Existence countable saturated models
Convention
Let us say a theory is nice if it

@ is complete,

@ and formulated in a countable language,

@ and has infinite models.

Definition
A theory T is small if all S,(T) are at most countable.

Theorem
A nice theory is small iff it has a countable w-saturated model.

Proof.
<: If T is complete and has a countable w-saturated model, then every
type consistent with T is realized in that model. So there are at most

countable many n-types for any n. (For = see next page.) [
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Proof finished

Theorem
A nice theory is small iff it has a countable w-saturated model.

Proof.

=: We know that a model A can be elementarily embedded in a model B
which realizes all types with parameters from A that are finitely satisfied in
A. From the proof of that result we see that if A is a countable and there
are at most countably many n-types with a finite set of parameters from
A, then all of these types can be realized in a countable elementary
extension B. Building an w-chain by repeatedly applying this result and
then taking the colimit, we see that A can be embedded in a countable
w-saturated elementary extension. So if A is a countable model of T, we
obtain the desired result. [
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Omitting types theorem

Definition
Let T be an L-theory and p(x) be a partial type. Then p(x) is isolated in
T if there is a formula ¢(x) such that Ix ¢(x) is consistent with T and

T Ee(x) = o(x)

for all o(x) € p(x).

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
p(x) is not isolated in T, then there is a countable model of T which
omits p(x).




Lemma

Lemma

Suppose T is a consistent theory in a language L and C is a set of
constants in L. If for any formula ¢)(x) in the language L there is a
constant ¢ € C such that

T = 3Ixp(x) = (c),

then T has a model whose universe consists entirely of interpretations of
elements of C.

Proof.

Extend T to a maximally consistent theory using the Lemma on page 4 of
the slides for week 2 and then apply the Lemma on page 3 of the slides for
week 2. O




Omitting types theorem, proof

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
p(x) is not isolated in T, then there is a countable model of T which
omits p(x).

Proof.

Let C = {c;; i € N} be a countable collection of fresh constants and L¢
be the language L extending with these constants. Let {¢;(x) : i € N} be
an enumeration of the formulas with one free variable in the language Lc.
We will now inductively create a sequence of sentences g, 1, P2, . - ..
The idea is to apply to previous lemma to T U {yo, ¢1,. ..}

If n = 2i, we take a fresh constant ¢ € C (one that does not occur in ¢,
with m < n) and put

wn = IxYi(x) = ¥(c).

This makes sure we can create a model from the constants in C. ]




Omitting types theorem, proof finished

Proof.

If n =2/ + 1 we make sure that ¢; omits p(x), as follows. Consider

0 = Amen®m. 0 is really of the form §(c;, €) where € is a sequence of
constants not containing c¢;. Since p(x) is not isolated, there must be a
formula o(x) € p(x) such that T (£ Jy d(x,y) — o(x); in other words,
such that T U {3y d(x,y)} U{—o(x)} is consistent. Put @2, = o (c;).

The proof is now finished by showing by induction that each
T U{¢o,-..,¢n} is consistent and then applying the previous lemma. [

v
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Remark
Note that for any theory T we have:

Proposition

The following are equivalent: (1) all n-types are isolated; (2) every S,(T)
is finite; (3) for every n there are only finite many formulas ¢(x1, ..., xp)
up to equivalence relative to T.

Proof.

(1) & (2) holds because S,(T) is a compact Hausdorff space.

(2) = (3): If there are only finitely many types, then each of these
isolated, so there are formulas ¥1(x1, ..., Xn), -, Um(x1, ..., Xn)
“isolating” all these types with T |=\/; ¢;. But then every formula
©(x1,...,xp) is equivalent to the disjunction of the v; of which it is a
consequence.

(3) = (2): If every formula ¢(x1,...,x,) is equivalent modulo T to one
of Y1(x1, .-y Xn)s- -+, ¥m(x1,...,xn), then every n-type is completely
determined by saying which ); it does and which it does not contain. [

7/1



Ryll-Nardzewski Theorem
Theorem (Ryll-Nardzewski)

For a nice theory T the following are equivalent:
© T is w-categorical;
@ all n-types are isolated;
© all models of T are w-saturated;

@ all countable models of T are w-saturated.

Proof.

(1) = (2): If T contains a non-isolated type then there is a model where
it is realized and a model where it is not realized (by the Omitting Types
Theorem). (2) = (3): If all n+ 1-types are isolated, then every 1-type
with n parameters from a model is isolated, hence generated by a single
formula. So if such a type is finitely satisfiable in a model, that formula
can be satisfied there and then the entire type is realised. (3) = (4) is
obvious. (4) = (1): Because elementarily equivalent x-saturated models
of cardinality x are always isomorphic.
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Vaught's Theorem

Corollary
If Ais a model and ay,...,a, are elements from A, then Th(A) is
w-categorical iff Th(A, ay, ..., a,) is w-categorical.

Theorem (Vaught)

A nice theory cannot have exactly two countable models (up to
isomorphism).

Proof.

Let T be a nice theory. Without loss of generality we may assume that T
is small (why?) and not w-categorical. We will now show that T has at
least three models. First of all, there is a countable w-saturated model A.
In addition, there is a non-isolated type p which is omitted in some model
B. Of course, it is realized in A by some tuple a. Since Th(A,3) is not
w-categorical, it has a model different from A. Since this model realizes p,
it must be different from B as well. O
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Prime and atomic models

Definition
Let T be a nice theory.

@ A model M of T is called prime if it can be elementarily embedded
into any model of T.

@ A model M of T is called atomic if it only realises isolated types (or,
put differently, omits all non-isolated types) in S,(T).

Theorem
A model of a nice theory T is prime iff it is countable and atomic.

Proof.

=: Because T is nice it has countable models and non-isolated types can
be omitted. For < see the next page. O

v
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Proof continued

Theorem

A model of a nice theory T is prime iff it is countable and atomic.

Proof.

<: Let A be a countable and atomic model of a nice theory T and M be
any other model of T. Let {a1, ap,...} be an enumeration of A; by
induction on n we will construct an increasing sequence of elementary
maps f, : {a1,...,a,} — M. We start with fo = (), which is elementary as
A and M are elementarily equivalent. (They are both models of a
complete theory T.)

Suppose f, has been constructed. The type of aj,...,a,+1 in Ais
isolated, hence generated by a single formula ¢(x1, ..., Xp+1). In
particular, A = Ixp+1©(a1, - .-, an, Xnt+1), and since f, is elementary,

M = 3xny1 ¢(fa(a1), - - -, fa(an), Xn+1). So choose m € M such that
M ): Sp(fn(al)7 ey fn(an), m) and pUt f(an+1) = m. |
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Existence prime models

Theorem

All prime models of a nice theory T are isomorphic. In addition, they are
strongly w-homogeneous.

Proof.
By the familiar back-and-forth techniques. (Exercise!)

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sp(T) for all n.

Remark

Let us call a formula p(X) complete in T if it generates an isolated type in
Sn(T): that is, it is consistent and for any other formula ¥ (Xx) we have
either T = o(X) = ¢¥(X) or T = ¢(X) — —1(X). Then n-types are dense
iff every consistent formula ¢(X) follows from some complete formula.
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Existence prime models, proof

Theorem

A nice theory T has a prime model iff the isolated n-types are dense in
Sp(T) for all n.

Proof.

=: Let A be a prime model of T. Because a consistent formula ¢(X) is
realised in all models of T, it is realized in A as well, by 3 say. Since A is
atomic, ¢(X) belongs to the isolated type tp(3).

<«: Note that a structure A is atomic iff the sets

pn(x1,- ..y xn) = { —@(x1,...,xn) : @ is complete }

are omitted in A. So it suffices to show that the p, are not isolated (by the
generalised omitting types theorem). But that holds iff for any consistent
1(X) there is a complete formula ¢(X) such that T £ (Xx) — —p(X). As
©(X) is complete, this is equivalent to T = ¢(X) — ¥(x). So the X, are
not isolated iff isolated types are dense. Ol
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Binary trees of formulas

Definition
Let {0,1}* be the set of finite sequences consisting of zeros and ones. A
binary tree of formulas in variables X = x,...,x, (in T) is a collection

{ps(X) : s €{0,1}*} such that
o T (ps0(X)V @si(X)) = ws(X)).
o T ~(wso(X) A wsi(X)).

Theorem

The following are equivalent for a nice theory T:

(1) [Sa(T)] < 2.

(2) There is no binary tree of consistent formulas in xi, ..., x,.
(3) [5a(T)| < w.

Clearly, if {¢s(X) : s € {0,1}*} is a binary tree of consistent formulas,
{¢s : s C a} is consistent for every a : N — {0,1}. This shows (1) =
(2). As (3) = (1) is obvious, it remains to show (2) = (3).
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A lemma

Lemma

Let T be a nice theory. If |[S,(T)| > w, then there is a binary tree of
consistent formulas in xg, ..., x,.

Proof.

Suppose |S,(T)| > w. This implies, since the language of T is countable,
that there is a formula ¢(X) such that |[¢]| > w. The lemma will now
follow from the following claim: If |[¢]| > w, then there is a formula ¥ (X)
such that |[¢ A ¢]| > w and |[¢ A =9]| > w. Suppose not.

Then p(X) = {¥(X) : |[¢ A ¢]| > w} contains a formula ¥ (X) or its
negation, but not both, and is closed under logical consequence: so it is a
complete type. If ¢ & p, then |[¢ A ¢]| < w. In addition, the language is

countable, so
[el = |l Av]U{p}
vép

is a countable union of countable sets and hence countable, contradicting
our choice of . Q;




Small theories have prime models

Corollary
If T is nice and |S,(T)| < 2“ for all n, then T is small.

Corollary

If T is nice and small, then isolated types are dense. So T has a prime
model.

Proof.

If isolated types are not dense, then there is a consistent ¢(X) which is not
a consequence of a complete formula. Call such a formula perfect. Since
perfect formulas are not complete, they can be “decomposed” into two
consistent formulas which are jointly inconsistent. These have to be
perfect as well, leading to a binary tree of consistent formulas. Ol
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