
Section 6

Types

1 / 27



Partial types

Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables.

Definition

A partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

If p(x1, . . . , xn) is a partial n-type in L, we say (a1, . . . , an) realizes p
in A if every formula in p is true of a1, . . . , an in A.

If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that p is realized or satisfied in A if there is some n-tuple in A that
realizes p in A. If no such n-tuple exists, then we say that A omits p.

If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that p is finitely satisfiable in A if any finite subset of p is realized in
A.
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Types

Definition

If A is an L-structure and a1, . . . , an ∈ A, then the type of
(a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an)};

we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A
is understood.

A n-type in L is a set of formulas of the form tpA(a1, . . . , an) for
some L-structure A and some a1, . . . , an ∈ A.

Remark

A partial n-type is a n-type iff it can be realized in some model and
contains ϕ(x1, . . . , xn) or ¬ϕ(x1, . . . , xn) for every L-formula ϕ whose free
variables are among the fixed variables x1, . . . , xn.
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Types of a theory

Definition

Let T be a theory in L and let p = p(x1, . . . , xn) be a partial n-type in L.

If T has a model realizing p, then we say that p is consistent with T
or that p is a partial type of T .

The set of all n-types consistent with T is denoted by Sn(T ). Note
that these are exactly the n-types in L that contain T .
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Type spaces

The set Sn(T ) can be given the structure of a topological space, where
the basic open sets are given by

[ϕ(x1, . . . , xn)] = {p ∈ Sn(T ) : ϕ ∈ p}.

This is called the logic topology.

Theorem

The space Sn(T ) with the logic topology is a totally disconnected,
compact Hausdorff space. Its closed sets are the sets of the form

{p ∈ Sn(T ) : p′ ⊆ p}

where p′ is a partial n-type. In fact, two partial n-types are equivalent over
T iff they determine the same closed set. Furthermore, the clopen sets in
the type space are precisely the ones of the form [ϕ(x1, . . . , xn)].
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Isolated types

Definition

Let T be a theory in L and let p = p(x1, . . . , xn) be a n-type in L. We say
that p isolated over T if there is a formula ϕ(x1, . . . , xn) such that

ψ(x1, . . . , xn) ∈ p ⇔ T |= ϕ(x1, . . . , xn)→ ψ(x1, . . . , xn).

Such a formula ϕ(x1, . . . , xn) is called isolating or complete.

Proposition

The type p is an isolated point in the space Sn(T ) if and only if it is an
isolated type over T .
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Two tests

Definition

Let κ be an infinite cardinal. A theory T is κ-categorical if any two models
of T of cardinality κ are isomorphic.

Vaught’s Test

If an L-theory T if κ-categorical for some κ ≥ |L| and has infinite models,
then T is complete.

Another Test

Let T be a κ-categorical L-theory, with κ ≥ |L|. If M is a model of T of
cardinality κ, then M realizes all n-types over T .

Observation

If (a1, . . . , an) and (b1, . . . , bn) are two n-tuples in a model M and there is
an automorphism σ : M → M with σ(ai ) = bi for all i , then

tpM(a1, . . . , an) = tpM(b1, . . . , bn).
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Section 7

Saturated models
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κ-saturated models

Let A be an L-structure and X a subset of A. We write LX for the
language L extended with constants for all elements of X and (A, a)a∈X
for the LX -expansion of A where we interpret the constant a ∈ X as itself.

Definition

Let A be an L-structure and let κ be an infinite cardinal. We say that A is
κ-saturated if the following condition holds: if X is any subset of A having
cardinality < κ and p(x) is any 1-type in LX that is finitely satisfiable in
(A, a)a∈X , then p(x) is itself satisfied in (A, a)a∈X .

Remark
1 If A is infinite and κ-saturated, then A has cardinality at least κ.

2 If A is finite, then A is κ-saturated for every κ.

3 If A is κ-saturated and X is a subset of A having cardinality < κ,
then (A, a)a∈X is also κ-saturated.
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Property of κ-saturated models

Theorem

Suppose κ is an infinite cardinal, A is κ-saturated and X ⊆ A is a subset
of cardinality < κ. Suppose p(yi : i ∈ I ) is a collection of LX -formulas
with |I | ≤ κ. If p is finitely satisfiable in (A, a)a∈X , then Γ is satisfiable in
(A, a)a∈X .

Proof.

Without loss of generality we may assume that I = κ and p is complete:
contains either ϕ or ¬ϕ for every LX -formula ϕ with free variables among
{yi : i ∈ κ}.

Write p≤j for the collection of those elements of p that only contain
variables yi with i ≤ j . By induction on j we will find an element aj such
that (ai )i≤j realizes p≤j . Consider p′ which is p≤j with all yi replaced by ai
for i < j . This is a 1-type which is finitely satisfiable in (A, a)a∈X∪{ai : i<j}
(check!). Since (A, a)a∈X∪{ai : i<j} is κ-saturated, we find a suitable aj .
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Other notions of richness

Definition

Let A and B be L-structures and X ⊆ A. A map f : X → B will be called
an elementary map if

A |= ϕ(a1, . . . , an)⇔ B |= ϕ(f (a1), . . . , f (an))

for all L-formulas ϕ and a1, . . . , an ∈ X .

Definition

A structure M is

κ-universal if every structure of cardinality < κ which is elementarily
equivalent to M can be elementarily embedded into M.

κ-homogeneous if for every subset A of M of cardinality smaller than
κ and for every b ∈ M, every elementary map A→ M can be
extended to an elementary map A ∪ {b} → M.
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More properties of κ-saturated models

Theorem

Let M be an L-structure and κ ≥ |L| be infinite. If M is κ-saturated, then
M is κ+-universal and κ-homogeneous.

Proof.

Let M be κ-structure. First suppose A is a structure with A ≡ M and
|A| ≤ κ. Consider p, which is ElDiag(A) with a ∈ A replaced by a variable
xa. Since A ≡ M, the set p is finitely satisfiable in M. By the theorem two
slides ago, p is satisfiable in M, so A embeds elementarily in M.

Now let A be a subset of M with |A| < κ, b ∈ M and f : A→ M be
elementary. Consider p = tp(M,a)a∈A

(b). Since (M, a)a∈A ≡ (M, f (a))a∈A,
the type p(x) is finitely satisfiable in (M, f (a))a∈M . Hence it is satisfied in
M by some c ∈ M. Extend f by f (b) = c .
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Theorem on saturated models

Theorem

Let κ ≥ |L| be infinite. Any two κ-saturated models of cardinality κ that
are elementarily equivalent are isomorphic.

Proof.

By a back-and-forth argument. Let A,B be two elementarily equivalent
saturated models of cardinality κ. By induction on κ we construct an
increasing sequence of elementary maps fα : Xα → B with

⋃
α Xα = A and⋃

α f (Xα) = B. Then f =
⋃
α fα will be our desired isomorphism.

We start with f0 = ∅ and at limit stages we simply take the union. At
successor stages we alternate: at odd stages α we take a fresh element
a ∈ A and extend the map so that a ∈ Xα; at even stages we take a fresh
element b ∈ B and extend the map so that b ∈ f (Xα).
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Strong homogeneity

Definition

A model M is strongly κ-homogeneous if for every subset A of M of
cardinality strictly less than κ, every elementary map A→ M can be
extended to an automorphism of M.

Corollary

Let κ ≥ |L| be infinite. A model of cardinality κ that is κ-saturated is
strongly κ-homogeneous.

Proof.

Let f : A→ M be an elementary map and |A| < κ. Then (M, a)a∈A and
(M, f (a))a∈A are elementary equivalent. Since both are κ-saturated, they
must be isomorphic by the previous result. This isomorphism is the desired
automorphism extending f .
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But do they exist?

An important result is:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

But to prove this we need a bit of set theory.
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Cofinality

Recall that:

An ordinal is a set consisting of all smaller ordinals.

Ordinals can be of two sorts: they are either successor ordinals or limit
ordinals. (Depending on whether they have a immediate predecessor.)

A cardinal κ is ordinal which is the smallest among those having the
same cardinality as κ. An infinite cardinal is always a limit ordinal.

Definition

Let α be a limit ordinal. A set X ⊆ α is called bounded if there is a β ∈ α
such that x ≤ β for all x ∈ X ; otherwise it is unbounded or cofinal. The
cardinality of the smallest unbounded set is called the cofinality of α and
written cf(α).

Note: ω ≤ cf(α) ≤ α and cf(α) is a cardinal.
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Regular cardinals

Definition

A cardinal number κ for which cf(κ) = κ is called regular. Otherwise it is
called singular.

Theorem

Infinite successor cardinals are always regular.

Proof.

Suppose X is an unbounded subset of a cardinal κ+ with |X | ≤ κ. This
would mean that

⋃
α∈X α = κ+. But we have |α| ≤ κ for each α ∈ X , so

|
⋃
α∈X α| ≤ κ · κ = κ. Contradiction.
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Goal

Recall our goal was to prove:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

We first prove a lemma.
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A lemma

Lemma

Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied
in (A, a)a∈X is realized in (B, a)a∈X .

Proof.

Let (pi (xi ))i∈I be the collection of all such 1-types and bi be new
constants. Then (A, a)a∈A is a model of every finite subset of

T :=
⋃
i∈I

pi (bi ),

so T has a model B. Since T contains ElDiag(A), the model A embeds
into B.
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Existence of rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension.

Proof.

Let A be an L-structure. We will build an elementary chain of L-structures
(Ai : i ∈ κ+). We set A0 = A, at successor stages we apply the previous
lemma and at limit stages we take the colimit. Now let B be the colimit of
the entire chain. We claim B is κ+-saturated (which is more than we
need).

So let X ⊆ B be a subset of cardinality < κ+ and Γ(x) be a 1-type in LX
that is finitely satisfied in (A, a)a∈X . Since κ+ is regular, there is an
i ∈ κ+ such that X ⊆ Ai . And since A embeds elementarily into Ai , the
type Γ(x) is also finitely satisfied in (Ai , a)a∈X . So it is realized in Ai+1,
and therefore also in B, because Ai+1 embeds elementarily into B.
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Even richer models
Now that we have this we can be even more ambitious:

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

We need a lemma:

Lemma

Suppose A is κ-saturated and B is an elementary substructure of A
satisfying |B| < κ. Then any elementary map f between subsets of B can
be extended to an elementary embedding of B into A.

Proof.

If f : S → B is the elementary mapping, then (B, b)b∈S ≡ (A, f (b))b∈S .
Since |S | < κ, also (A, f (b))b∈S is κ-saturated und hence κ+-universal. So
(B, b)b∈S embeds elementarily into (A, f (b))b∈S : so we have an
elementary embedding of B into A extending f .

21 / 27



Existence of very rich models

Theorem

For every infinite cardinal number κ, every structure has a κ-saturated
elementary extension all whose reducts are strongly κ-homogeneous.

Proof.

Let A be an L-structure. Again, we will build an elementary chain of
L-structures (Mα : α ∈ κ+). We set M0 = A, at successor stages α + 1
we take an |Mα|+-saturated elementary extension of Mα and at limit
stages we take the colimit. Now let M be the colimit of the entire chain.
We claim M is as desired.

Any subset of S of M that has cardinality ≤ κ, must be a subset of some
Mα (using again that κ+ is regular). So M is κ+-saturated. It remains to
show that every reduct of M is strongly κ-homogeneous.
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Existence of very rich models, proof finished

Proof.

Let f be any mapping between subsets of M that is elementary, with
domain and range having cardinality < κ. Again, domain and range will
belong to some Mα. Without loss of generality we may assume that α is a
limit ordinal. We extend f to a map fα : Mα → Mα+1 using the lemma.

We will build maps fβ for all α ≤ β < κ+ in such a way that fβ is an
elementary embedding of Mβ in Mβ+1 and fβ+1 extends f −1β . It follows
that fβ+2 extends fβ and that the union h over all fβ with β even is an
automorphism of M.

The construction is: At limit stages we take unions over all previous even
stages. And at successor stages we apply the lemma.

This argument works equally well for reducts of M.
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Definability

Definition

Let A be an L-structure and R ⊆ An be a relation. The relation R is called
definable, if there a formula ϕ(x1, . . . , xn) such that

R = {(a1, . . . , an) ∈ An : A |= ϕ(a1, . . . , an)}.

A homomorphism f : A→ A leaves R setwise invariant if
{(f (a1), . . . , f (an) : (a1, . . . , an) ∈ R} = R.

Proposition

Every elementary embedding from A to itself leaves all definable relations
setwise invariant.
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Definability results

Theorem

Let L be a language and P a predicate not in L. Suppose (A,R) is an
ω-saturated L ∪ {P}-structure and that A is strongly ω-homogeneous.
Then the following are equivalent:

(1) R is definable in A.

(2) every automorphism of A leaves R setwise invariant.

Proof.

(1) ⇒ (2) always holds, because automorphisms are elementary
embeddings.

(2) ⇒ (1): Suppose R is not definable. By the next lemma there are
tuples a and b having the same type such that R(a) is true and R(b) is
false. But then there is an automorphism of A that sends a to b by strong
homogeneity. So R is not setwise invariant under automorphisms of A.
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A lemma

Lemma

Suppose A is a structure and R is not definable in A. If (A,R) is
ω-saturated, then there are tuples a and b having the same n-type in A
such that R(a) is true and R(b) is false.

Proof.

First consider the partial type
p(x) = {ϕ(x) ∈ L : (A,R) |= ∀x

(
¬P(x)→ ϕ(x)} ∪ {P(x)}. This partial

type is finitely satisfiable in (A,R): for if not, then there would be a
formula ϕ(x) such that (A,R) |= ¬P(x)→ ϕ(x) and
(A,R) |= ¬(ϕ(x) ∧ P(x)). But then ¬ϕ(x) would define R. By
ω-saturation, there is an element a realizing p(x). Now consider the
partial type q(x) = tpA(a) ∪ {¬P(x)}. This partial type is also finitely
satisfiable in (A,R): for if not, then there would be a formula ϕ(x) ∈ L
such that (A,R) |= ϕ(a) and (A,R) |= ¬(ϕ(x) ∧ ¬P(x)). By ω-saturation
there is an element b realizing q(x). So we have that a and b have the
same type in A, while R(a) is true and R(b) is false.
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Svenonius’ Theorem

Svenonius’ Theorem

Let A be an L-structure and R be a relation on A. Then the following are
equivalent:

(1) R is definable in A.

(2) every automorphism of an elementary extension (B, S) of (A,R)
leaves S setwise invariant.

Proof.

(1) ⇒ (2): If R is definable in A, then S is definable in B by the same
formula; so it will be left setwise invariant by any automorphism.

(2) ⇒ (1): Let (B,S) be an ω-saturated and strongly ω-homogeneous
extension of (A,R). S will be definable in (B, S) by the previous theorem;
but then R in A will be definable by the same formula.
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