Section 1

Basic definitions
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Language

A language or signature consists of:
© constants.
@ function symbols.

© relation symbols.

Once and for all, we fix a countably infinite set of variables. The terms are

the smallest set such that:
@ all constants are terms.

@ all variables are terms.

© if t1,...,t, are terms and f is an n-ary function symbol, then also
f(ty,...,ty) is a term.

Terms which do not contain any variables are called closed.

)
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Formulas and sentences

The atomic formulas are:

@ s =1t, where s and t are terms.

@ P(ti,...,tn), where ty,...,t, are terms and P is a predicate symbol.
The set of formulas is the smallest set which:

@ contains the atomic formulas.

@ is closed under the propositional connectives A, V, —, —.

© contains dx ¢ and Vx o, if ¢ is a formula.

A formula which does not contain any quantifiers is called quantifier-free.
A sentence is a formula which does not contain any free variables. A set of
sentences is called a theory.

Convention: If we write ¢(x1,...,x,), this is supposed to mean: ¢ is a
formula and its free variables are contained in {xi,...,xs}.



Models

A structure or model M in a language L consists of:
@ a non-empty set M (the domain or the universe).
@ interpretations ¢ € M of all the constants in L,
@ interpretations fM : M" — M of all function symbols in L,
Q interpretations RM C M" of all relation symbols in L.

The interpretation can then be extended to all terms in the language:
M M, M M
f(tr,....tg)" =", ..., ).

If AC M, then we will write L4 for the language obtained by adding to L
fresh constants {c, : a € A}. In this case M is also an La-structure with
C, to be interpreted as a. We will often just write a instead of c,.
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Tarski's truth definition

Validity or truth
If M is a model and ¢ is a sentence in the language Ly, then:

Ml e 5 = g it g = &

M= P(ty, ..., t,) iff (t1,...,t,) € PM;

M @A iff M= @ and M = 9;
M=oV iff M =@ or M = 1;

M= ¢ — ¢ iff M = ¢ implies M = 9;

M = = iff not M = ¢;

M = 3x o(x) iff there is an m € M such that M = p(m);
M = Vx o(x) iff for all m € M we have M |= ¢(m).
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Semantic implication

Definition

If M is a model in a language L, then Th(M) is the collection L-sentences
true in M. If N is another model in the language L, then we write M = N
and call M and N elementarily equivalent, whenever Th(M) = Th(N).

Definition

Let I and A be theories. If M |= ¢ for all ¢ € T, then M is called a model
of I'. We will write ' = A if every model of ' is a model of A as well. We
write I |= ¢ for I |= {p}, et cetera.

v
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Expansions and reducts

If LC L and M is an L’-structure, then we can obtain an L-structure N by
taking the universe of M and forgetting the interpretations of the symbols

which do not occur in L. In that case, M is an expansion of N and N is
the L-reduct of M.

Lemma

If LC L' and M is an L’-structure and N is its L-reduct, then we have

N = o(m,...,m,) iff M = o(my,..., m,) for all formulas ¢(x, ..., xn)
in the language L.




Homomorphisms

Let M and N be two L-structures. A homomorphism h: M — N is a
function h: M — N such that:

@ h(cM) = cV for all constants c in L;
Q@ h(fM(my,...,my)) = fN(h(my), ..., h(m,)) for all function symbols
fin L and elements my,..., m, € M;
Q@ (my,...,m,) € RM implies (h(my), ..., h(m,)) € RN.
A homomorphism which is bijective and whose inverse f~! is also a
homomorphism is called an isomorphism. If an isomorphism exists between

structures M and N, then M and N are called isomorphic. An
isomorphism from a structure to itself is called an automorphism.



Embeddings

A homomorphism h: M — N is an embedding if
© his injective;
@ (h(m),...,h(my,)) € RN implies (my,...,m,) € RM.

Lemma
The following are equivalent for a homomorphism h: M — N.:
© it is an embedding.

Q@ MEp(m,...,my) < N = o(h(mi),...,h(m,)) for all

mi,...,m, € M and atomic formulas ¢(x, ..., X,).
Q@ MEp(m,...,my) < N = o(h(mi),...,h(m,)) for all
my,...,m, € M and quantifier-free formulas ¢(x1, ..., Xp).

If M and N are two models and the inclusion M C N is an embedding,
then M is a substructure of N and N is an extension of M.
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Elementary embeddings

An embedding is called elementary, if

M= o(my,...,my) < N = o(h(m),..., h(m,))

for all my,...,m, € M and all formulas ¢(x1, ..., Xn).

Lemma

If his an isomorphism, then h is an elementary embedding. If there is an
elementary embedding h: M — N, then M = N.

Tarski-Vaught Test

An embedding h: M — N is elementary if and only if for any Ly,-formula
(x): if N |=3xp(x), then there is an element m € M such that

N = o(h(m)).
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Cardinality of model and language

Definition

The cardinality of a model is the cardinality of its underlying domain. The
cardinality of a language L is the sums of the cardinalities of its sets of
constants, function symbols and relation symbols.

| will write |X| for the cardinality of the set X, |M| for the cardinality of
the model M and |L| for the cardinality of the language L.

11 /17



Downward Lowenheim-Skolem

Downward Lowenheim-Skolem

Suppose M is an L-structure and X C M. Then there is an elementary
substructure N of M with X € N and |N| < |X| + |L| + Ro.

Proof.

We construct N as U,-eN N; where the N; are defined inductively as
follows: Ng = X, while

o if j is even, then N;y; is obtained from N; by adding the
interpretations of the constants and closing under ™ for every
function symbol f.

o if i is odd, we look at all Ly,-sentences of the form 3x ¢(x). If such a
sentence is true in M, then we pick a witness n € M such that
M = ¢(n) and put it in Njjq.
Then the first item guarantees that N is a substructure, while the second

item ensures that it is an elementary substructure (using the
Tarski-Vaught test). O
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Section 2

New models from old
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Directed systems

Definition

A partially ordered set (K, <) is called directed, if K is non-empty and for
any two elements x, y € K there is an element z € K such that x < z and
y < z. It is a chain, if K is non-empty and for any two elements x,y € K
either x < y or y < x.

Clearly, chains are directed.

Definition

A directed system of L-structures consists of a family (My)xek of
L-structures indexed by K, together with homomorphisms fi; : M, — M,
for k < I. These homomorphisms should satisfy:

@ fyy is the identity homomorphism on M,,
o if k </ < m,then fiy, = fimfu.

If we have a directed system, then we can construct its colimit.
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The colimit

First, we take the disjoint union of all the universes:

> Mi={(ka): ke K,ae M,
keK

and then we define an equivalence relation on it:
(k,a) ~ (I,b) := (Im > k, 1) fkm(a) = fim(b).

Let M be the set of equivalence classes and denote the equivalence class
of (k,a) by [k, a].
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The colimit, continued

M has an L-structure: we put

fM([kl, al], ceey [k,,, a,,]) = [k, ka(fklk(al), N fknk(a,,)],

where k is an element > ki, ..., k,. (Check that this makes sense!)

And we put
RM([ki, a1], ..., [kn,an])
iff there is a k > ki, ..., k, such that

(fklk(al)v R fk,,k(an)) S RMk.

In addition, we have maps f : My — M sending a to [k, a].

16
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Omnibus theorem
The following theorem collects the most important facts about colimits of
directed systems. Especially useful is part 5.
Theorem

@ All fx are homomorphisms.

Q If k </, then fify = f.

@ If N is another L-structure for which there are homomorphisms

gk . M — N such that gjfy = gk whenever k </, then there is a

unique homomorphisms g : M — N such that gfy = g for all k € K
(“universal property”).

@ If all maps fi; are embeddings, then so are all f.

@ If all maps fy; are elementary embeddings, then so are all f
(“elementary system lemma").

Proof.

Exercise! ]
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