CHAPTER 1

New models from old

1. Directed systems

DEFINITION 1.1. A partially ordered set (K, <) is called directed, if K is non-empty and
for any two elements x,y € K there is an element z € K such that z < z and y < z.

Note that non-empty linear orders (aka chains) are always directed.

DEFINITION 1.2. A directed system of L-structures consists of a family (My)rex of L-
structures indexed by a directed partial order K, together with homomorphisms fx;: My — M,
for k <, satisfying:

o fir is the identity homomorphism on My,
o if k < l < m, then fkm = flmfkl-

If K is a chain, we call (My)rex a chain of L-structures

If we have a directed system, then we can construct its colimit, another L-structure M with
homomorphisms f: My — M. To construct the underlying set of the model M, we first take
the disjoint union of all the universes:

Z My ={(k,a): k€ K,a € M},

kK
and then we define an equivalence relation on it:

(kaa) ~ (l7b)<:> (Elm > kal) fkm(a) = flm(b)
The underlying set of M will be the set of equivalence classes, where denote the equivalence
class of (k,a) by [k, a].
M has an L-structure: if R is a relation symbol in L, we put
RM([lﬁ, al], ey [k‘n,an])
if there is a k > k1, ..., k, such that
(frak(a1), -, fror(an)) € RMx.
And if g is a function symbol in L, we put
gM([klva'l]a“-a[knaan]) = [k7ng(fk1k(a'1)v"'7fknk(a'n))]7

where k is an element > ki, ..., k,. (Check that this makes sense!) In addition, the homomor-
phisms fi: M — M are obtained by sending a to [k, a].

The following theorem collects the most important facts about colimits of directed systems.
Especially useful is part 5, often called the elementary system lemma.
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THEOREM 1.3. (1) All fi are homomorphisms.

(2) Ifk <1, then fifiu = fr-

(3) If N is another L-structure for which there are homomorphisms gi: My — N such
that g1 fx; = gr whenever k < I, then there is a unique homomorphisms g:M — N
such that gfy, = gx for all k € K (this is the universal property of the colimit).

(4) If all maps fr; are embeddings, then so are all fy.

(5) If all maps fi; are elementary embeddings, then so are all fj.

Proor. Exercise! O

2. Ultraproducts

DEFINITION 1.4. Let I be a set. A collection F of subsets of I is called a filter (on I) if:

(1) Te F,0¢F;
(2) whenever A, B € F, then also AN B € F;
(3) whenever A € F and A C B, then also B € F.

A filter which is maximal in the inclusion ordering is called an ultrafilter.

LEMMA 1.5. A filter U is an ultrafilter iff for any X C I either X €U or I\ X € U.

PRrROOF. =: Let U be a maximal filter and suppose X is a set such that X € U. Put
F={YCI:(GFeU)FNX CY}.

Since Y C F and X € F, the set F cannot be filter; since it has all other properties of a
filter, we must have ) € F. So there is an element F' € U such that FF N X = () and hence
FCI\XeU.

<: Suppose U is a filter and for any X C T either X € U or I\ X € U. If U would not
be maximal, there would be a filter F extending Y. This would mean that there would be a
subset X C I such that X € F and X ¢ U. But the latter implies that I\ X e &Y C F. So
f=XnN({I\X)eF, contradicting the fact that F is a filter. O

DEFINITION 1.6. For any element ¢ € I, the set {X C I: ¢ € X} is an ultrafilter; ultrafilters
of this form are called principal, the others are called non-principal.

If I is a finite set, then every ultrafilter on I is principal. If I is infinite, then there are
non-principal ultrafilters. In fact, if I is infinite, then F = {X C I: T\ X is finite } is a filter
on I (this is the Fréchet filter on I). Since, by Zorn’s Lemma, every filter can be extended to
an ultrafilter, there is an ultrafilter & O F; such an ultrafilter has to be non-principal.

Now suppose we have a collection {M;: i € I} of L-structures and F is a filter on I. We
can construct a new L-structure M, as follows. Its universe is

[ ={f:1 = UM (Viel) f(i) e Mi},
i€l i
quotiented by the following equivalence relation:
f~g & {iel:f(i)=g9@t)}eF.
In addition, if g is an n-ary function symbol belonging to L and [fi],...,[fs] € M, then

g (AL [fa]) = [ g (12, Fa(D))],
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and if R is an n-ary relation symbol belonging to L and [f1],...,[fn] € M, then
([fil, - [fa)) € RM i {i€T:(f1(),..., fai)) € RMi} € F,

where one should check, once again, that everything is well-defined. The resulting structure is
denoted by [[ M;/F. We will be most interested in the special case where F is an ultrafilter,
in which case [[ M;/F is called an ultraproduct.

THEOREM 1.7. (Lo$§’s Theorem) Let {M;: i € I} be a collection of L-structures and U be
an ultrafilter on I. Then we have for any formula ¢(x1,...,2,) and [f1],...,[fa] € [1 Mi/U

that
[[Mu = e fi) o[ fa]) & el Mil(fi(i), ..., fa(i)} €U,

Proor. Exercise! O
COROLLARY 1.8. If all M; are models of some theory T, then so is [[ M;/U.

COROLLARY 1.9. Let M be an L-structure and U be an ultrafilter on a set I. Put M; = M
and M* = [],c; M;/U. Then the map d: M — M* obtained by sending m to [i — m] is an
elementary embedding. If |M| > |I| and U is non-principal, then this embedding is proper.

Ultraproducts taken over a constant indexed family of models are called wltrapowers. In
particular, the structure M* in Corollary 1.9 is an ultrapower of M.

3. Additional exercises

EXERCISE 1. Do Exercise 2.5.20 in Marker.






CHAPTER 2

Preservation theorems

1. Characterisation universal theories

DEFINITION 2.1. A sentence is universal if it starts with a string of universal quantifiers
followed by a quantifier-free formula. A theory is universal if it consists of universal sentences.
A theory has a universal aziomatisation if it has the same class of models as a universal theory
in the same language.

THEOREM 2.2. (The Lo$-Tarski Theorem) T has a universal aziomatisation iff models of
T are closed under substructures.

PROOF. It is easy to see that models of a universal theory are closed under substructures,
so we concentrate on the other direction. So let T" be a theory such that its models are closed
under substructures. Write

Ty ={¢: T E ¢ and ¢ is universal }.
Clearly, T = Tyy. We need to prove the converse.

So suppose M is a model of Ty. Now it suffices to show that T'U Diag(M) is consistent.
Because once we do that, it will have a model N. But since N is a model of Diag(M), it
will be an extension of M; and because N is a model of T and models of T are closed under
substructures, M will be a model of T'.

So the theorem will follow from the following claim: if M | Ty, then T U Diag(M) is
consistent. Proof of claim: Suppose not. Then, by the compactness theorem, there are lit-
erals ¢1,...,%, € Diag(M) which are inconsistent with 7. Replace the constants from M
in t,...,%, by variables z1,...,x, and we obtain %],...,%.; because the constants from
M do not appear in T, the theory T is already inconsistent with Jxy,..., 2, (] A ..., AYL).
So T | —Jx1,...,xq (Y] A...4pl) and hence T = Vay,...,z, (0] A .. 90))). Since M
is a model of Ty, it follows that M = Vzq,...,2, (=(¢] A ...¢))). On the other hand,
M3y, ...,xn (VA AL, since ¢, ..., 1, € Diag(M). Contradiction. a

2. Chang-Los-Suszko Theorem

DEFINITION 2.3. A V3-sentence is a sentence which consists first of a sequence of universal
quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula. A
theory T can be axiomatised by V3-sentences if there is a set T” of V3-sentences such that T
and T’ have the same models.

DEFINITION 2.4. A theory T is preserved by directed unions if, for any directed system
consisting of models of T and embeddings between them, also the colimit is a model T. And
T is preserved by unions of chains if, for any chain of models of T and embeddings between
them, also the colimit is a model of T'.
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THEOREM 2.5. (The Chang-Lo$-Suszko Theorem) The following statements are equivalent:

(1) T is preserved by directed unions.
(2) T is preserved by unions of chains.
(3) T can be axiomatised by V3-sentences.

PROOF. It is easy to see that (1) = (2) and (3) = (1) hold, so we concentrate on (2) =
(3)-
So suppose T is preserved by unions of chains. Again, let
Tya = {¢: ¢ is a V3-sentence and T = ¢},
and let B be a model of Ty3. We will construct a chain of embeddings
B=By— Ay — By — A1 = By — Asy...
such that:

(1) Each A, is a model of T.

(2) The composed embeddings B, — B, are elementary.

(3) Every universal sentence in the language Lp, true in B, is also true in A, (when
regarding A, is an Lp _-structure via the embedding B, — A,,).

This will suffice, because when we take the colimit of the chain, then it is:

e the colimit of the A,,, and hence a model of T', by assumption on T'.
e the colimit of the B,,, and hence elementary equivalent to each B,,.

So B is a model of T'; as desired.

Construction of A,: We need A,, to be a model of T" and must have that every universal
sentence in the language Lp, true in B, is also true in A,,. So let

T'=TU{p: ¢ is a universal Lp, -formula and B, = ¢};

we want to show that T” is consistent. Suppose not. Then, by compactness, there is a single
universal sentence VZ (T, b) with b € B,, and B,, |= VT ¢(7, b) that is already inconsistent with
T. So
T | 37 —¢(7,b)

and

T = vy 3T ~¢(7,7)
because the b; do not occur in T'. Since B,, = Ty3, we should have B,, = Yy 3T —¢(Z,7). But
this contradicts the fact that B, | VT ¢(Z, b).

Construction of B,,;1: We need A,, — B, 1 to be an embedding and B,, — B,,;+1 to be

elementary. So let
T' = Diag(A,.) U Diag, (By)
(identifying the element of B, with their image along the embedding B, — A,); we want
to show that T” is consistent. Suppose not. Then, by compactness, there is a quantifier-free
sentence
¢(b,a)

with b; € By, and a; € A,, \ B, which is true in A,,, but is inconsistent with Diag,,(B,). Since
the a; do not occur in B,,, we must have

B, ': W_'(p( 75)'
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This contradicts the fact that all universal Lp -sentences true in B, are also true in 4,,. [

3. Exercises

EXERCISE 2. Does the theory of fields have a universal axiomatisation?

EXERCISE 3. Prove: a theory has an existential axiomatisation iff its models are closed
under extensions.






CHAPTER 3

The theorems of Robinson, Craig and Beth

1. Robinson’s Consistency Theorem

The aim of this section is to prove the statement:

(Robinson’s Consistency Theorem) Let L; and Ly be two languages and
L = L; N Ly. Suppose T is an Li-theory, To an Ls-theory and both extend
a complete L-theory T'. If both T7 and 75 are consistent, then so is 77 U T5.

We first treat the special case where L1 C L.

LEMMA 3.1. Let L C L’ be languages and suppose A is an L-structure and B is an L’'-
structure. Suppose moreover A = B | L. Then there is an L'-structure C and a diagram of
elementary embeddings (f in L and f' in L')

A B
N
C.

PRrROOF. Consider T' = Diagh(A4) U Diag(fl/ (B) (making sure we use different constants for
the elements from A and B!). We need to show T has a model; so suppose T is inconsistent.
Then, by compactness, a finite subset of T" has no model; taking conjunctions, we have sentences
¢(a) € Diag, (A) and ¥(b) € Diag,(B) that are contradictory. But as the a; do not occur in
L’;, we must have that B |= =37 ¢(%). This contradicts A= B | L. O

LEMMA 3.2. Let L C L' be languages, suppose A and B are L-structures and C is an L'-
structure. Any pair of L-elementary embeddings f: A — B and g: A — C' fit into a commuting

square A
VRN
B C
N A
D

where D is an L'-structure, h is an L-elementary embedding and k is an L'-elementary embed-
ding.

PROOF. Without loss of generality we may assume that L contains constants for all ele-
ments of A. Then simply apply Lemma 3.1. |
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THEOREM 3.3. (Robinson’s Consistency Theorem) Let L; and Lo be two languages and
L =Li1NLs. Suppose Ty is an Lq-theory, To an Lo-theory and both extend a complete L-theory
T. If both Ty and Ty are consistent, then so is Ty U T5.

PrOOF. Let Ay be a model of 71 and By be a model of Ty. Since T is complete, their
reducts to L are elementary equivalent, so, by the first lemma, there is a diagram

Ao
Y
By —— B,
ho

with hg an Lo-elementary embedding and fy an L-elementary embedding. Now by applying
the second lemma to fy and the identity on Ay, we obtain

AOLAl

A

BO _— B1
ho

where gg is L-elementary and kg is Li-elementary. Continuing in this way we obtain a diagram

ko k1

Ap A Aq
f1
go g1
NN
By ™ By o By

where the k; are Li-elementary, the f; and g; are L-elementary and the h; are Lo-elementary.
The colimit C' of this directed system is both the colimit of the A; and of the B;. So Ay and
By embed elementarily into C' by the elementary systems lemma; hence C' is a model of both
Ty and T5, as desired. O

2. Craig Interpolation

THEOREM 3.4. Let ¢ and v be sentences in some language such that ¢ |= 1. Then there
is a sentence 0, a “(Craig) interpolant”, such that

(1) ¢ =0 and 0 |=¢;

(2) every predicate, function or constant symbol that occurs in 6 occurs also in both ¢ and

.

PrOOF. Let L be the common language of ¢ and . We will show that T | ¢ where
Ty = {o: o is an L-sentence and ¢ = o}. Let us first check that this suffices for proving the
theorem: for then there are 6y,...,0,, € Ty such that 6q,...,60,, |E ¥ by compactness. So
0:=01 A...A\0, is an interpolant.

Claim: If ¢ |= 1, then Ty = ¢ where Ty = {0 € L: ¢ |= 0} and L is the common language
of ¢ and ¥. Proof of claim: Suppose not. Then To U {1} has a model A. Write T' = Thy,(A).
Observe that we now have Ty C T and:

(1) T is a complete L-theory.



3. BETH DEFINABILITY THEOREM 11

(2) TU{—} is consistent (because A is a model).
(3) TU{¢p} is consistent. (Proof: Suppose not. Then, by the compactness theorem, there
would a sentence o € T such that ¢ = —o. But then -0 € Ty C T. Contradiction!)

This means we can apply Robinson’s Consistency Theorem to deduce that T U {—, ¢} is
consistent. But that contradicts ¢ = 1. ]

3. Beth Definability Theorem

DEFINITION 3.5. Let L be a language a P be a predicate symbol not in L, and let T" be an
L U {P}-theory. T defines P implicitly if any L-structure M has at most one expansion to an
L U{P}-structure which models T'. There is another way of saying this: let 7" be the theory T
with all occurrences of P replaced by P’, another predicate symbol not in L. Then T defines
P implicitly iff

TUT EVay,...xn (Plzy,...,3,) < Pl21,...,20) ).

T defines P explicitly, if there is an L-formula ¢(x1,...,x,) such that

TFle,...,xn(P(xl,...,mn) Hgo(xl,...,xn)).

THEOREM 3.6. (Beth Definability Theorem) T' defines P implicitly if and only if T defines
P explicitly.

PROOF. It is easy to see that T defines P implicitly in case T' defines P explicitly. So we
prove the other direction.

Suppose T' defines P implicitly. Add new constants cq,...,c, to the language. Then we
have

TUT | P(c1,...,cn) = P'lery ... cn).

Using compactness and taking conjunctions we can find an LU {P}-formula v such that T |= ¢
and

YA E Pler,...,cn) = Pller,. . cn)

(where ¢’ is ¢ with all occurrences of P replaced by P’). Taking all the Ps to one side and the
P’s to another, we get

YAP(c1,y...,cn) EY — Pler,... cn)
So there is a Craig interpolant 6 in the language L U {cy,...,c,} such that
Y AP(c1,...,cn) EOand 0 =" AP (c1,...,¢,)

By symmetry also

W' AP'(c1,...,cp) EOand 0 = A Pley,. .. c)

So 0 = 6(cy,...,cn) is, modulo T, equivalent to P(cy,...,c,); hence 6(x1,...,x,) defines P
explicitly. O
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4. Exercises

EXERCISE 4. Use Robinson’s Consistency Theorem to prove the following Amalgamation
Theorem: Let Ly, Lo be languages and L = L; N Ly, and suppose A, B and C are structures
in the languages L, L1 and Lo, respectively. Any pair of L-elementary embeddings f: A — B
and g: A — C fit into a commuting square

where D is an L; U Lo-structure, h is an Li-elementary embedding and k is an Ls-elementary
embedding.



