories

If a universal theory in a language L is consistent, then it has a model of
cardinality ≤ |L|+ ℵ0.

Proof. Let T be a universal theory in a language L which is consistent.
Without loss of generality, we may assume that L contains at least one
constant: otherwise, simply add one to the language.

Let ∆ the set of literals in the language L (a literal is an atomic sentence
or its negation). Then the set

{Γ ⊆ ∆ : T ∪ Γ is consistent }

is partially ordered by inclusion. Moreover, every chain has an upper
bound, so it contains a maximal element Γ0 by Zorn’s Lemma. For every
atomic sentence we have either ϕ ∈ Γ0 or ¬ϕ ∈ Γ0.
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Proof continued

We are now going to create a model M on the basis of the set Γ0. Let T
be the collection of terms in the language L. On T we can define a
relation by:

s ∼ t ⇔ s = t ∈ Γ0.

This is an equivalence relation.

We can now define the interpretation of constants, function and relation
symbols, as follows:

cM = [c],

f M([t1], . . . , [tn]) = [f (t1, . . . , tn)],

RM([t1], . . . , [tn]) ⇔ R(t1, . . . , tn) ∈ Γ0.

Check that this is well-defined! We have for every term t that tM = [t].
Moreover, the set of literals true in M coincides precisely with Γ0.
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Proof finished

In order to finish the proof we need to show that M is a model of T . So
consider a universal sentence ∀x1 . . .∀xn ψ(x1, . . . , xn) (ψ quantifier-free)
that belongs to T . To show that it is valid in M we need to prove that for
all terms t1, . . . , tn we have

M |= ψ([t1], . . . , [tn]), or M |= ψ(t1, . . . , tn).

Let S be the collection of all sentences all whose terms and relation
symbols also occur in ψ(t1, . . . , tn) and put Γ1 = Γ0 ∩ S . Since there occur
only finitely many terms and relation symbols in ψ(t1, . . . , tn), the set Γ1 is
finite.

Because the set T ∪ Γ0 is consistent, there is a model N of
{∀x1 . . .∀xn ψ(x1, . . . , xn)} ∪ Γ1. We have N |= ϕ iff ϕ ∈ Γ1 for all literals
ϕ in S and hence N |= ϕ iff M |= ϕ for all quantifier-free sentences ϕ in S .
So since we have N |= ψ(t1, . . . , tn), we have M |= ψ(t1, . . . , tn) as well. 2
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Reduction

Lemma

Let T be a consistent theory in a language L. Then there is a language
L′ ⊇ L with |L′| ≤ |L|+ ℵ0 and a consistent universal theory T ′ in the
language L′ such that

1 every L-structures modelling T has an expansion to an L′-structure
modelling T ′, and

2 every L-reduct of a model of T ′ is a model of T .

Proof.

Let L′ be the language of SkL. By Skolem’s theorem every sentence
ϕ ∈ T is equivalent modulo SkL to a quantifier-free sentence ϕ′ in the
language L′. Then let T ′ = SkL ∪ {ϕ′ : ϕ ∈ T}.
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General case

Compactness Theorem

If a theory in a language L is consistent, then it has a model of cardinality
≤ |L|+ ℵ0.

Proof.

If T is a theory in language L which is consistent, then there is a universal
theory T ′ in a richer language L′ which is also consistent and is such that
every L-reduct of a model of T ′ is a model of T . By the compactness
theorem for universal theories, T ′ has a model M ′. So the reduct of M ′ to
L is a model of T .
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Diagrams

Definition

A literal is an atomic sentence or the negation of an atomic sentence. If M
is a model in a language L, then the collection of LM -literals true in M is
called the diagram of M and written Diag(M). The collection of all
LM -sentences true in M is called the elementary diagram of M and written
ElDiag(M).

Lemma

The following amount to the same thing:

A model N of Diag(M).

An embedding h : M → N.

As do the following:

A model N of ElDiag(M).

An elementary embedding h : M → N.
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Upward Löwenheim-Skolem

Upward Löwenheim-Skolem

Suppose M is an infinite L-structure and κ is a cardinal number with
κ ≥ |M|, |L|. Then there is an elementary embedding i : M → N with
|N| = κ.

Proof.

Let Γ be the elementary diagram of M and ∆ be the set of sentences
{ci 6= cj : i 6= j ∈ κ} where the ci are κ-many fresh constants. By the
Compactness Theorem, the theory Γ ∪∆ has a model A; we have |A| ≥ κ.
By the downwards version A has an elementary substructure N of
cardinality κ. So, since N is a model of Γ, there is an elementary
embedding i : M → N.
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Characterisation universal theories

Theorem

T has a universal axiomatisation iff models of T are closed under
substructures.

Proof.

Suppose T is a theory such that its models are closed under substructures.
Let T ′ = {ϕ : T |= ϕ and ϕ is universal }. Clearly, T |= T ′. We need to
prove the converse.

So suppose M is a model of T ′. It sufffices to show that T ∪Diag(M) is
consistent. Because once we do that, it will have a model N. But since N
is a model of Diag(M), it will be an extension of M; and because N is a
model of T and models of T are closed under substructures, M will be a
model of T .
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Proof of claim

Claim

If M |= T ′ where T ′ = {ϕ : T |= ϕ and ϕ is universal }, then
T ∪Diag(M) is consistent.

Proof.

Suppose not. Then, by the compactness theorem, there would be a finite
set of literals ψ1, . . . , ψn ∈ Diag(M) which are inconsistent with T .
Replace the constants from M in ψ1, . . . , ψn by variables x1, . . . , xn and we
obtain ψ′1, . . . , ψ

′
n; because the constants from M do not appear in T , the

theory T is already inconsistent with ∃x1, . . . , xn (ψ′1 ∧ . . . ,∧ψ′n ). But
then it follows that T |= ¬∃1, . . . , xn (ψ′1 ∧ . . . ψ′n ) and
T |= ∀x1, . . . , xn (¬(ψ′1 ∧ . . . ψ′n) ), and hence
∀x1, . . . , xn (¬(ψ′1 ∧ . . . ψ′n) ) ∈ T ′. But this contradicts the fact that M is
a model of T ′.
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Two exercises

Exercise

Prove: a theory has an existential axiomatisation iff its models are closed
under extensions.

Exercise

For two L-structures A and B, we have A ≡ B iff A and B have a common
elementary extension.
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Directed systems

See Chapters IV-VI in the lecture notes by Jaap van Oosten.

Definition

A partially ordered set (K ,≤) is called directed, if K is non-empty and for
any two elements x , y ∈ K there is an element z ∈ K such that x ≤ z and
y ≤ z .

Definition

A directed system of L-structures consists of a family (Mk)k∈K of
L-structures indexed by K , together with homomorphisms fkl : Mk → Ml

for k ≤ l . These homomorphisms should satisfy:

fkk is the identity homomorphism on Mk ,

if k ≤ l ≤ m, then fkm = flmfkl .

If we have a directed system, then we can construct its colimit.
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The colimit

First, we take the disjoint union of all the universes:∑
k∈K

Mk = {(k, a) : k ∈ K , a ∈ Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l , b) :⇔ (∃m ≥ k, l) fkm(a) = flm(b).

Let M be the set of equivalence classes and denote the equivalence class
of (k, a) by [k, a].
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The colimit, continued

M has an L-structure: we put

f M([k1, a1], . . . , [kn, an]) = [k, f Mk (fk1k(a1), . . . , fknk(an)],

where k is an element ≥ k1, . . . , kn. (Check that this makes sense!)

And we put
RM([k1, a1], . . . , [kn, an])

iff there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .

In addition, we have maps fk : Mk → M sending a to [k, a].
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Omnibus theorem
The following theorem collects the most important facts about colimits of
filtered systems. Especially useful is part 5.

Theorem
1 All fk are homomorphisms.

2 If k ≤ l , then fl fkl = fk .

3 If N is another L-structure for which there are homomorphisms
gk : Mk → N such that gl fkl = gk whenever k ≤ l , then there is a
unique homomorphisms g : M → N such that gfk = gk for all k ∈ K
(“universal property”).

4 If all maps fkl are embeddings, then so are all fk .

5 If all maps fkl are elementary embeddings, then so are all fk
(“elementary system lemma”).

Proof.

Exercise!
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Next goal

Our next big goal will be to prove:

Robinson’s Consistency Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.

We first treat the special case where L1 ⊆ L2.
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First lemma

Lemma

Let L ⊆ L′, A an L-structure and B an L′-structure. Suppose moreover
A ≡ B � L. Then there is an L′-structure C and a diagram of elementary
embeddings (f in L and f ′ in L′)

A

f   @
@@

@@
@@

@ B

f ′~~}}
}}

}}
}

C .

Proof. Consider T = ElDiag(A) ∪ ElDiag(B) (making sure we use
different constants for the elements from A and B!). We need to show T
has a model; so suppose T is inconsistent. Then, by Compactness, a finite
subset of T has no model; taking conjunctions, we have sentences
ϕ(a1, . . . , an) ∈ ElDiag(A) and ψ(b1, . . . , bm) ∈ ElDiag(B) that are
contradictory. But as the aj do not occur in LB , we must have that
B |= ¬∃x1, . . . , xn ϕ(x1, . . . , xn). This contradicts A ≡ B � L. 2
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Second lemma

Lemma

Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an
L′-structure. Any pair of L-elementary embeddings f : A → B and
g : A → C fit into a commuting square A

g

��@
@@

@@
@@

f

��~~
~~

~~
~

B

h ��@
@@

@@
@@

C

k��~~
~~

~~
~

D
where D is an L′-structure, h is an L-elementary embedding and k is an
L′-elementary embedding.

Proof.

Without loss of generality we may assume that L contains constants for all
elements of A. Then simply apply the first lemma.
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Robinson’s consistency theorem

Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.

Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is
complete, their reducts to L are elementary equivalent, so, by the first
lemma, there is a diagram

A0

f0

  A
AA

AA
AA

A

B0 h0

// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding.
Now by applying the second lemma to f0 and the identity on A, we obtain
. . .
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Robinson’s consistency theorem, proof finished

A0

f0   A
AA

AA
AA

A
k0 // A1

B0 h0

// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way

we obtain a diagram A0

f0   A
AA

AA
AA

A
k0 // A1

f1

  A
AA

AA
AA

A
k1 // A2

// . . .

B0 h0

// B1

g0

OO

h1

// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi

are L2-elementary. The colimit C of this directed system is both the
colimit of the Ai and of the Bi . So A0 and B0 embed elementarily into C
by the elementary systems lemma; hence C is a model of both T1 and T2,
as desired. 2

46 / 140



Amalgamation Theorem

Amalgamation Theorem

Let L1, L2 be languages and L = L1 ∩ L2, and suppose A,B and C are
structures in the languages L, L1 and L2, respectively. Any pair of
L-elementary embeddings f : A → B and g : A → C fit into a commuting
square

A
g

��@
@@

@@
@@

f

��~~
~~

~~
~

B

h ��@
@@

@@
@@

C

k��~~
~~

~~
~

D

where D is an L1 ∪ L2-structure, h is an L1-elementary embedding and k is
an L2-elementary embedding.

Proof.

Immediate consequence of Robinson’s Consistency Theorem. (Why?)
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Craig Interpolation

Craig Interpolation Theorem

Let ϕ and ψ be sentences in some language such that ϕ |= ψ. Then there
is a sentence θ such that

1 ϕ |= θ and θ |= ψ;

2 every predicate, function or constant symbol that occurs in θ occurs
also in both ϕ and ψ.

Proof.

Let L be the common language of ϕ and ψ. We will show that T0 |= ψ
where T0 = {σ ∈ L : ϕ |= σ}. This is sufficient: for then there are
θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by Compactness. So
θ := θ1 ∧ . . . ∧ θn is the interpolant.
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Craig Interpolation, continued

Lemma

Let L be the common language of ϕ and ψ. If ϕ |= ψ, then T0 |= ψ where
T0 = {σ ∈ L : ϕ |= σ}.

Proof.

Suppose not. Then T0 ∪ {¬ψ} has a model A. Write T = ThL(A). We
now have T0 ⊆ T and:

1 T is a complete L-theory.

2 T ∪ {¬ψ} is consistent (because A is a model).

3 T ∪ {ϕ} is consistent.

(Proof of 3: Suppose not. Then, by Compactness, there would a sentence
σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)

Now we can apply Robinson’s Consistency Theorem to deduce that
T ∪ {¬ψ,ϕ} is consistent. But that contradicts ϕ |= ψ.
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Beth Definability Theorem

Definition

Let L be a language a P be a predicate symbol not in L, and let T be an
L ∪ {P}-theory. T defines P implicitly if any L-structure M has at most
one expansion to an L ∪ {P}-structure which models T . There is another
way of saying this: let T ′ be the theory T with all occurrences of P
replaced by P ′. Then T defines P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn

(
P(x1, . . . , xn) ↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn

(
P(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

)
.

Beth Definability Theorem

T defines P implicitly if and only if T defines P explicitly.

(Right-to-left direction is obvious.)
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Beth Definability Theorem, proof

Proof. Suppose T defines P implicitly. Add new constants c1, . . . , cn to
the language. Then we have T ∪ T ′ |= P(c1, . . . , cn) → P ′(c1, . . . , cn). By
Compactness and taking conjunctions we can find an L ∪ {P}-formula ψ
such that T |= ψ and

ψ ∧ ψ′ |= P(c1, . . . , cn) → P ′(c1, . . . , cn)

(where ψ′ is ψ with all occurrences of P replaced by P ′). Taking all the
Ps to one side and the P ′s to another, we get

ψ ∧ P(c1, . . . , cn) |= ψ′ → P ′(c1, . . . , cn)

So there is a Craig Interpolant θ such that

ψ ∧ P(c1, . . . , cn) |= θ and θ |= ψ′ ∧ P ′(c1, . . . , cn)

By symmetry also

ψ′ ∧ P ′(c1, . . . , cn) |= θ and θ |= ψ ∧ P(c1, . . . , cn)

So θ = θ(c1, . . . , cn) is, modulo T , equivalent to P(c1, . . . , cn) and
θ(x1, . . . , xn) defines P explicitly. 2
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Chang- Loś-Suszko Theorem

Definition

A Π2-sentence is a sentence which consists first of a sequence of universal
quantifiers, then a sequence of existential quantifers and then a
quantifier-free formula.

Definition

A theory T is preserved by directed unions if, for any directed system
consisting of models of T and embeddings between them, also the colimit
is a model T .

Chang- Loś-Suszko Theorem

A theory is preserved under directed unions if and only if T can be
axiomatised by Π2-sentences.

Proof.

The easy direction is: Π2-sentences are preserved by directed unions. We
do the other direction.
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Chang- Loś-Suszko Theorem, proof

Proof. Suppose T is preserved by direction unions. Again, let

T0 = {ϕ : ϕ is Π2 and T |= ϕ},

and let B be a model of T0. We will construct a directed chain of
embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .

such that:
1 Each An is a model of T .
2 The composed embeddings Bn → Bn+1 are elementary.
3 Every universal sentence in the language LBn true in Bn is also true in

An (when regarding An is an LBn -structure via the embedding
Bn → An).

This will suffice, because when we take the colimit of the chain, then it is:

the colimit of the An, and hence a model of T , by assumption on T .

the colimit of the Bn, and hence elementary equivalent to each Bn.

So B is a model of T , as desired.
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Chang- Loś-Suszko Theorem, proof continued

Construction of An: We need An to be a model of T and every universal
sentence in the language LBn true in Bn to be true in An as well. So let

T ′ = T ∪ {ϕ ∈ LBn : ϕ universal and Bn |= ϕ};

to show that T ′ is consistent. Suppose not. Then there is a universal
sentence ∀x1, . . . xn ϕ(x1, . . . , xn, b1, . . . , bk) with bi ∈ Bn that is
inconsistent with T . So

T |= ∃x1, . . . , xn¬ϕ(x1, . . . , xn, b1, . . . , bk)

and
T |= ∀y1, . . . , yk ∃x1, . . . , xn¬ϕ(x1, . . . , xn, y1, . . . , yk)

because the bi do not occur in T . But this contradicts the fact that Bn is
a model of T0.
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Chang- Loś-Suszko Theorem, proof finished

Construction of Bn+1: We need An → Bn+1 to be an embedding and
Bn → Bn+1 to be elementary. So let

T ′ = Diag(An) ∪ ElDiag(Bn)

(identifying the element of Bn with their image along the embedding
Bn → An); to show that T ′ is consistent. Suppose not. Then there is a
quantifier-free sentence

ϕ(b1, . . . , bn, a1, . . . , ak)

with bi ∈ Bn and ai ∈ An \ Bn which is true in An, but is inconsistent with
ElDiag(Bn). Since the ai do not occur in Bn, we must have

Bn |= ∀x1, . . . , xk¬ϕ(b1, . . . , bn, x1, . . . , xk).

This contradicts the fact that all universal LBn -sentences true in Bn are
also true in An. 2
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Types

Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables.

Definition

A partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

If A is an L-structure and a1, . . . , an ∈ A, then the type of
(a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an)};

we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A
is understood.

A n-type in L is a set of formulas of the form tpA(a1, . . . , an) for
some L-structure A and some a1, . . . , an ∈ A.
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Realizing and omitting types

Definition

If Γ(x1, . . . , xn) is a partial n-type in L, we say (a1, . . . , an) realizes Γ
in A if every formula in Γ is true of a1, . . . , an in A.

If Γ(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that Γ is realized or satisfied in A if there is some n-tuple in A that
realizes Γ in A. If no such n-tuple exists, then we say that A omits Γ.

If Γ(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that Γ is finitely satisfiable in A if any finite subset of Γ is realized in
A.
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Exercises

Exercise

Show that a partial n-type is an n-type iff it is finitely satisfiable and
contains ϕ(x1, . . . , xn) or ¬ϕ(x1, . . . , xn) for every L-formula ϕ whose free
variables are among the fixed variables x1, . . . , xn.

Exercise

Show that a partial n-type can be extended to an n-type iff it is satisfiable.

Exercise

Suppose A ≡ B. If Γ(x1, . . . , xn) is finitely satisfiable in A, then it is also
finitely satisfiable in B.
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Logic topology

Definition

Let T be a theory in L and let Γ = Γ(x1, . . . , xn) be a partial n-type in L.

Γ is consistent with T if T ∪ Γ has a model.

The set of all n-types consistent with T is denoted by Sn(T ). These
are exactly the n-types in L that contain T .

The set Sn(T ) can be given the structure of a topological space, where
the basic open sets are given by

[ϕ(x1, . . . , xn)] = {Γ(x1, . . . , xn) ∈ Sn(T ) : ϕ ∈ Γ}.

This is called the logic topology.
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Type spaces

Theorem

The space Sn(T ) with the logic topology is a totally disconnected,
compact Hausdorff space. Its closed sets are the sets of the form

{Γ ∈ Sn(T ) : Γ′ ⊆ Γ}

where Γ′ is a partial n-type. In fact, two partial n-types are equivalent over
T iff they determine the same closed set. Furthermore, the clopen sets in
the type space are precisely the ones of the form [ϕ(x1, . . . , xn)].
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κ-saturated models

Let A be an L-structure and X a subset of A. We write LX for the
language L extended with constants for all elements of X and (A, a)a∈X

for the LX -expansion of A where we interpret the constant a ∈ X as itself.

Definition

Let A be an L-structure and let κ be an infinite cardinal. We say that A is
κ-saturated if the following condition holds: if X is any subset of A having
cardinality < κ and Γ(x) is any 1-type in LX that is finitely satisfiable in
(A, a)a∈X , then Γ(x) is itself satisfied in (A, a)a∈X .

Remark
1 If A is infinite and κ-saturated, then A has cardinality at least κ.

2 If A is finite, then A is κ-saturated for every κ.

3 If A is κ-saturated and X is a subset of A having cardinality < κ,
then (A, a)a∈X is also κ-saturated.
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Property of κ-saturated models

Theorem

Suppose κ is an infinite cardinal, A is κ-saturated and X ⊆ A is a subset
of cardinality < κ. Suppose Γ(yi : i ∈ I ) is a collection of LX -formulas
with |I | ≤ κ. If Γ is finitely satisfiable in (A, a)a∈X , then Γ is satisfiable in
(A, a)a∈X .

Proof.

Without loss of generality we may assume that I = κ and Γ is complete:
contains either ϕ or ¬ϕ for every LX -formula ϕ with free variables among
{yi : i ∈ κ}.

Write Γ≤j for the collection of those elements of Γ that only contain
variables yi with i ≤ j . By induction on j we will find an element aj such
that (ai )i≤j realizes Γ≤j . Consider Γ′ which is Γ≤j with all yi replaced by ai

for i < j . This is a 1-type which is finitely satisfiable in (A, a)a∈X∪{ai : i<j}
(check!). Since (A, a)a∈X∪{ai : i<j} is κ-saturated, we find a suitable aj .
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Other notions of richness

Definition

Let A and B be L-structures and X ⊆ A. A map f : X → B will be called
an elementary map if

A |= ϕ(a1, . . . , an) ⇔ B |= ϕ(f (a1), . . . , f (an))

for all L-formulas ϕ and a1, . . . , an ∈ X .

Definition

A structure M is

κ-universal if every structure of cardinality < κ which is elementarily
equivalent to M can be elementarily embedded into M.

κ-homogeneous if for every subset A of M of cardinality smaller than
κ and for every b ∈ M, every elementary map A → M can be
extended to an elementary map A ∪ {b} → M.
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More properties of κ-saturated models

Theorem

Let M be an L-structure and κ ≥ |L| be infinite. If M is κ-saturated, then
M is κ+-universal and κ-homogeneous.

Proof.

Let M be κ-structure. First suppose A is a structure with A ≡ M and
|A| ≤ κ. Consider Γ = ElDiag(A). Since A ≡ M, the set Γ is finitely
satisfiable in M. By the theorem two slides ago, Γ is satisfiable in M, so A
embeds elementarily in M.

Now let A be a subset of M with |A| < κ, b ∈ M and f : A → M be
elementary. Consider Γ = tp(M,a)a∈A

(b). Since (M, a)a∈A ≡ (M, f (a))a∈A,
the type Γ(x) is finitely satisfiable in (M, f (a))a∈M . Hence it is satisfied in
M by some c ∈ M. Extend f by f (b) = c .
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Exercise

In fact we have:

Theorem

Let M be an L-structure and κ ≥ |L| be infinite. Then the following are
equivalent:

(1) M is κ-saturated.

(2) M is κ+-universal and κ-homogeneous.

If κ > |L|+ ℵ0, this is also equivalent to:

(3) M is κ-universal and κ-homogeneous.

Proof.

Exercise! (Please try!)
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Theorem on saturated models

Theorem

Let κ ≥ |L| be infinite. Any two κ-saturated models of cardinality κ that
are elementarily equivalent are isomorphic.

Proof.

By a back-and-forth argument. Let A,B be two elementarily equivalent
saturated models of cardinality κ. By induction on κ we construct an
increasing sequence of elementary maps fα : Xα → B with

⋃
α Xα = A and⋃

α f (Xα) = B. Then f =
⋃
α fα will be our desired isomorphism.

We start with f0 = ∅ and at limit stages we simply take the union. At
successor stages we alternate: at odd stages α we take a fresh element
a ∈ A and extend the map so that a ∈ Xα; at even stages we take a fresh
element b ∈ B and extend the map so that b ∈ f (Xα).
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Strong homogeneity

Definition

A model M is strongly κ-homogeneous if for every subset A of M of
cardinality strictly less than κ, every elementary map A → M can be
extended to an automorphism of M.

Corollary

Let κ ≥ |L| be infinite. A model of cardinality κ that is κ-saturated is
strongly κ-homogeneous.

Proof.

Let f : A → M be an elementary map and |A| < κ. Then (M, a)a∈A and
(M, f (a))a∈A are elementary equivalent. Since both are κ-saturated, they
must be isomorphic by the previous result. This isomorphism is the desired
automorphism extending f .
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Exercises

Let κ ≥ |L| be infinite.

Exercise

Show that a strongly κ-homogeneous model is κ-homogeneous.

Exercise

Any κ-homogeneous model of cardinality κ is strongly homogeneous.
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But do they exist?

So κ-saturated models are very nice. But we haven’t answered a basic
question: do they even exist? They do. In fact we have:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

But to prove this we need a bit more set theory.
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Cofinality

Recall that:

An ordinal is a set consisting of all smaller ordinals.

Ordinals can be of two sorts: they are either successor ordinals or limit
ordinals. (Depending on whether they have a immediate predecessor.)

A cardinal κ is ordinal which is the smallest among those having the
same cardinality as κ. An infinite cardinal is always a limit ordinal.

Definition

Let α be a limit ordinal. A set X ⊆ α is called bounded if there is a β ∈ α
such that x ≤ β for all x ∈ X ; otherwise it is unbounded or cofinal. The
cardinality of the smallest unbounded set is called the cofinality of α and
written cf(α).

Note: ω ≤ cf(α) ≤ α and cf(α) is a cardinal.
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Cofinal map

Definition

A map f : α→ β is cofinal, if it is increasing and its image is unbounded.

Lemma
1 There is a cofinal map cf(α) → α.

2 If f : α→ β is cofinal, then cf(α) = cf(β).

3 cf(cf(α)) = cf(α).

Definition

A cardinal number κ for which cf(κ) = κ is called regular. Otherwise it is
called singular.

Note: cf(α) is always regular.
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Regular cardinals

Theorem

Let κ be a cardinal. Suppose λ is the least cardinal for which there is a
family of sets {Xi : i ∈ λ} such that |

∑
i∈λ Xi | = κ and |Xi | < κ. Then

λ = cf(κ).

Theorem

Infinite successor cardinals are always regular.

Proof.

Immediate from the previous theorem and the fact that κ · κ = κ for
infinite cardinals κ.
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Goal

Recall our goal was to prove:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

We first prove a lemma.
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A lemma

Lemma

Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied
in (A, a)a∈X is realized in (B, a)a∈X .

Proof.

Let (Γi (xi ))i∈I be the collection of all such 1-types and bi be new
constants. Then every finite subset of

Γ :=
⋃
i∈I

Γi (bi )

is satisfied in (A, a)a∈A, so it has a model B. Since Γ contains ElDiag(A),
the model A embeds into B.
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Existence of rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

Proof.

Let A be an L-structure. We will build an elementary chain of L-structures
(Ai : i ∈ κ+). We set A0 = A, at successor stages we apply the previous
lemma and at limit stages we take the colimit. Now let B be the colimit of
the entire chain. We claim B is κ+-saturated (which is more than we
need).

So let X ⊆ B be a subset of cardinality < κ+ and Γ(x) be a 1-type in LX

that is finitely satisfied in (A, a)a∈X . Since κ+ is regular, there is an
i ∈ κ+ such that X ⊆ Ai . And since A embeds elementarily into Ai , the
type Γ(x) is also finitely satisfied in (Ai , a)a∈X . So it is realized in Ai+1,
and therefore also in B, because Ai+1 embeds elementarily into B.

75 / 140



Even richer models
Now that we have this we can be even more ambitious:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

We need a lemma:

Lemma

Suppose A is κ-saturated and B is an elementary substructure of A
satisfying |B| < κ. Then any elementary map f between subsets of B can
be extended to an elementary embedding of B into A.

Proof.

If f : S → B is the elementary mapping, then (B, b)b∈S ≡ (A, f (b))b∈S .
Since |S | < κ, also (A, f (b))b∈S is κ-saturated und hence κ+-universal. So
(B, b)b∈S embeds elementarily into (A, f (b))b∈S : so we have an
elementary embedding of B into A extending f .
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Existence of very rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

Proof.

Let A be an L-structure. Again, we will build an elementary chain of
L-structures (Mα : α ∈ κ+). We set M0 = A, at successor stages α+ 1
we take an |Mα|+-saturated elementary extension of Mα and at limit
stages we take the colimit. Now let M be the colimit of the entire chain.
We claim M is as desired.

Any subset of S of M that has cardinality ≤ κ, must be a subset of some
Mα (using again that κ+ is regular). So M is κ+-saturated. It remains to
show that every reduct of M is strongly κ-homogeneous.
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Existence of very rich models, proof finished

Proof.

Let f be any mapping between subsets of M that is elementary, with
domain and range having cardinality < κ. Again, domain and range will
belong to some Mα. Without loss of generality we may assume that α is a
limit ordinal. We extend f to a map fα : Mα → Mα+1 using the lemma.

We will build maps fβ for all α ≤ β < κ+ in such a way that fβ is an
elementary embedding of Mβ in Mβ+1 and fβ+1 extends f −1

β . It follows
that fβ+2 extends fβ and that the union h over all fβ with β even is an
automorphism of M.

The construction is: At limit stages we take unions over all previous even
stages. And at successor stages we apply the lemma.

This argument works equally well for reducts of M.
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Definability

Definition

Let A be an L-structure and R ⊆ An be a relation. The relation R is called
definable, if there a formula ϕ(x1, . . . , xn) such that

R = {(a1, . . . , an) ∈ An : A |= ϕ(a1, . . . , an)}.

A homomorphism f : A → A leaves R setwise invariant if
{(f (a1), . . . , f (an) : (a1, . . . , an) ∈ R} = R.

Proposition

Every elementary embedding from A to itself leaves all definable relations
setwise invariant.
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Definability results

Theorem

Let L be a language and P a predicate not in L. Suppose (A,R) is an
ω-saturated L ∪ {P}-structure and that A is strongly ω-homogeneous.
Then the following are equivalent:

(1) R is definable in A.

(2) every automorphism of A leaves R setwise invariant.

Proof.

(1) ⇒ (2) always holds, because automorphisms are elementary
embeddings.

(2) ⇒ (1): Suppose R is not definable. By the next lemma there are
tuples a and b having the same type such that R(a) is true and R(b) is
false. But then there is an automorphism of A that sends a to b by strong
homogeneity. So R is not setwise invariant under automorphisms of A.
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A lemma

Lemma

Suppose A is a structure and R is not definable in A. If (A,R) is
ω-saturated, then there are tuples a and b having the same n-type in A
such that R(a) is true and R(b) is false.

Proof.

First consider the type
Σ(x) = {ϕ(x) ∈ L : (A,R) |= ∀x

(
¬P(x) → ϕ(x)} ∪ {P(x)}. This type is

finitely satisfiable in (A,R): for if not, then there would be a formula ϕ(x)
such that (A,R) |= ¬P(x) → ϕ(x) and (A,R) |= ¬(ϕ(x) ∧ P(x)). But
then ¬ϕ(x) would define R. By ω-saturation, there is an element a
realizing Σ(x). Now consider the type Γ(x) = tpA(a) ∪ {¬P(x)}. This
type is also finitely satisfiable in (A,R): for if not, then there would be a
formula ϕ(x) ∈ L such that (A,R) |= ϕ(a) and
(A,R) |= ¬(ϕ(x) ∧ ¬P(x)). This is impossible by construction of a. By
ω-saturation there is an element b realizing Γ(x). So we have that a and b
have the same type in A, while R(a) is true and R(b) is false.
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Svenonius’ Theorem

Svenonius’ Theorem

Let A be an L-structure and R be a relation on A. Then the following are
equivalent:

(1) R is definable in A.

(2) every automorphism of an elementary extension (B,S) of (A,R)
leaves S setwise invariant.

Proof.

(1) ⇒ (2): If R is definable in A, then S is definable in B by the same
formula; so it will be left setwise invariant by any automorphism.

(2) ⇒ (1): Let (B,S) be an ω-saturated and strongly ω-homogeneous
extension of (A,R). S will be definable in (B,S) by the previous theorem;
but then R in A will be definable by the same formula.
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Omitting types theorem

Definition

Let T be an L-theory and Σ(x) be a partial type. Then Σ(x) is isolated in
T if there is a formula ϕ(x) such that ∃x ϕ(x) is consistent with T and

T |= ϕ(x) → σ(x)

for all σ(x) ∈ Σ(x).

Exercise

A type is isolated iff it is an isolated point in the type space S1(T ).

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Σ(x) is not isolated in T , then there is a countable model of T which
omits Σ(x).
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Reminder

Recall from Grondslagen van de Wiskunde:

Theorem

Suppose T is a consistent theory in a language L and C is a set of
constants in L. If for any formula ψ(x) in the language L there is a
constant c ∈ C such that

T |= ∃x ψ(x) → ψ(c),

then T has a model whose universe consists entirely of interpretations of
elements of C .

Proof.

Extend T to a maximally consistent theory and then build a model from
the constants in C .
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Omitting types theorem, proof

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Σ(x) is not isolated in T , then there is a countable model of T which
omits Σ(x).

Proof.

Let C = {ci ; i ∈ N} be a countable collection of fresh constants and LC

be the language L extending with these constants. Let {ψi (x) : i ∈ N} be
an enumeration of the formulas with one free variable in the language LC .
We will now inductively create a sequence of sentences ϕ0, ϕ1, ϕ2, . . ..
The idea is to apply to previous theorem to T ∪ {ϕ0, ϕ1, . . .}.

If n = 2i , we take a fresh constant c ∈ C (one that does not occur in ϕm

with m < n) and put
ϕn = ∃xψi (x) → ψ(c).

This makes sure we can create a model from the constants in C .
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Omitting types theorem, proof finished

Proof.

If n = 2i + 1 we make sure that ci omits Σ(x), as follows. Consider
δ =

∧
m<n ϕm. δ is really of the form δ(ci , c) where c is a sequence of

constants not containing ci . Since Σ(x) is not isolated, there must be a
formula σ(x) ∈ Σ(x) such that T 6|= ∃y δ(x , y) → σ(x); in other words,
such that T ∪ {∃y δ(x , y)} ∪ {¬σ(x)} is consistent. Put ϕ2n = ¬σ(ci ).

The proof is now finished by showing by induction that each
T ∪ {ϕ0, . . . , ϕn} is consistent and then applying the theorem from
Grondslagen.
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Exercises

Exercise

Prove the generalised omitting types theorem: Let T be a consistent
theory in a countable language and let {Γi : i ∈ N} be a sequence of
partial ni -types (for varying ni ). If none of the Γi is isolated in T , then
there is a countable model which omits all Γi .

Exercise

Let T be a complete theory. Show that models of T realise all isolated
partial types.

Exercise

Prove that the omitting types theorem is specific to the countable case:
give an example of a consistent theory T in an uncountable language and
a partial type in T which is not isolated, but which is nevertheless realised
in every model of T .
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ω-categoricity

Convention

Let us say a theory is nice if it

is complete,

and formulated in a countable language,

and has infinite models.

Definition

A theory is ω-categorical if all its countably infinite models are isomorphic.

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

1 T is ω-categorical;

2 all n-types are isolated;

3 all models of T are ω-saturated;

4 all countable models of T are ω-saturated.
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Remark
Note that for any theory T we have:

Proposition

The following are equivalent: (1) all n-types are isolated; (2) every Sn(T )
is finite; (3) for every n there are only finite many formulas ϕ(x1, . . . , xn)
up to equivalence relative to T .

Proof.

(1) ⇔ (2) holds because Sn(T ) is a compact Hausdorff space.
(2) ⇒ (3): If there are only finitely many types, then each of these
isolated, so there are formulas ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn)
“isolating” all these types with T |=

∨
i ψi . But then every formula

ϕ(x1, . . . , xn) is equivalent to the disjunction of the ψi of which it is a
consequence.
(3) ⇒ (2): If every formula ϕ(x1, . . . , xn) is equivalent modulo T to one
of ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn), then every n-type is completely
determined by saying which ψi it does and which it does not contain.
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Ryll-Nardzewski Theorem

Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:

1 T is ω-categorical;

2 all n-types are isolated;

3 all models of T are ω-saturated;

4 all countable models of T are ω-saturated.

Proof.

(1) ⇒ (2): If T contains a non-isolated type then there is a model where
it is realized and a model where it is not realized (by the Omitting Types
Theorem). (2) ⇒ (3): If all n + 1-types are isolated, then every 1-type
with n parameters from a model is isolated, hence generated by a single
formula. So if such a type is finitely satisfiable in a model, that formula
can be satisfied there and then the entire type is realised. (3) ⇒ (4) is
obvious. (4) ⇒ (1): Because elementarily equivalent κ-saturated models
of cardinality κ are always isomorphic.
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Existence countable saturated models

Corollary

If A is a model and a1, . . . , an are elements from A, then Th(A) is
ω-categorical iff Th(A, a1, . . . , an) is ω-categorical.

Definition

A theory T is small if all Sn(T ) are at most countable.

Theorem

A nice theory is small iff it has a countable ω-saturated model.

Proof.

⇐: If T is complete and has a countable ω-saturated model, then every
type consistent with T is realized in that model. So there are at most
countable many n-types for any n.

⇒ I will do on the next page.
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Proof finished

Theorem

A nice theory is small iff it has a countable ω-saturated model.

Proof.

⇒: We know that a model A can be elementarily embedded in a model B
which realizes all types with parameters from A that are finitely satisfied in
A. From the proof of that result we see that if A is a countable and there
are at most countably many n-types with a finite set of parameters from
A, then all of these types can be realized in a countable elementary
extension B. Building an ω-chain by repeatedly applying this result and
then taking the colimit, we see that A can be embedded in a countable
ω-saturated elementary extension. So if A is a countable model of T , we
obtain the desired result.
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Vaught’s Theorem

Theorem (Vaught)

A nice theory cannot have exactly two countable models (up to
isomorphism).

Proof.

Let T be a nice theory. Without loss of generality we may assume that T
is small (why?) and not ω-categorical. We will now show that T has at
least three models.

First of all, there is a countable ω-saturated model A. In addition, there is
a non-isolated type p which is omitted in some model B. Of course, it is
realized in A by some tuple a. Since Th(A, a) is not ω-categorical (by the
corollary from a few slides back), it has a model different from A. Since
this model realizes p, it must be different from B as well.
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Exercises

Exercise

Write down a theory with exactly two countable models.

Exercise

Show for every n > 2 there is a nice theory having precisely n countable
models (up to isomorphism). (Consider (Q,P0, . . . ,Pn−2, c0, c1, . . .) where
the Pi form a partition into dense subsets and the ci are an increasing
sequence of elements of P0.)

Exercise

Give an example of a complete theory T in an uncountable language which
has exactly one countable model but for which not all Sn(T ) are finite.
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Prime and atomic models

Definition

Let T be a nice theory.

A model M of T is called prime if it can be elementarily embedded
into any model of T .

A model M of T is called atomic if it only realises isolated types (or,
put differently, omits all non-isolated types) in Sn(T ).

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

⇒: Because T is nice it has countable models and non-isolated types can
be omitted. For ⇐ see the next page.
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Proof continued

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

⇐: Let A be a countable and atomic model of a nice theory T and M be
any other model of T . Let {a1, a2, . . .} be an enumeration of A; by
induction on n we will construct an increasing sequence of elementary
maps fn : {a1, . . . , an} → M. We start with f0 = ∅, which is elementary as
A and M are elementarily equivalent. (They are both models of a
complete theory T .)

Suppose fn has been constructed. The type of a1, . . . , an+1 in A is
isolated, hence generated by a single formula ϕ(x1, . . . , xn+1). In
particular, A |= ∃xn+1 ϕ(a1, . . . , an, xn+1), and since fn is elementary,
M |= ∃xn+1 ϕ(fn(a1), . . . , fn(an), xn+1). So choose m ∈ M such that
M |= ϕ(fn(a1), . . . , fn(an),m) and put f (an+1) = m.
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Existence prime models

Theorem

All prime models of a nice theory T are isomorphic. In addition, they are
strongly ω-homogeneous.

Proof.

By the familiar back-and-forth techniques. (Exercise!)

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Remark

Let us call a formula ϕ(x) complete in T if it generates an isolated type in
Sn(T ): that is, it is consistent and for any other formula ψ(x) we have
either T |= ϕ(x) → ψ(x) or T |= ϕ(x) → ¬ψ(x). Then n-types are dense
iff every consistent formula ϕ(x) follows from some complete formula.
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Existence prime models, proof

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Proof.

⇒: Let A be a prime model of T . Because a consistent formula ϕ(x) is
realised in all models of T , it is realized in A as well, by a say. Since A is
atomic, ϕ(x) belongs to the isolated type tpA(a).
⇐: Note that a structure A is atomic iff the sets

Σn(x1, . . . , xn) = {¬ϕ(x1, . . . , xn) : ϕ is complete }

are omitted in A. So it suffices to show that the Σn are not isolated (by the
generalised omitting types theorem). But that holds iff for any consistent
ψ(x) there is a complete formula ϕ(x) such that T 6|= ψ(x) → ¬ϕ(x). As
ϕ(x) is complete, this is equivalent to T |= ϕ(x) → ψ(x). So the Σn are
not isolated iff isolated types are dense.
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Binary trees of formulas

Definition

Let {0, 1}∗ be the set of finite sequences consisting of zeros and ones. A
binary tree of formulas in variables x = x1, . . . , xn (in T ) is a collection
{ϕs(x) : s ∈ {0, 1}∗} such that

T |=
(
ϕs0(x) ∨ ϕs1(x)) → ϕs(x)

)
.

T |= ¬
(
ϕs0(x) ∧ ϕs1(x)

)
.

Theorem

The following are equivalent for a nice theory T :

(1) |Sn(T )| < 2ω.

(2) There is no binary tree of consistent formulas in x1, . . . , xn.

(3) |Sn(T )| ≤ ω.

Clearly, if {ϕs(x) : s ∈ {0, 1}∗} is a binary tree of consistent formulas,
{ϕs : s ⊆ α} is consistent for every α : N → {0, 1}. This shows (1) ⇒
(2). As (3) ⇒ (1) is obvious, it remains to show (2) ⇒ (3).
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A lemma

Lemma

Let T be a nice theory. If |Sn(T )| > ω, then there is a binary tree of
consistent formulas in x1, . . . , xn.

Proof.

Suppose |Sn(T )| > ω. This implies, since the language of T is countable,
that there is a formula ϕ(x) such that |[ϕ]| > ω. The lemma will now
follow from the following claim: If |[ϕ]| > ω, then there is a formula ψ(x)
such that |[ϕ ∧ ψ]| > ω and |[ϕ ∧ ¬ψ]| > ω. Suppose not.
Then p(x) = {ψ(x) : |[ϕ ∧ ψ]| > ω} contains a formula ψ(x) or its
negation, but not both, and is closed under logical consequence: so it is a
complete type. If ψ 6∈ p, then |[ϕ ∧ ψ]| ≤ ω. In addition, the language is
countable, so

[ϕ] =
⋃
ψ 6∈p

[ϕ ∧ ψ] ∪ {p}

is a countable union of countable sets and hence countable, contradicting
our choice of ϕ.
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Small theories have prime models

Corollary

If T is nice and |Sn(T )| < 2ω for all n, then T is small.

Corollary

If T is nice and small, then isolated types are dense. So T has a prime
model.

Proof.

If isolated types are not dense, then there is a consistent ϕ(x) which is not
a consequence of a complete formula. Call such a formula perfect. Since
perfect formulas are not complete, they can be “decomposed” into two
consistent formulas which are jointly inconsistent. These have to be
perfect as well, leading to a binary tree of consistent formulas.
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Stability

Let κ be an infinite cardinal.

Definition

A theory T is κ-stable if in each model of T , over set of parameters of
size at most κ, and for each n, there are at most κ many n-types. That is:

|A| ≤ κ⇒ |Sn(A)| ≤ κ.

An easy induction argument shows that it suffices to require that
|A| ≤ κ⇒ |S1(A)| ≤ κ.

The theory ACF 0 is ω-stable, but DLO and RCOF are not!
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Goal of the day

Theorem

A countable theory T which is categorical in an uncountable cardinal is
ω-stable.

By the way, by a countable theory I mean a theory in a countable
language. For the proof I need two ingredients:

1 Ramsey’s Theorem: a result from combinatorics.

2 The notion of (order) indiscernible.
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Ramsey’s Theorem

Ramsey’s Theorem

Let A be infinite and n ∈ N. Partition [A]n, the set of n-element subsets of
A, into subsets C1, . . . ,Ck (their colours). Then there is an infinite subset
of A all whose n-element subsets belong to the same subset Ci .

Proof.

By induction on n. n = 1 is the pigeon hole principle. So we assume the
statement is true for n and prove it for n + 1. Let a0 ∈ A: then any
colouring of [A]n+1 induces a colouring of [A \ {a0}]n: just colour
α ∈ [A \ {a0}] by the colour of {a0} ∪ α. We obtain a infinite
monochromatic subset B1 ⊆ A \ {a0}. Picking an element a1 ∈ B1 and
continuing in this fashion we obtain an infinitely descending sequence
A = B0 ⊇ B1 ⊇ . . . and elements ai ∈ Bi − Bi+1 such that the colour of
any (n + 1)-element subset {ai(0), . . . , ai(n)} (i(0) < . . . < i(n)) depends
only on the value of i(0). By the pigeon hole principle there are infinitely
many i(0) for which this colour will be the same. These ai(0) then yield
the desired monochromatic set.
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Indiscernibles

Definition

Let I be a linear order and A be an L-structure. A family of elements
(ai )i∈I (or tuples of elements, all of the same length) is called a sequence
of indiscernibles if for all formulas ϕ(x1, . . . , xn) and all i1 < . . . < in and
j1 < . . . , < jn from I we have

A |= ϕ(i1, . . . , in) ↔ ϕ(j1, . . . , jn).

Definition

Let I be an infinite linear order and I = (ai )i∈I be a sequence of elements
in M, A ⊆ M. The Ehrenfeucht-Mostowski type EM(I/A) of I over A is
the set of L(A)-formulas ϕ(x1, . . . , xn) with M |= ϕ(ai1 , . . . , ain) for all
i1 < . . . < in.

Note that if (ai )i∈I is a sequence of indiscernibles, then the
Ehrenfeucht-Mostowski type EM(I/A) is complete (contains either a
formula or its negation).
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The Standard Lemma

The Standard Lemma

Let I and J be two infinite linear orders and I = (ai )i∈I be a sequence of
distinct elements of a structure M. Then there is a structure N ≡ M with
an indiscernible sequence (bj)j∈J realizing the Ehrenfeucht-Mostowski type
EM(I/A).

Proof.

Choose a set C of new constants with an ordering isomorphic to J. We
need to show that

Th(M) ∪ {ϕ(c) : ϕ(x) ∈ EM(I/A)} ∪ {ϕ(c) ↔ ϕ(d) : c , d ∈ C}

is consistent. (Here the ϕ(x) are L-formulas and c , d tuples in increasing
order.)
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Proof of The Standard Lemma, finished

Proof.

By compactness it is sufficient to show that

Th(M) ∪ {ϕ(c) : ϕ(x) ∈ EM(I/A), c ∈ C0}∪
{ϕ(c) ↔ ϕ(d) : ϕ(x) ∈ ∆, c , d ∈ C0}

has a model, where C0 and ∆ are finite. In addition, we may assume that
all tuples c have the same length n.

In that case we may define an equivalence relation ∼ on [A]n by

a ∼ b ⇔ M |= ϕ(a) ↔ ϕ(b) for all ϕ(x1, . . . , xn) ∈ ∆

where a, b are tuples in increasing order. Since this equivalence relation
has at most 2|∆| equivalence classes, there is an infinite subset B of A
with all n-elements subsets in the same equivalence class. Interpret c ∈ C0

by elements bc in B ordered in the same way as the c . Then (M, bc)c∈C0

is a model.
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Another lemma

Corollary

Assume T has an infinite model. Then, for any linear order I , the theory
T has a model with a sequence (ai )i∈I of distinct indiscernibles.

Lemma

Assume L is countable. If the L-structure M is generated by a well-ordered
sequence (ai )i∈I of indiscernibles, then M realises only countably many
types over every countable subset of M.

Proof.

See handout.
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Another corollary

Corollary

Let T be a countable L-theory with an infinite model and let κ be an
infinite cardinal. Then T has a model of cardinality κ which realises only
countably many types over every countable subset.

Proof.

Let T ′ be the skolemisation of T in richer language L′ ⊇ L, and let I be a
well-ordering of cardinality κ and N ′ be a model of T ′ with indiscernibles
(ai )i∈I . Then the Skolem hull M ′ generated by (ai )i∈I has cardinality κ
and is an elementary substructure of N ′. In addition, it realises only
countably many types over every countable subset by the previous lemma.
But then the same is certainly also true for the reduct M = M ′ � L.
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Goal of the day achieved

Theorem

A countable theory T which is categorical in an uncountable cardinal is
ω-stable.

Proof.

Let N be a model and A ⊆ N countable with S(A) uncountable. Let
(bi )i∈I be a sequence of ω1-many elements realizing different types over A.
First choose an elementary substructure M0 of N of cardinality ω1 which
contains both A and the bi , and then choose an elementary extension M
of M0 of cardinality κ. The model M is of cardinality κ and realises
uncountably many types over the countable set A. But by the previous
corollary T also has a model of cardinality κ in which this is not the case.
So T is not κ-categorical.
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Next goals

The next step in the proof of Morley’s Theorem is an analysis of nice
ω-stable theories. In particular, we need to establish the following three
results for such theories T :

Theorem

T is κ-stable for all κ ≥ ω.

Theorem

Suppose A |= T and C ⊆ A, where A is uncountable and |C | < |A|. Then
there exists a sequence of distinct indiscernibles in (A, a)a∈C .

Theorem

Suppose A |= T and C ⊆ A. There exists B � A such that C ⊆ B and B
is atomic over C .

To prove these results we need the notions of Morley rank and Morley
degree.
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Definition of RM ≥ α

Today we will fix a complete theory T .

Definition

Suppose A |= T , ϕ(x) is an LA-formula, and α is an ordinal. We define
RMx(A, ϕ(x)) ≥ α by induction on α:

1 RMx(A, ϕ(x)) ≥ 0 if A |= ∃x ϕ(x);
2 RMx(A, ϕ(x)) ≥ α+ 1 if there is an elementary extension B of A and

a sequence (ϕk(x) : k ∈ N) of LB -formulas such that
1 B |= ∀x (ϕk(x) → ϕ(x) ) for all k ∈ N;
2 B |= ∀x ¬(ϕk(x) ∧ ϕl(x) ) for all distinct k, l ∈ N;
3 RMx(B, ϕk(x)) ≥ α for all k ∈ N;

3 for λ a limit ordinal, RMx(A, ϕ(x)) ≥ λ if RMx(A, ϕ(x)) ≥ α for all
α < λ.
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Main property of RM ≥ α

Lemma

Suppose A |= T and ϕ(x) is an LA-formula. Let S be the set of ordinals α
such that RMx(A, ϕ(x)) ≥ α holds. Then exactly one of the following
alternatives holds:

1 S is empty;

2 S is the class of all ordinals;

3 S = {α : α ≤ γ} for some ordinal γ.

Proof.

This really amounts to showing that RMx(A, ϕ(x)) ≥ α and α > β ≥ 0
imply RMx(A, ϕ(x)) ≥ β. We prove this by induction on α and β. The
cases where α or β is a limit ordinal are easy, so assume
RMx(A, ϕ(x)) ≥ α+ 1 and α+ 1 > β + 1 (so α > β). The first
assumption implies that there is an elementary extension B of A and a
sequence (ϕk(x) : k ∈ N) with RMx(B, ϕk(x)) ≥ α. But then
RMx(B, ϕk(x)) ≥ β and hence RMx(A, ϕ(x)) ≥ β + 1, as desired.
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Morley rank

Definition

Let A be a model of T and let ϕ(x) be an LA-formula. RMx(A, ϕ(x)) ≥ α
is false for all ordinals α, then we write RMx(A, ϕ(x)) = −∞. If
RMx(A, ϕ(x)) ≥ α holds for all ordinals α, then we write
RMx(A, ϕ(x)) = +∞. Otherwise we define RMx(A, ϕ(x)) to be the
greatest ordinal α for which RMx(A, ϕ(x)) ≥ α holds, and we say that
ϕ(x) is ranked.
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Morley rank depends on the type only

Lemma

Let A be a model and ϕ(x , y) be an L-formula. If a is a finite tuple of
elements of A, then the value of RMx(A, ϕ(x , a)) depends only on tpA(a).

Proof.

It suffices to prove that the truth value of RMx(A, ϕ(x , a)) ≥ α only
depends on the type of a. We prove this by induction on α; the case that
α = 0 or a limit ordinal is trivial. So assume the statement holds for all
α < β + 1.

For j = 1, 2, let Aj be a model of T and aj be a finite tuples from Aj with
tpA1

(a1) = tpA2
(a2). We assume RMx(A1, ϕ(x , a1)) ≥ β + 1 and need to

prove RMx(A2, ϕ(x , a2)) ≥ β + 1.

The assumption yields an elementary extension B1 of A1 and a sequence
of formulas (ϕk(x , bk) : k ∈ N) to witness that
RMx(A1, ϕ(x , a1)) ≥ β + 1, that is, . . .
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Morley rank depends on the type only, continued

Proof.
1 B1 |= ∀x (ϕk(x , bk) → ϕ(x , a1) ) for all k ∈ N;

2 B1 |= ∀x ¬(ϕk(x , bk) ∧ ϕl(x , bl) ) for all distinct k, l ∈ N;

3 RMx(B1, ϕk(x , bk)) ≥ β for all k ∈ N.

Now let B2 be any ω-saturated elementary extension of A2. We know that
tpB1

(a1) = tpB2
(a2). Since B2 is ω-saturated, we may construct

inductively a sequence (ck : k ∈ N) of finite tuples from B2 such that for
all k ∈ N

tpB2
(a2c0 . . . ck) = tpB1

(a1b0 . . . bk).

It follows that

1 B2 |= ∀x (ϕk(x , ck) → ϕ(x , a2) ) for all k ∈ N;

2 B1 |= ∀x ¬(ϕk(x , ck) ∧ ϕl(x , cl) ) for all distinct k, l ∈ N;

3 RMx(B2, ϕk(x , ck)) ≥ β for all k ∈ N.

(Statements (1) and (2) are immediate; for (3) use the induction
hypothesis.) So RMx(B2, ϕk(x , a2)) ≥ β + 1.
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Exercises

Exercise

Let A be an ω-saturated model of T and let ϕ(x) be an LA-formula. In
applying the definition of RMx(A, ϕ(x)) ≥ α one may take the elementary
extension B to be A itself.

Exercise (Properties of Morley rank)

Let A be a model of T and let ϕ(x), ψ(x) be LA-formulas.

1 RMx(A, ϕ(x)) = 0 iff the number of tuples u ∈ A for which
A |= ϕ(u) is finite and > 0.

2 if A |= ϕ(x) → ψ(x), then RMx(A, ϕ(x)) ≤ RMx(A, ψ(x)).

3 RMx(A, ϕ(x) ∨ ψ(x)) = max(RMx(A, ϕ(x)),RMx(A, ψ(x))).

4 if ϕ(x) is ranked and RMx(A, ϕ(x)) > β, then there exists an
elementary extension B of A and an LB -formula χ(x) such that
B |= χ(x) → ϕ(x) and RMx(B, χ(x)) = β.
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Towards Morley degree

Lemma

Let A be a model of T and ϕ(x) be a ranked LA-formula. There exists a
finite bound on the integers k such that there exists an elementary
extension B of A and LB -formulas (ϕj(x) : 0 ≤ j < k) such that

1 RMx(B, ϕj(x)) = RMx(A, ϕ(x)) for all j < k;

2 B |= (ϕj(x) → ϕ(x) ) for all j < k;

3 B |= ¬(ϕi (x) ∧ ϕj(x)) for distinct i , j < k.

Moreover, the maximum value of k depends only on tpA(a). And if A is
ω-saturated, a maximal sequence can be found for B equal to A itself.

Proof. Write ϕ(x) = ϕ(x , a) where ϕ(x , y) is an L-formula. The existence
of an elementary extension B and LB -formulas ϕj(x) having properties
(1)-(3) amounts to the consistency of a certain set of sentences involving
a and the parameters from B occurring in the ϕj(x). So consistency
depends solely on the type of a; and these sentences will be realized in any
ω-saturated extension of A, if consistent.
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Towards Morley degree, continued

Proof.

So we may assume that A is ω-saturated and restrict ourselves to
considering sequences of LA-formulas (ϕj(x) : 0 ≤ j < k).

We will create a binary tree of LA-formulas, each having Morley rank α.
We put ϕ<> = ϕ(x). If ϕσ has been constructed, we check whether there
is a formula ψ such that both ϕ ∧ ψ and ϕ ∧ ¬ψ have Morley rank α. If
so, we put ϕσ0 = ϕ ∧ ψ and ϕσ1 = ϕ ∧ ¬ψ for some such ψ. Otherwise
we stop.

The resulting tree has to be finite: for otherwise it would have (by König’s
Lemma) an infinite branch α. But then ϕα(n) ∧ ¬ϕα(n+1) would be an
infinite sequence witnessing that the Morley rank of ϕ is ≥ α+ 1.

Let L be the collection of leaves of the tree. Then (ϕs : s ∈ L) is a
sequence satisfying (1)-(3): in fact, ϕ↔

∨
s∈L ϕs . We claim it is

maximal.
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Towards Morley degree, finished

Proof.

For suppose (ψj(x) : 0 ≤ j < k) is another such sequence satisfying
(1)-(3) and k > |S0|. Since ψi (x) and ψj(x) are contradictory whenever i
and j are distinct, at most one of ϕs ∧ ψi and ϕs ∧ ψj can have Morley
rank α. Since k > |S0|, it follows from the pigeonhole principle that there
is a j < k such that ψj ∧ ϕs has rank < α for all s ∈ S0. But as ψj is
equivalent to the disjunction of all formulas ψj ∧ ϕs , it follows that ψj

must itself have Morley rank < α. Contradiction!

Definition

Given a ranked LA-formula ϕ(x), the greatest integer whose existence we
just proved is called the Morley degree of ϕ(x) and it is denoted by
dM(ϕ(x)).
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Properties of Morley degree

Lemma

Let A be an ω-saturated model of T and let ϕ(x) and ψ(x) be ranked
LA-formulas.

1 If dM(ϕ(x)) = d and this is witnessed by the sequence
(ϕj(x) : 0 ≤ j < d), then each ϕj(x) has Morley degree 1.

2 If RMx(A, ϕ(x)) = RMx(A, ψ(x)) and A |= ϕ(x) → ψ(x), then
dM(ϕ(x)) ≤ dM(ψ(x)).

3 If RMx(A, ϕ(x)) = RMx(A, ψ(x)), then
dM(ϕ(x) ∨ ψ(x)) ≤ dM(ϕ(x)) + dM(ψ(x)), with equality if
A |= ¬(ϕ(x) ∧ ψ(x) ).

4 If RMx(A, ϕ(x)) < RMx(A, ψ(x)), then
dM(ϕ(x) ∨ ψ(x)) = dM(ϕ(x)).

Proof.

Exercise!
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Types and Morley rank

Lemma

Let A |= T and C ⊆ A. Let p(x) be a type in LC that is consistent with
Th((A, a)a∈C ). Assume that some formula in p(x) is ranked. Then there
exists a formula ϕp(x) in p(x) that determines p(x) in the following sense:

p(x) consists exactly of the LC -formulas ψ(x) such that
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)) and
dM(ψ(x) ∧ ϕp(x)) = dM(ϕp(x)).

Indeed, such a formula can be obtained by taking ϕp(x) to be a formula
ϕ(x) in p(x) with least possible Morley rank and Morley degree, in
lexicographic order.

Proof.

Choose ϕp(x) as in the last sentence of the lemma. Then, if ψ(x) is any
formula in p(x), also ψ(x) ∧ ϕp(x) ∈ p(x) and hence
RM(ψ(x) ∧ ϕp(x)) ≥ RM(ϕp(x)) by choice of ϕp(x). Hence
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)). Similarly for Morley degree.
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Types and Morley rank, continued

Proof.

Conversely, suppose ψ(x) is any LC -formula with
RM(ψ(x) ∧ ϕp(x)) = RM(ϕp(x)) and dM(ψ(x) ∧ ϕp(x)) = dM(ϕp(x)).
By way of contradiction, if ψ(x) 6∈ p(x), then ¬ψ(x) ∈ p(x). But then
RM(¬ψ(x) ∧ ϕp(x)) = RM(ϕp(x)), in which case we have dM(ϕp(x)) ≥
dM(ψ(x)∧ϕp(x)) + dM(¬ψ(x)∧ϕp(x)) > dM(ψ(x)∧ϕp(x)), which is a
contradiction.

Definition

Let p(x) be a type as in the statement of the lemma. Then we define
RM(p(x)) to be the least Morley rank of a formula in p(x). If some
formula in p(x) is ranked, we define dM(p(x)) to be the least Morley
degree of a formula ϕ(x) in p(x) that satisfies RM(ϕ(x)) = RM(p(x)).

123 / 140



Totally transcendental theories

Definition

A theory T is totally transcendental if it has no model M with a binary
tree of consistent L(M)-formulas.

Theorem

Let L be countable. Then the following conditions are equivalent:

1 T is ω-stable;

2 T is totally transcendental;

3 if A |= T and ϕ(x) is an LA-formula which is realized in A, then ϕ(x)
is ranked;

4 T is λ-stable for all λ ≥ ω.

Proof.

(1) ⇒ (2): In a binary tree of consistent L(M)-formulas only countably
many parameters from M occur; but its existence implies that there are at
least 2ω different types over this countable set.
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Proof continued

Proof.

(2) ⇒ (3): Let M be an ω-saturated model of T and let ϕ(x) be a
formula of Morley rank +∞. Since the formulas from LM form a set, there
is an ordinal α such that any formula ψ(x) whose Morley rank is ≥ α has
Morley rank is +∞. So because RM(ϕ(x)) ≥ α+ 1, there must be
contradictory formulas ψ1(x) and ψ2(x) with RM(ψi (x)) ≥ α and
M |= ψi (x) → ϕ(x). So ϕ(x) ∧ ψ1(x) and ϕ(x) ∧ ψ2(x) both have Morley
rank +∞. Continuing in this way we create a binary tree of consistent
formulas in M.

(3) ⇒ (4): Let A |= T and C ⊆ A with |C | ≤ λ. Then every type p(x) is
uniquely determined by an LC -formula ϕp(x). Since there are at most λ
many LC -formulas (L is countable!), there are at most λ many types.

(4) ⇒ (1) is obvious.
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Second theorem
Today all theories are assumed to be nice.

Notation

Let A be an L-structure. If b is a tuple in A and B is any subset of A, we
will write tpA(b/B) for the type in LB realized by b.

Theorem

Assume T is an ω-stable theory, and suppose A |= T and C ⊆ A. If A is
uncountable and |C | < |A|, then there is a nonconstant sequence of
indiscernibles in (A, a)a∈C .

Proof.

We may assume C is infinite. Write λ = |C |. The formula x = x is
satisfied by > λ many elements, so choose an LA-formula ϕ(x) that is
satisfied by > λ many elements and has minimum possible Morley rank
and degree; say these are (α, d). Note that α > 0 since ϕ(x) is satisfied
by infinitely many elements. By adding finitely many elements to C we
may assume that ϕ(x) is an LC -formula.
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Second theorem, proof continued

Proof.

We will construct a sequence (ak : k ∈ N) of elements of A that satisfy
ϕ(x) and such that Morley rank and degree of tpA(ak/C ∪ {a0, . . . , ak−1})
is exactly (α, d).

First we claim that there is an a0 with this property. For if no such
element would exist, we would have that Morley rank and degree of
tpA(a/C ) is < (α, d) for all a ∈ A satisfying ϕ(x). So each a ∈ A which
satisfies ϕ(x) also satisfies an LC -formula ψa(x) with Morley degree and
rank < (α, d). But since there are at most λ many LC -formulas and more
than λ many a satisfying ϕ(x), there must be a formula with Morley rank
and degree < (α, d) satisfied by > λ many a. Contradiction! The
construction of ak given a0, . . . , ak−1 is similar. So the result follows from
the following technical lemma.
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Technical lemma

Lemma

Assume T is ω-stable and suppose A |= T and C ⊆ A. Let ϕ(x) be a
ranked LC -formula, and set (α, d) = (RM(ϕ(x)), dM(ϕ(x))). Suppose
(ak : k ∈ N) is a sequence of tuples and write
pk(x) = tpA(ak/C ∪ {a0, . . . , ak−1}). If A |= ϕ(ak) and
(RM(pk(x)), dM(pk(x))) = (α, d), then (ak : k ∈ N) is an indiscernible
sequence in (A, a)a∈C .

Proof.

Exercise! Hint: Prove by induction on n that whenever i0 < . . . < in, then
tp(ai0 , . . . , ain/C ) = tp(a0, . . . , an/C ) and use the lemma on types and
Morley rank and degree.
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Third goal

Recall that the third goal was:

Theorem

Assume T is ω-stable. If A |= T and C ⊆ A, then there exists B � A such
that C ⊆ B and B is atomic over C .

We do this in two steps: first we show that we can find such a B where B
is constructible over C ; and then we show that constructible extensions
have to be atomic.

Definition

Let A be an L-structure and C ⊆ A. We say that A is constructible over C
if there is an ordinal γ and an enumeration A = (aα : α < γ) such that
each aα is atomic over C ∪ Aα, where Aα = {aµ : µ < α}.
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Existence constructible extensions

Theorem

Assume T is ω-stable. If A |= T and C ⊆ A, then there exists B � A such
that C ⊆ B and B is constructible over C .

Proof.

T is totally transcendental, so if B is a subset of a model A of T , then
Th(AB) has no binary tree of consistent formulas. So isolated types in
Th(AB) are dense.

Now use Zorn’s Lemma to find a maximal construction (aα)a<λ which
cannot be prolonged by an element aλ ∈ M. Clearly C is contained in Aλ.
We show that Aλ is the universe of an elementary substructure by using
the Tarski-Vaught Test. So assume ϕ(x) is an LAλ

-formula and
A |= ∃x ϕ(x). Since isolated types over Aλ are dense, there is an isolated
p(x) ∈ S(Aλ) with ϕ(x) ∈ p(x). Let b be a realisation of p(x) in A. If
b 6∈ Aλ, then we could prolong our construction by aλ = b; thus b ∈ Aλ
and ϕ(x) is realised in Aλ.
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Useful lemma

Lemma

Let a and b be two finite tuples of elements of a structure M. Then
tp(ab) is atomic if and only if tp(a/b) and tp(b) are atomic.

Proof.

First assume that ϕ(x , y) isolates tp(a, b). Then ϕ(x , b) isolates tp(a/b)
and we claim ∃x ϕ(x , y) isolates p(y) = tp(b): we have ∃x ϕ(x , y) ∈ p(y)
and if σ(y) ∈ p(y), then M |= ∀x , y (ϕ(x , y) → σ(y) ) and hence
M |= ∀y (∃x ϕ(x , y) → σ(y) ).

Conversely, suppose ρ(x , b) isolates tp(a/b) and σ(y) isolates
p(y) = tp(b). Then ρ(x , y) ∧ σ(y) isolates tp(a, b). For if
ϕ(x , y) ∈ tp(a, b), then ϕ(x , b) belongs to tp(a/b) and
M |= ∀x ( ρ(x , b) → ϕ(x , b) ). Hence ∀x ( ρ(x , y) → ϕ(x , y)) ∈ p(y) and
so it follows that M |= ∀y (σ(y) → ∀x ( ρ(x , y) → ϕ(x , y) ). Thus
M |= ∀x , y ( ρ(x , y) ∧ σ(y) → ϕ(x , y) ).

131 / 140



Constructible extensions are atomic

Lemma

Constructible extensions are atomic.

Proof.

Let M0 be a constructible extension of A and let a be a tuple from M0.
We have to show that a is atomic over A. We can clearly assume that the
elements of a are pairwise distinct and do not belong to A. We can
permute the elements of a so that

a = aαb

for some tuple b ∈ Aα. Let ϕ(x , c) be an L(Aα)-formula which is complete
over Aα and satisfied by aα. The aα is also atomic over A ∪ {bc}. Using
induction, we know that bc is atomic over A. So by the previous lemma
aαbc and a = aαb are atomic over A.
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κ-categoricity and saturation

Theorem

A theory T is κ-categorical if and only if all models of cardinality κ are
κ-saturated.

For the proof we need a lemma:

Lemma

If T is κ-stable, then for all regular λ ≤ κ there is a model of cardinality κ
which is λ-saturated.

Proof.

We constuct a sequence (Mα : α ∈ λ) of models of T of cardinality κ: we
start with any model M0 of cardinality κ of T ; at limit stages we take the
colimit and at successor stages we take a model Mα+1 which realises all
types in S(Mα). This we can do with a model of cardinality κ since
|S(Mα)| ≤ κ. The colimit of the entire chain will be λ-saturated.
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κ-categoricity and saturation: proof

Theorem

A theory T is κ-categorical if and only if all models of cardinality κ are
κ-saturated.

Proof.

Note that we already proved this result for κ = ω and that we also know
that any two κ-saturated models of cardinality κ are isomorphic. So we
only need to show that if T is κ-categorical for some uncountable cardinal
κ, then all models of cardinality κ are κ-saturated.

But then T is ω-stable, hence totally transcendental, hence κ-stable. So
by the lemma the unique model of T of cardinality κ is µ+-saturated for
all µ < κ. So this model is κ-saturated.
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A theorem implying Morley’s theorem

So Morley’s Theorem will follow from:

Theorem

Suppose T is ω-stable and assume κ is an uncountable cardinal and that
every model of T of cardinality κ is κ-saturated. Then every uncountable
model of T is saturated.

Proof.

Suppose T is ω-stable and T has a model of cardinality λ that is not
λ-saturated. (Goal is to construct a model of cardinality κ that is not
κ-saturated.) So there is a subset C of A of cardinality < λ and a type
p(x) over C such that p(x) is consistent with Th((A, a)a∈C ) but not
realized in (A, a)a∈C . We know that there is a nonconstant sequence
(ak : k ∈ N) of indiscernibles in (A, a)a∈C (second goal). Write
I = {ak : k ∈ N} and note that (*): for each L(C ∪ I )-formula ϕ(x) that
is satisfiable in (A, a)a∈C∪I there exists ψ(x) ∈ p(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C∪I . (For otherwise p(x) would be
realized in (A, a)a∈C .)
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A theorem implying Morley’s theorem, proof continued

Proof.

We have (*): for each L(C ∪ I )-formula ϕ(x) that is satisfiable in
(A, a)a∈C∪I there exists ψ(x) ∈ p(x) such that ϕ(x) ∧ ¬ψ(x) is satisfiable
in (A, a)a∈C∪I .

Let C0 be any countable subset of C . For each L(C0 ∪ I ) formula ϕ(x)
that is satisfiable in (A, a)a∈C0∪I let ψϕ be one of the formulas satisfying
(*) for ϕ. Since C0 ∪ I is countable, there is a countable set C1 such that
C0 ⊆ C1 ⊆ C and such that the parameters of ψϕ are in C1. Continuing in
this way to create sets Ck , let C ′ =

⋃
{Ck : k ∈ N}. Let p′(x) be

restriction of p(x) to C ′. We have (**): for each L(C ′ ∪ I )-formula ϕ(x)
that is satisfiable in (A, a)a∈C ′∪I there exists ψ(x) ∈ p′(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C ′∪I . Note also that (ak : k ∈ N) is
a sequence of indiscernibles in (A, a)a∈C ′ .
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A theorem implying Morley’s theorem, proof continued

Proof.

By the Standard Lemma there is a model B of Th((A, a)a∈C ′) that
contains a family (bα : α < κ) realising the Ehrenfeucht-Mostowski type
of (ak : k ∈ N). We may assume this model is of the form (B, a)a∈C ′ .
Using the Third Goal we know that there is an elementary substructure B ′

of B which is atomic over C ′ ∪ {bα : α < κ}.

The proof will be finished once we show that p′(x) is not realised in
(B ′, a)a∈C ′ . For then the downward Löwenheim-Skolem Theorem implies
that B ′ has an elementary substructure B ′′ of cardinality κ which contains
C ′. Then B ′′ is a model of cardinality κ which is not κ-saturated. (In fact,
it is not even ω1-saturated.)
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A theorem implying Morley’s theorem, proof finished

Claim

The type p′(x) is not realised in (B ′, a)a∈C ′ .

Proof.

Recall that we have (**): for each L(C ′ ∪ I )-formula ϕ(x) that is
satisfiable in (A, a)a∈C ′∪I there exists ψ(x) ∈ p′(x) such that
ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C ′∪I .

So suppose p′(x) is realised in (B ′, a)a∈C ′ by some tuple b. We have that
tpB′(b/C ′ ∪ {bα : α < κ}) is isolated so it contains a complete formula
ϕ(x , bα0 , . . . , bαn). So we have that ϕ(x , bα0 , . . . , bαn) → ψ(x) holds in B ′

for every ψ(x) ∈ p′(x). But since bα0 , . . . , bαn and a0, . . . , an realize the
same Ehrenfeucht-Mostowski type over C ′, we have that
ϕ(x , a0, . . . , an) → ψ(x) is valid in A for each formula ψ(x) ∈ p′(x). But
that contradicts (**).
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Morley’s Theorem

Morley’s Theorem

If a countable theory T is λ-categorical for an uncountable cardinal λ,
then it is λ-categorical for all uncountable cardinal λ.

End of the course. And Merry Christmas and Happy New Year!
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