Section 6

Types
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Partial types

Fix n € N and let xq,...,x, be a fixed sequence of distinct variables.
Definition
@ A partial n-type in L is a collection of formulas ¢(x1,...,x,) in L.
o If p(x1,...,xn) is a partial n-type in L, we say (ai,...,a,) realizes p
in A if every formula in p is true of a1,...,a, in A.
o If p(x1,...,x,) is a partial n-type in L and A is an L-structure, we say

that p is realized or satisfied in A if there is some n-tuple in A that
realizes p in A. If no such n-tuple exists, then we say that A omits p.
If p(x1,...,xn) is a partial n-type in L and A is an L-structure, we say
that p is finitely satisfiable in A if any finite subset of p is realized in
A.




Types

Definition
o If Ais an L-structure and aj,...,a, € A, then the type of
(a1,...,an) in A is the set of L-formulas

{o(x1,...,xn) : AEw(a1,...,an)}

we denote this set by tpa(ai, ..., an) or simply by tp(a1,...,a,) if A
is understood.

@ A n-type in L is a set of formulas of the form tpy(as, ..., an) for
some L-structure A and some ai,...,a, € A.

Remark

A partial n-type is a n-type iff it can be realized in some model and
contains o(x1,...,xs) or =(xi,...,x,) for every L-formula ¢ whose free
variables are among the fixed variables xi, ..., x.
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Types of a theory

Definition
Let T be a theory in L and let p = p(x1,...,x,) be a partial n-type in L.
@ If T has a model realizing p, then we say that p is consistent with T
or that p is a partial type of T.
@ The set of all n-types consistent with T is denoted by S,(T). Note
that these are exactly the n-types in L that contain T.
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Type spaces

The set S,(T) can be given the structure of a topological space, where
the basic open sets are given by

[e(x1,.. ., xn)] ={p € Sn(T) : v € p}.
This is called the logic topology.

Theorem

The space S,(T) with the logic topology is a totally disconnected,
compact Hausdorff space. Its closed sets are the sets of the form

{peSy(T):p Cp}

where p’ is a partial n-type. In fact, two partial n-types are equivalent over
T iff they determine the same closed set. Furthermore, the clopen sets in
the type space are precisely the ones of the form [p(xi, ..., xp)].




Isolated types

Definition
Let T be a theory in L and let p = p(x1,...,x,) be a n-type in L. We say
that p isolated over T if there is a formula ¢(x, ..., x,) such that

Y(x1,...,xn) €Epe T Eo(xi,...,%n) = Y(x1,-..,Xn)

Such a formula ¢(x1,...,x,) is called isolating or complete.

Proposition

The type p is an isolated point in the space S,(T) if and only if it is an
isolated type over T.

6 /27



Two tests

Definition

Let k be an infinite cardinal. A theory T is x-categorical if any two models
of T of cardinality s are isomorphic.

v

Vaught's Test

If an L-theory T if k-categorical for some x > |L| and has infinite models,
then T is complete.

Another Test

Let T be a k-categorical L-theory, with x > |L|. If M is a model of T of
cardinality x, then M realizes all n-types over T.

Observation

If (a1,...,an) and (b1,..., b,) are two n-tuples in a model M and there is
an automorphism o : M — M with o(a;) = b; for all i, then

tpM(al, coog an) = tpM(b]_, 6000 bn)




Section 7

Saturated models
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k-saturated models

Let A be an L-structure and X a subset of A. We write Lx for the
language L extended with constants for all elements of X and (A, a)aex
for the Lx-expansion of A where we interpret the constant a € X as itself.

Definition

Let A be an L-structure and let x be an infinite cardinal. We say that A is
k-saturated if the following condition holds: if X is any subset of A having
cardinality < x and p(x) is any 1-type in Lx that is finitely satisfiable in
(A, a).ex, then p(x) is itself satisfied in (A, a)aex-

Remark
@ If Ais infinite and x-saturated, then A has cardinality at least «.
@ If Ais finite, then A is x-saturated for every k.

© If Ais k-saturated and X is a subset of A having cardinality < k,
then (A, a),cx is also k-saturated.




Property of k-saturated models

Theorem

Suppose k is an infinite cardinal, A is k-saturated and X C A is a subset
of cardinality < k. Suppose p(y; : i € 1) is a collection of Lx-formulas
with |/| < k. If p is finitely satisfiable in (A, a).cx, then T is satisfiable in

(A7 a)aEX-

Proof.

Without loss of generality we may assume that / = k and p is complete:
contains either ¢ or = for every Lx-formula ¢ with free variables among

{yi : i € kK}.

Write p<; for the collection of those elements of p that only contain
variables y; with i < j. By induction on j we will find an element a; such
that (a;)i<; realizes p<j. Consider p’ which is p<; with all y; replaced by a;
for i < j. This is a 1-type which is finitely satisfiable in (A, a).exu(a; : i<j}
(check!). Since (A, a),exu{a;:i<j} IS K-saturated, we find a suitable a;. [

~
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Other notions of richness

Definition
Let A and B be L-structures and X C A. A map f : X — B will be called
an elementary map if

AkE¢(al,...,an) & BE o(f(a1),...,f(an))

for all L-formulas ¢ and ay,...,a, € X.

Definition
A structure M is
@ k-universal if every structure of cardinality < x which is elementarily
equivalent to M can be elementarily embedded into M.

@ k-homogeneous if for every subset A of M of cardinality smaller than
k and for every b € M, every elementary map A — M can be
extended to an elementary map AU {b} — M.
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More properties of x-saturated models

Theorem

Let M be an L-structure and k > |L| be infinite. If M is k-saturated, then
M is kT -universal and x-homogeneous.

Proof.

Let M be x-structure. First suppose A is a structure with A= M and

|A| < k. Consider p, which is ElDiag(A) with a € A replaced by a variable
X5. Since A= M, the set p is finitely satisfiable in M. By the theorem two
slides ago, p is satisfiable in M, so A embeds elementarily in M.

Now let A be a subset of M with |A| <k, b€ M and f: A— M be
elementary. Consider p = tp(p,a),.,(b). Since (M, a)aca = (M, f(a))aca,
the type p(x) is finitely satisfiable in (M, f(a))acm. Hence it is satisfied in
M by some c € M. Extend f by f(b) = c. O
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Theorem on saturated models

Theorem

Let k > |L| be infinite. Any two k-saturated models of cardinality x that
are elementarily equivalent are isomorphic.

Proof.
By a back-and-forth argument. Let A, B be two elementarily equivalent
saturated models of cardinality x. By induction on x we construct an

increasing sequence of elementary maps f, : X, — B with |J, X, = A and
U, f(Xa) = B. Then f =, fo will be our desired isomorphism.

We start with fo = () and at limit stages we simply take the union. At
successor stages we alternate: at odd stages a we take a fresh element

a € A and extend the map so that a € X,,; at even stages we take a fresh
element b € B and extend the map so that b € f(X,). O
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Strong homogeneity

Definition
A model M is strongly k-homogeneous if for every subset A of M of

cardinality strictly less than k, every elementary map A — M can be
extended to an automorphism of M.

Corollary

Let k > |L| be infinite. A model of cardinality x that is x-saturated is
strongly k-homogeneous.

Proof.

Let f : A— M be an elementary map and |A| < k. Then (M, a),ca and
(M, f(a))aca are elementary equivalent. Since both are x-saturated, they
must be isomorphic by the previous result. This isomorphism is the desired
automorphism extending f. Ol

v
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But do they exist?

An important result is:

Theorem

For every infinite cardinal number x, every structure has a x-saturated
elementary extension.

But to prove this we need a bit of set theory.
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Cofinality

Recall that:
@ An ordinal is a set consisting of all smaller ordinals.
@ Ordinals can be of two sorts: they are either successor ordinals or limit
ordinals. (Depending on whether they have a immediate predecessor.)

@ A cardinal k is ordinal which is the smallest among those having the
same cardinality as k. An infinite cardinal is always a limit ordinal.

Definition

Let o be a limit ordinal. A set X C « is called bounded if there isa 8 € «
such that x < 3 for all x € X; otherwise it is unbounded or cofinal. The
cardinality of the smallest unbounded set is called the cofinality of o and
written cf(«).

Note: w < cf(a) < v and cf(«) is a cardinal.
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Regular cardinals

Definition
A cardinal number k for which cf(x) = & is called regular. Otherwise it is
called singular.

Theorem

Infinite successor cardinals are always regular.

Proof.

Suppose X is an unbounded subset of a cardinal k™ with |X| < k. This
would mean that (J,.x @ = 1. But we have |a| < & for each a € X, so
| Uaex @ < K-k = k. Contradiction. O

v
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Goal

Recall our goal was to prove:

Theorem
For every infinite cardinal number x, every structure has a x-saturated
elementary extension.

We first prove a lemma.
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A lemma

Lemma

Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X C A, every 1-type in Lx which is finitely satisfied
in (A, a)aex is realized in (B, a),ex-

Proof.

Let (pi(xi))ics be the collection of all such 1-types and b; be new
constants. Then (A, a).ca is @ model of every finite subset of

T .= Upi(bi)7
i€l

so T has a model B. Since T contains ElDiag(A), the model A embeds
into B. Ol
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Existence of rich models

Theorem

For every infinite cardinal number k, every structure has a k-saturated
elementary extension.

Proof.

Let A be an L-structure. We will build an elementary chain of L-structures
(A 1 i €rT). We set Ag = A, at successor stages we apply the previous
lemma and at limit stages we take the colimit. Now let B be the colimit of
the entire chain. We claim B is k-saturated (which is more than we
need).

So let X C B be a subset of cardinality < ™ and '(x) be a 1-type in Lx
that is finitely satisfied in (A, a).ex. Since kT is regular, there is an

i € kT such that X C A;. And since A embeds elementarily into A;, the
type I'(x) is also finitely satisfied in (A;, a).cx. So it is realized in Aj 1,
and therefore also in B, because Aj+; embeds elementarily into B. Ol
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Even richer models
Now that we have this we can be even more ambitious:

Theorem

For every infinite cardinal number &, every structure has a x-saturated
elementary extension all whose reducts are strongly xk-homogeneous.

We need a lemma:

Lemma

Suppose A is k-saturated and B is an elementary substructure of A
satisfying |B| < k. Then any elementary map f between subsets of B can
be extended to an elementary embedding of B into A.

Proof.

If f:S — B is the elementary mapping, then (B, b)pcs = (A, f(b))pes-
Since |S| < k, also (A, f(b))pes is k-saturated und hence T -universal. So
(B, b)pecs embeds elementarily into (A, f(b))pes: so we have an
elementary embedding of B into A extending f. [
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Existence of very rich models

Theorem

For every infinite cardinal number &, every structure has a x-saturated
elementary extension all whose reducts are strongly xk-homogeneous.

Proof.

Let A be an L-structure. Again, we will build an elementary chain of
L-structures (M,, : a € k1). We set My = A, at successor stages o + 1
we take an |M,|"-saturated elementary extension of M, and at limit
stages we take the colimit. Now let M be the colimit of the entire chain.
We claim M is as desired.

Any subset of S of M that has cardinality < x, must be a subset of some
M, (using again that ™ is regular). So M is k" -saturated. It remains to

show that every reduct of M is strongly k-homogeneous. []




Existence of very rich models, proof finished

Proof.

Let f be any mapping between subsets of M that is elementary, with
domain and range having cardinality < x. Again, domain and range will
belong to some M,. Without loss of generality we may assume that « is a
limit ordinal. We extend f to a map f, : M, — M,11 using the lemma.

We will build maps f3 for all @« < 8 < k™ in such a way that f3 is an
elementary embedding of Mg in Mg, and fz; extends fﬁ_l. It follows
that fg 5 extends f3 and that the union h over all f3 with 3 even is an
automorphism of M.

The construction is: At limit stages we take unions over all previous even
stages. And at successor stages we apply the lemma.

This argument works equally well for reducts of M. [
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Definability

Definition
Let A be an L-structure and R C A” be a relation. The relation R is called
definable, if there a formula ¢(x, ..., x,) such that

R={(a1,...,an) € A" : AEp(a1,...,an)}

A homomorphism f : A — A leaves R setwise invariant if
{(f(a1),-.-,f(an) : (a1,...,an) € R} =R.

Proposition
Every elementary embedding from A to itself leaves all definable relations
setwise invariant.
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Definability results

Theorem

Let L be a language and P a predicate not in L. Suppose (A, R) is an
w-saturated L U {P}-structure and that A is strongly w-homogeneous.
Then the following are equivalent:

(1) R is definable in A.

(2) every automorphism of A leaves R setwise invariant.

Proof.

(1) = (2) always holds, because automorphisms are elementary
embeddings.

(2) = (1): Suppose R is not definable. By the next lemma there are
tuples a and b having the same type such that R(a) is true and R(b) is

false. But then there is an automorphism of A that sends a to b by strong

homogeneity. So R is not setwise invariant under automorphisms of A.

Ol
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A lemma

Lemma

Suppose A is a structure and R is not definable in A. If (A, R) is
w-saturated, then there are tuples a and b having the same n-type in A
such that R(a) is true and R(b) is false.

Proof.

First consider the partial type

p(x) ={p(x) € L : (A R) EVx(=P(x) = ¢(x)} U{P(x)}. This partial
type is finitely satisfiable in (A, R): for if not, then there would be a
formula ¢(x) such that (A, R) &= —P(x) — ¢(x) and

(A, R) = =(p(x) A P(x)). But then =p(x) would define R. By
w-saturation, there is an element a realizing p(x). Now consider the
partial type g(x) = tpa(a) U {=P(x)}. This partial type is also finitely
satisfiable in (A, R): for if not, then there would be a formula p(x) € L
such that (A, R) = ¢(a) and (A, R) &= —(¢(x) A =P(x)). By w-saturation
there is an element b realizing g(x). So we have that a and b have the
same type in A, while R(a) is true and R(b) is false. O
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Svenonius' Theorem

Svenonius’ Theorem

Let A be an L-structure and R be a relation on A. Then the following are

equivalent:
(1) R is definable in A.

(2) every automorphism of an elementary extension (B, S) of (A, R)
leaves S setwise invariant.

Proof.

(1) = (2): If R is definable in A, then S is definable in B by the same
formula; so it will be left setwise invariant by any automorphism.

(2) = (1): Let (B, S) be an w-saturated and strongly w-homogeneous

extension of (A, R). S will be definable in (B, S) by the previous theorem;
[]

but then R in A will be definable by the same formula.
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