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Proof 1t T'[= ¢, then there is n such that if G is a graph and G = 1y,

then G = ¢. Thus, py(¢) > piv (i) and by Lemma 2.4.3, Nlim o (d) = 1.
udes]

On the other hand, if 7" K4 ¢, then, because T is complete, T k= —¢ and

NIEEOPN(ﬁ(/)) =1 so 1\}]E}}>OpN<¢)> =,

Ehrenfeucht-Fraissé Games

The type of back-and-forth constructions we did in Theorems 2.4.1 and
2.4.2 will appear several times in the book. Tt is useful to recast construe-
tions as games. We will do this in a bit more generality. Let £ be a language
and M = (M,...) and N = (N,...} be two L-structures with M NN = 0.
WACM,BCNandf:A— B, we say that f is a partial embedding
if fU{(eM, M) ¢ a constant of L} is a bijection preserving all relations
and functions of L.

We will define an infinite two-player game Go,(M,N). We will call the
two players player I and player IT; together they will build a partial embed-
ding f from M to N. A play of the game will consist of w stages. At the
tth-stage, player I moves first and either plays m; € M, challenging player
1 to put m; into the domain of f, or n; € N, challenging player II to put n;
into the range. If player I plays m; € M, then player II must play n; € N,
whereas if player I plays n; € M, then player I must play m; € M. Player
I wins the play of the game if f = {(m, n;) 14 = 1, 2,...} is the graph of
a partial embedding.

A strategy for player I1in G, (M, N) is a function  such that if player I's
first n moves are ¢y,.. ., ¢,, then player II's nth move will be 7(cq, . .., Cn)-

We say that player IT uses the strategy 7 in the play of the game if the play
looks like:

Player I Player II

C1
7(c1)
Co
7(c1, )
C3

7(c1, ¢, ¢3)

We say that 7 is a winning strategy for player II, if for any sequence of
plays c(, ¢z, ... player I makes, player I will win by following 7. We define
strategies for player 1 analogously.

For example, suppose that M, A = DLO. Then, player IT has a winning
strategy. Suppose that up to stage n they have built a partial embedding
g: A — B.If player I plays a € M, then player 1I plays b € N such that
the cut b makes in B is the image of the cut of ¢ in A under g. Similarly, if
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player I plays b € IV, player I plays a € M such that the cut of @ in A is
the image under g=* of the cut of b in B. This can be done as in the proof
of Theorem 2.4.1. \
Proposition 2.4.5 If M and N are countable, then the second player has
a winning strategy in G,(M,N) if and only if M = N

Proof If M and NV are isomorphic, then player IT can win by playing
according to the isomorphism.

Suppose that player IT has a winning strategy. Let mq, mq,. .. list M and
1o, N1, ... list N. Consider a play of the game where the second player uses
the winning strategy and the first player plays U0, 100, M1, 1, T, Mo, . . ..
If f is the partial embedding built during this play of the game then the
domain of f is M and the range of fis N. Thus, f is an isomorphism.

By weakening the game, we can, for suitable languages, give a character-
ization of elementary equivalence. Fix £ a finite language with no function
symbols, and let M and A be L-structures. We define a, game G, (M, N)
for n = 1,2,.... The game will have n rounds. On the 7th round player I
plays first and either plays a; € M or bi € N. On player IT’s turn, if player
I played a; € M, then player IT must play b; € N, and if player I plays
b; € N, then player II must play a; € M. The game stops after the nth
round. Player 1T wins if {(a;,b;) : ¢ = 1,... ,n} is the graph of a partial
embedding from M into N. We call Gu(M,N) an Ehrenfeucht-Fraissé
game. ,

Our goal is to prove the following theorem.

+Theorem 2.4.6 Let £ be q finite language without function symbols and

let M and N be L-structures. Then, M = N if and only if the second
player has a winning strategy in G (M,N) for all n.

Before proving this, we will need several lemmas,
Lemma 2.4.7 One of the players has a winning strategy in Gp(M,N).

Proof (sketch) This follows from Zermelo’s theorem that in any two-person
finite length game of perfect information without ties one of the players has
4 winning strategy (see [10] 1.7.1). It also follows from the determinacy of
closed games (see [52]). We outline the proof. Suppose that player IT does
a winning strategy. Then, there is some move player I can make

Around one so that player 1I has no move available to force a win. Player

Imakes that move. Now, whatever player 1T does, there is still 2 move that
player I means that player 11 cannot force a win. Player I makes
t at move and continues in this way. On the last round, there is still a
Ove possible so that player IT has no winning move. Player I makes that
Move and wins. This informally describes a winning strategy for player 1
(the strategy can be summarized as “avold losing positions”)
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We inductively define depth(e), the quantifie
as follows:

depth(¢) = 0 if and only if ¢ is quantifier-free;

depth(—¢) = depth(p):

depth(¢ A ) = depth(g v ¥) = max{depth(¢), depth(y)};

depth(dv ¢) = depth(g) + 1.

Wesaythat/\/l:::‘n/\/if/\/(fz(/)@/\/]:qbfbr
most n. We will show that player II has a winning strategy in Gr(M,N)
if and only if M =, N, We first argue that there are only finitely many
inequivalent formulas of a fixed quantifier depth.

all sentences of depth ay

Lemma 2.4.8 For eqch n, ahd/,, there is ¢
of depth at most n in free variables . . .
depth at most n in Jree variables . . .

finite list of formulas b1y, i
<@y such that every formula of
<oy 18 equivalent to some b;.

Proof We first prove this for quantifier-free formulas. Bec

ause L is fi-
nite and has no constant symbols. there

are only finitely many atomic

L-formulas in free variables z;... .. 2. Let oy, ..., 0, list all such formulas.
If ¢ is a Boolean combination of formulas 7, ... 7,, then there is S a
collection of subsets of {1, ..., s} such that
F¢e \/ (/\ A /\ ﬁn)
X€s ieX igX

(see Exercise 1.4.1). This gives alist of 22" formulas such that every Boolean
combination of 71, ..., 7, is equivalent to a formula in this list. In particular,
because quantifier free formulas are Boolean combinations of atomic formu-
las, there is a finite list of depth-zero formulas such that every depth-zero
formula is equivalent to one in the list.

Because formulas of depth n + 1 are Boolean combinations of Ju¢ and
Vug where ¢ has depth at most n, the lemma follows by induction.

We can give a characterization of =y using Ehrenfeucht—Trajssé games,
Theorem 2.4.6 will follow immediately.
Lemma 2.4.9 Let £ pe 4 Jinute language without function symbols and
M and N be L-structures. The second player has a winmng strategy on

G (M,N) if and only if M =,, .
Proof We prove this by induction on 7.

Suppose that M =, A Consider a play of the game where in round one
player I plays ¢ & M. (The case where player I plays b € N is similar.)
We claim that there is b € A such that M = ¢(a) < N k= ¢(b) whenever
depth(¢) < n. Let Go(v). ... o (v) list, up to equivalence, all formulas of
depth less than n. Let X = figm: ME ¢i(a)}, and let ®(v) be the
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/\ $i(v) A /\ =¢;(v).

e X X

r depth of an L-formula b,

Then, depth(Jv (D(
N (). Player .
I = 1, the gan
g0 player IT wins. ¢
o Let L =LU{c
 [rstructures (M,
and b, respectively

for ¢(v) an L-forn
tion, player II has
T second play is
anl((M7a‘)7 (N’
round i player I h
where 7 is his wi
be: the function b
strategy, f* is par
fla) = b. Becaus
deroting a in M ¢
étra,tegy for playe:
find b such that (
G1((M,a), (N,

On the other h:
at most n are Boo
depth(¢) < n, M
out loss of general
where depth(¢) <
round one player
player I responds
(M,0) a1 (N,
Gro1((M,a), (N,
Gn‘~1<<M’&>> (N
will not be a part
partial £-embedd

We give one af
L-theory that ass

S yVw=azVw 2
bottom element.

Suppose that

or predecessor of
relation. Bach E-

and a < ¢, then
model of T is of




y L-formula @,

ces of depth at
7 in Gn(MN)

y finitely many

nulas @1y Pk
very formula of

) some ¢i'

Because L 18 ﬁ—
ly many atomic
1} such formulas. ;
hen there is S @ ‘

hat every Boolean

, every depth-ze

ations of Fu¢ and.
¢ induction.

cht-Fraissé games

wetion symbols ‘a@d
winning strategy M

where in round one
sbe Nis gimila
N k= (D) wheneve
ence, all formulas
and let ®(v) be't

2.4 Back and Forth

Then, depth(Fv @(v)) < n and M = ®(a); thus, there is b € N such that
N = ®(b). Player 11 plays b in round one.

[f n =1, the game has now concluded and a +— b is a partial embedding
so player [l wins. Suppose that n > 1. ‘ :

Let £* = LU {c}, where ¢ is a new constant symbol. View M and N as
L*-structures (M, a) and (N, b) where we interpret the new constant as a
and b, respectively. Because

ME ¢(a) & N = ¢(b)

for ¢(v) an L-formula with depth(¢) < n, (M,a) =,_1 (N,b). By induc-
tion, player I has a winning strategy in Gn_1((M,a), (N,D)). If player
I's second play is d, player II responds as if d was player s first play in
Gr-1((M,a), (N, D)) and continues playing using this strategy, that is, in
round ¢ player I has plays a,dy,...,d;, then player IT plays 7(da, ..., d;),
where 7 is his winning strategy in G((M,a),(N,b). Let f : X — N
be the function built by this play of the game. Because 7 is a winning
strategy, [* is partial L*-embedding. Extend f* to f: X U {a} = N by
fla) = b. Because f* preserves L-formulas with an additional constant
denoting a in M and bin N, f is a partial L-embedding. Thus a winning
strategy for player IT can be summarized as: given player I's first play a,
find b such that (M,a) =, (N,b) and follow the winning strategy of
Gnﬂl((/\/u a): (N’ b))

On the other hand, suppose that M %, A. Because formulas of depth

- at most n are Boolean combinations of formulas of the form Ju $(v) where
depth(¢) < n, M and NV must disagree about a formula of this type. With-
~out loss of generality, we may assume that M = Jv ¢(v) and N = Yo-igp(v)

where depth(¢) < n. We claim that player 1 has a winning strategy. In
round one player I plays @ € M such that M k= ¢(a). Suppose that
player II responds with b € N. Let (M, a) and (N, b) be as above. Then
M,a) #,4 (W, b) and, by induction, player I has a winning strategy in
Gu—1((M, a), (N, b)). Player I continues playing as if just starting a game of
Gn-1((M, a), (M, b)). The function f* played starting at the second move

- will not be a partial £*-embedding so the whole function played is not a

partial L-embedding.

We give one application of Theorem 2.4.6. Let £ = {<}. Let T be the
L-theory that asserts < is a linear order and Vaodydz (y <z < 2AVw (w <
YVw=gvy> z)). T is the theory of discrete orderings with no top or
bottom element.

Suppose that A/ = T. For a,b € N say aEb if b is the nth successor
or predecessor of a for some natural number 7. T hen, ' is an equivalence

 Telation. Each F-class is a linear order that lookslike (Z, <). If aFb, ~(a Ec),

and o < ¢ then b < . Thus, the E-classes are linearly ordered and every
’mOdel of T'is of the form (L x Z, <), where L is a linear order and < is




Ehrenfeucht-Fraissé games

Throughout this handout we will, for simplicity, be working in a finite language without
function symbols. Given two structures M and N in such a language we can detect elementary
equivalence in terms of games.

DEFINITION 1.1. Given two models M and N and a natural number n € N we define a
game as follows. It is a two-player game in which two players, player I and player I, move
in turn. Player I starts and the game ends after n rounds, so after both players have played
n moves. A move by a player consists of picking an element from one of the two structures.
Player I has complete freedom and can pick an element from whichever structures he likes, but
player II always has to reply by picking an element from the other structure (that is, player
IT is not allowed to respond by picking an element from the same structure as the one player
I just played in). So if in round ¢ player I chooses an element a; € M, player 1I replies by
picking an element b; € N, and if in round 7 player I chooses an element b; € N, then player
IT replies by picking an element a; € M. After n rounds the two players have constructing
two sequences {(aj,...,a,) and {by,...,b,) of elements from M and N, respectively. Player 11
wins if {(as,0;): 1 <4 < n}is a well-defined injective function f:{ay,...,a,} —» N and this
function is moreover a local isomorphism (Marker says: partial embedding); otherwise player I
wins. We denote this game G, (M, N) and we call it an Ehrenfeucht-Fralssé game.

We have:

THEOREM 1.2. Let L be o finite language without function symbols and let M and N be
L-structures. Then M = N if and only if the second player has a winning strategy in G,(M, N)
for alln. ‘ ‘

We give one application of this theorem. Let I = {<}. Let T be the L-theory that asserts
that < is a linear order and

Vedydz(y <z <zAVw(w<yVw=zVw>z)).

T is the theory of a discrete ordering with no top or bottom element.

Suppose that N k= T. For a,b € N say oEb if b is the nth successor or predecessor of a
for some natural number n. Then FE is an equivalence relation. Bach E-class is a linear order
that looks like (Z, <). If aEb,—(aEc), and a < ¢, then b < ¢. Thus, the E-classes are linearly
ordered and every model of T is of the form (L x Z, <), where L is a linear order and < is the
lexicographic order on L x Z (that is, (a,n) < (b,n) if a < b, or both a = b and n < m). Also,
every linear order of this form is a model of T'.

PRrOPOSITION 1.3. The theory of discrete linear orders with no top or bottom element is a
complete theory. In particular, (Z,<) = ¢ if and only if T = ¢ for all L-sentences ¢.

1
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ProoF. Let M be the ordered set of integers (7, <), and let N be L x Z with the lexico-
graphic order where L is any linearly ordered set.

We claim that M = N. We must show that player H has a winning strategy in G, (M, N)
for all n.

If a,b € Z, we define the distance between a and b to be dist(a,b) = |b ~ a|, and if
z = (t,a),y = (4,b) € L x Z, we define the distance to be dist(z,y) = [b—a| if i = j and
dist(a,b) = oo if ¢ # 5. The problem for player II is that player I can play elements that are
infinitely far apart in N and force player II to play elements that are finitely far apart in M.
Because player 1T knows how long the game will last, player II can play elements sufficiently
far apart to avoid conflicts. Player II will try to ensure:

() After m rounds of G, (M, N) we have a; < a; iff b; < b; and a; = a; iff
by = b; and min(dist(as, a;),2""™) = min(dist(b;, b;), 2" ~™).

By doing this, player IT will win because after n rounds there will be a local isomorphism.

We argue that player IT can always choose a move to preserve (). In round 1, player IT
chooses an arbitrary element and (1) holds. Suppose that we have played m rounds and ()
holds, and the moves played so far have been aq,...,a,, in M and by,...,b, in N. Suppose
that player I plays b € L x Z. There are several cases to consider.

(1) b < b; for all i. Suppose b; is the smallest element of the b;. Then choose a =
a; — min(dist(b, b;), 2" "™1).
(2) b; < b < b, for some i and j. Choose ¢ and j such that b; < b < b; and there are no
by, such that b; < b < b;. '
(a) If dist(b, b;) < 27=™71 then put a = a; + dist(b, b;).
(b) If dist(b,b;) < 2"~ then put a = a; — dist(b, b;).
(¢) If dist(b,b;) > 2"~™~ ! and dist(b,b;) > 2"~ 1, then dist(b;,b;) > 2™ and
dist(a;,a;) > 27"™. Put a = a; + 2" "L, .
(3) I b > b; for all . Suppose b; is the biggest element of the ;.. Then choose a =
a; + min(dist(b, b;), 2™ "1, ‘ :

This explains the strategy if player I plays b € L x Z. The case where player I plays a € Z is
analogous and left to the reader. I



