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CHAPTER 1

Basic definitions

1. On language and interpretation

Definition 1.1. A language or signature L consists of:

(1) a set of constants.
(2) a set of function symbols, each with an arity n ∈ N.
(3) a set of relation symbols, each with an arity n ∈ N.

Once and for all, we fix a countably infinite set of variables.

Definition 1.2. The terms in a signature L are the smallest set of expressions such that:

(1) all constants are terms.
(2) all variables are terms.
(3) if t1, . . . , tn are terms and f is an n-ary function symbol, then also f(t1, . . . , tn) is a

term.

Terms which do not contain any variables are called closed.

Definition 1.3. An atomic formula is an expression of the form

(1) s = t, where s and t are terms, or
(2) P (t1, . . . , tn), where t1, . . . , tn are terms and P is a n-ary relation symbol.

Definition 1.4. The set of formulas is the smallest set of expressions which:

(1) contains the atomic formulas.
(2) contains ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,¬ϕ whenever ϕ and ψ are formulas.
(3) contains ∃xϕ and ∀xϕ, if ϕ is a formula.

A formula which does not contain any quantifiers, so can be obtained by applying rules (1)
and (2) only, is called quantifier-free. A sentence is a formula which does not contain any free
variables. A set of sentences is called a theory.

We will often write ϕ(x1, . . . , xn) instead of ϕ. The notation ϕ(x1, . . . , xn) is meant to
indicate that ϕ is a formula whose free variables are contained in {x1, . . . , xn}.

Definition 1.5. A structure or model M in a language L consists of:

(1) a non-empty set M (the domain or the universe).
(2) interpretations cM ∈M of all the constants in L,
(3) interpretations fM :Mn →M of all n-ary function symbols in L,
(4) interpretations RM ⊆Mn of all n-ary relation symbols in L.
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If A ⊆M , then we will write LA for the language obtained by adding to L fresh constants
{ca : a ∈ A}. In this case M could also be considered an LA-structure in which ca is interpreted
as a. We will often just write a instead of ca (!!).

If M is a model then the interpretation in M of constants in the language LM can be
extended to all closed terms in the language LM by putting:

f(t1, . . . , tn)M = fM (tM1 , . . . , fMn ).

Definition 1.6. If M is a model in in the language L and ϕ is a sentence in the language
LM , then we will write:

• M |= s = t if sM = tM ;
• M |= P (t1, . . . , tn) if (tM1 , . . . , tMn ) ∈ PM ;
• M |= ϕ ∧ ψ if M |= ϕ and M |= ψ;
• M |= ϕ ∨ ψ if M |= ϕ or M |= ψ;
• M |= ϕ→ ψ if M |= ϕ implies M |= ψ;
• M |= ¬ϕ if not M |= ϕ;
• M |= ∃xϕ(x) if there is an m ∈M such that M |= ϕ(m);
• M |= ∀xϕ(x) if for all m ∈M we have M |= ϕ(m).

If M |= ϕ we say that ϕ holds in M or is true in M .

Definition 1.7. If M is a model in a language L, then Th(M) is the collection of all
L-sentences true in M . If N is another model in the language L, then we write M ≡ N and
call M and N elementarily equivalent, whenever Th(M) = Th(N).

Definition 1.8. Let Γ and ∆ be theories. If M |= ϕ for all ϕ ∈ Γ, then M is called a
model of Γ. We will write Γ |= ∆ if every model of Γ is a model of ∆ as well. We write Γ |= ϕ
for Γ |= {ϕ} and ϕ |= ψ for {ϕ} |= {ψ}.

Definition 1.9. If L ⊆ L′ and M is an L′-structure, then we can obtain an L-structure
N by taking the universe of M and forgetting the interpretations of the symbols which do not
occur in L. In that case, M is an expansion of N and N is the L-reduct of M .

Lemma 1.10. If L ⊆ L′ and M is an L′-structure and N is its L-reduct, then we have
N |= ϕ(m1, . . . ,mn) iff M |= ϕ(m1, . . . ,mn) for all formulas ϕ(x1, . . . , xn) in the language L
and all elements m1, . . . ,mn from M .

2. Morphisms

Any structure in mathematics comes with a notion of homomorphism: a mapping preserv-
ing that structure.

Definition 1.11. Let M and N be two L-structures. A homomorphism h:M → N is a
function h:M → N such that:

(1) h(cM ) = cN for all constants c in L;
(2) h(fM (m1, . . . ,mn)) = fN (h(m1), . . . , h(mn)) for all function symbols f in L and

elements m1, . . . ,mn ∈M ;
(3) (m1, . . . ,mn) ∈ RM implies (h(m1), . . . , h(mn)) ∈ RN .

A homomorphism h which is bijective and whose inverse h−1 is a homomorphism as well is called
an isomorphism. If there exists an isomorphism between structures M and N , then M and N
are called isomorphic. An isomorphism from a structure to itself is called an automorphism.
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Actually, in model theory the general notion of homomorphism turns out to of limited
usefulness. More important are the embeddings.

Definition 1.12. A homomorphism h:M → N is an embedding if

(1) h is injective;
(2) (h(m1), . . . , h(mn)) ∈ RN implies (m1, . . . ,mn) ∈ RM .

Lemma 1.13. The following are equivalent for a homomorphism h:M → N :

(i) h is an embedding.
(ii) M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all m1, . . . ,mn ∈ M and

atomic formulas ϕ(x1, . . . , xn).
(iii) M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(h(m1), . . . , h(mn)) for all m1, . . . ,mn ∈ M and

quantifier-free formulas ϕ(x1, . . . , xn).

Definition 1.14. If M and N are two models and the inclusion M ⊆ N is an embedding,
then M is a substructure of N and N is an extension of M .

But the most important notion of morphism in model theory is that of an elementary
embedding.

Definition 1.15. An embedding h:M → N is called elementary, if

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn))

for all m1, . . . ,mn ∈M and all formulas ϕ(x1, . . . , xn).

Remark 1.16. In the definition of an elementary embedding the equivalence

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn))

holds as soon as the implication from left to right or from right to left holds. (Why? Hint:
Negation!) A similar remark applies to point (iii) of Lemma 1.13.

Lemma 1.17. Any isomorphism h:M → N is also an elementary embedding. If h:M → N
is an elementary embedding, then M ≡ N .

3. Exercises

Exercise 1. A theory T is consistent if it has a model and complete if it is consistent and
for any formula ϕ we have

T |= ϕ or T |= ¬ϕ.
Show that the following are equivalent for a consistent theory T :

(1) T is complete.
(2) All models of T are elementarily equivalent.
(3) There is a structure M such that T and Th(M) have the same models.

Exercise 2. An element a in an L-structure M is definable if there is an L-formula ϕ(x)
such that for any m ∈M

M |= ϕ(m)⇔ a = m.

(a) What are the definable elements in (N,+)? And in (Z,+)? Justify your answers.
(b) Is the embedding (N,+) ⊆ (Z,+) elementary? And the embedding (N, ·) ⊆ (Z, ·)?

And the embedding (Z, ·) ⊆ (Q, ·)? And the embedding (Q, ·) ⊆ (R, ·)? And the
embedding (R, ·) ⊆ (C, ·)?
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Exercise 3. (For the algebraists.) Let Lr = {0, 1,+,−, ·} be the language of (unital)
rings with binary operations + and ·, a unary operation − and constants 0, 1. Let CR be the
theory of commutative rings, saying that both + and · are associative and commutative with
units 0 and 1, respectively, plus an axiom saying that −x is an additive inverse for x and the
distributive law x · (y + z) = x · y + x · z. The theory ID of integral domains is the theory CR
together with the axioms 0 6= 1 and ∀x∀y (x · y = 0 → x = 0 ∨ y = 0), while the theory F of
fields is the theory CR together with 0 6= 1 and ∀x (x 6= 0→ ∃y x · y = 1 ).

(a) A universal sentence is one of the form ∀x1, . . . , xnϕ(x1, . . . , xn) where ϕ(x1, . . . , xn)
is quantifier-free. A theory T can be axiomatised using universal sentences if there is
a collection of universal sentences S such that S and T have the same models.

Show that CR and ID can be axiomatised using universal sentences, while this is
impossible for F . Hint: Check that universal sentences are preserved by substructures.

(b) Write T∀ = {ϕ : T |= ϕ and ϕ is universal}. Show that F∀ and ID have the same
models. Hint: Use that any integral domain can be embedded into a field (its field of
fractions) by mimicking the construction of Q out of Z.

Exercise 4. Let L be signature and M and N be two L-structures. Show that if M is
finite and M and N are elementarily equivalent, then M and N are isomorphic. Hint: You
may find it helpful to first think about the special case where the language L is finite.



CHAPTER 2

Compactness theorem

The most important result in model theory is:

Theorem 2.1. Let T be a theory in language L. If every finite subset of T has a model,
then T has a model.

I suspect many of you have seen a proof of this already. In fact, it is often obtained as
a direct corollary of the completeness theorem for first-order logic. But one can give a purely
model-theoretic proof (without any proof calculus in sight) and such a proof will be sketched
below.

1. A proof

For convenience let us temporarily call a theory T finitely consistent if any finite subset of
T has a model. The goal is to show that finitely consistent theories are consistent (that is, have
a model). The first step is to reduce the problem to showing that maximal finitely consistent
theories have models.

Definition 2.2. A theory T in a language L is maximal finitely consistent if there is no
finitely consistent L-theory T ′ with T ⊂ T ′ (in other words, adding a new sentence to T destroys
its finite consistency).

The following is a direct consequence of Zorn’s Lemma (see below).

Lemma 2.3. Any finitely consistent L-theory T can be extended to a maximal finitely con-
sistent L-theory T ′.

Proof. Consider the collection P of all finitely consistent L-theories which extend T and
order P by inclusion. Since every chain X in P has an upper bound (simply take the union
of all theories in X), Zorn’s Lemma tells us that P has a maximal element. Such a maximal
element is a maximal finitely consistent theory T ′ extending T . �

Lemma 2.4. Let T be maximal finitely consistent L-theory.

(1) For any sentence ϕ the theory T contains either ϕ or ¬ϕ.
(2) If T0 is a finite subset of T and T0 |= ϕ, then ϕ ∈ T .

Proof. (i): Suppose T is a maximal finitely consistent L-theory and ϕ 6∈ T . Since T was
maximal, T ∪ {ϕ} cannot be finitely consistent, so there is a finite subset T2 ⊆ T such that
T2 ∪ {ϕ} has no models.

7
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We want to show that ¬ϕ ∈ T . For this it suffices to prove that T ∪ {¬ϕ} is finitely
consistent; indeed, this can only be compatible with the maximality of T if T ∪ {¬ϕ} = T , or,
in other words, if ¬ϕ ∈ T .

To see that T ∪{¬ϕ} is finitely consistent, let T0 ⊆ T ∪{¬ϕ} be finite. Then T0 is a subset
of a set of form T1 ∪ {¬ϕ} with T1 a finite subset of T .

Consider T1 ∪ T2. This is a finite subset of T and since T is finitely consistent, the set
T1 ∪ T2 has a model M . Because M is a model of T2, it cannot be a model of ϕ. So M |= T1

and M |= ¬ϕ. Hence M is a model of T0 and since T0 was an arbitrary finite subset of T ∪{¬ϕ},
we have shown that T ∪ {¬ϕ} is finitely consistent, as desired.

(ii): Assume T0 is a finite subset of a maximal finitely consistent L-theory T and T0 |= ϕ. I
claim that ϕ ∈ T . For if ϕ 6∈ T , then ¬ϕ ∈ T by (i). But then T0 ∪{¬ϕ} is a finite subset of T ,
so has a model M . But then M is a model of T0 in which ϕ does not hold, contradiction. �

Proposition 2.5. Suppose T is a finitely consistent theory in a language L and C is a set
of constants in L. If for any formula ψ(x) in the language L there is a constant c ∈ C such
that

∃xψ(x)→ ψ(c) ∈ T,
then T has a model whose universe consists entirely of interpretations of constants in C.

Proof. In view of Lemma 2.3 it suffices to prove the statement for maximal finitely con-
sistent T . In this case we construct a model M by taking the closed terms in L and identifying
closed terms s and t whenever the expression s = t belongs to T : it follows from part (ii) of
the previous lemma that this is an equivalence relation.

We have to show how to interpret constants as well as function and relation symbols in M .
If c is any constant in L, then we put cM = [c], whilst if f is any n-ary function symbol and
t1, . . . , tn are closed L-terms, then we set

fM ([t1], . . . , [tn]): = [f(t1, . . . , tn)].

Another appeal to part (ii) of the previous lemma is needed to show that this is well-defined.

Finally, if R is an n-ary relation symbol, then we will say that ([t1], . . . , [tn]) ∈ RM in
case R(t1, . . . , tn) ∈ T . Part (ii) of the previous lemma should again to be used to justify this
definition.

Now one can easily show by induction on the structure of the term t that tM = [t] and the
structure of the formula ϕ that M |= ϕ if and only if ϕ ∈ T . In short, M is a model of T .

It remains to verify that any element in M is an interpretation of a constant c ∈ C. We
know that any element in M is of the form [t] for some closed term t. By assumption there
exists an element c ∈ C for which the sentence

∃x (x = t)→ c = t

belongs to T . Since ∃x (x = t) is a tautology, it also belongs to T and therefore we have
c = t ∈ T as well. So M |= c = t and cM = tM = [t]. �

Lemma 2.6. Suppose T is a finitely consistent L-theory. Then L can be extended to a
language L′ and T to a finitely consistent L′-theory T ′ such that for any L′-formula ϕ(x) there
is a constant c in L′ such that

T ′ |= ∃xϕ(x)→ ϕ(c).
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Proof. We define by induction a sequence of languages Ln and Ln-theories Tn. We start
by putting L0 = L and T0 = T .

If Ln and Tn have been defined, we obtain Ln+1 by adding to Ln a fresh constant cϕ for
any Ln-formula ϕ(x). Moreover, Tn+1 is obtained by adding to Tn for any Ln-formula ϕ(x)
the sentence

∃xϕ(x)→ ϕ(cϕ).

One easily proves by induction on n that each Tn is finitely consistent.

Finally, we put L′ =
⋃
n∈N Ln and T ′ =

⋃
n∈N Tn. Then T ′ is finitely consistent (see

exercise 5 below). Moreover, any L′-formula ϕ(x) is already an Ln-formula for some n (see
again exercise 5 below). So

∃xϕ(x)→ ϕ(cϕ) ∈ Tn+1 ⊆ T,
as desired. �

Theorem 2.7. (Compactness Theorem) Let T be a theory in language L. If every finite
subset of T has a model, then T has a model.

Proof. Let T be a finitely consistent L-theory. Combining the previous lemma with the
previous proposition, one sees that L can be extended to a language L′ and T to an L′-theory
T ′ such that T ′ has a model M . So if N is the reduct of M to L, then N is a model of T by
Lemma 1.10. �

2. Appendix: statement of Zorn’s Lemma

Definition 2.8. A partial order is a set P together with a binary relation ≤ which is

(i) reflexive, so x ≤ x for any x ∈ P .
(ii) anti-symmetric, so x ≤ y and y ≤ x imply x = y.
(iii) transitive, so x ≤ y and y ≤ z imply x ≤ z.

A subset X ⊆ P is called a chain if for any two elements x, y ∈ X we have either x ≤ y or
y ≤ x. An upper bound for a set X ⊆ P is an element y ∈ P such that x ≤ y for all x ∈ X. An
element x ∈ P is maximal if x ≤ y implies x = y.

Lemma 2.9. (Zorn’s Lemma) Let (P,≤) be a partial order and assume that any chain in
P has an upper bound. Then P contains at least one maximal element.

Proof. A proof can be found in most textbooks on set theory (for example, on page 114
of Moschovakis, Notes on Set Theory, second edition, Springer-Verlag, 2006). �

3. Exercises

Exercise 5. (a) Let A0 ⊆ A1 ⊆ A2 ⊆ . . . be an increasing sequence of sets, and
write A: =

⋃
n∈NAn. Show that any finite subset of A is already a finite subset of

some An.
(b) Suppose that L0 ⊆ L1 ⊆ L2 ⊆ . . . is an increasing sequence of languages and L =⋃

n∈N Ln. Show that any L-formula is also an Ln-formula for some n.
(c) Suppose that T0 ⊆ T1 ⊆ T2 ⊆ . . . is an increasing sequence of finitely consistent

theories. Prove that
⋃
n∈N Tn is finitely consistent as well.
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Exercise 6. A class of models K in some fixed signature is called an elementary class if
there is a first-order theory such that K consists of precisely those L-structures that are models
of T .

Show that if K is a class of L-structures and both K and its complement (in the class of all
L-structures) are elementary, then there is a sentence ϕ such that M belongs to K if and only
if M |= ϕ.

Exercise 7. We work over the empty language L (no constants, function or relations
symbols). Show that the class of infinite L-structures is elementary, but the class of finite
L-structures is not. Deduce that there is no sentence ϕ that is true in an L-structure if and
only if the L-structure is infinite.



CHAPTER 3

Method of diagrams

This chapter is devoted to applications of the compactness theorem. One application is to
show the dramatic failure of first-order logic to distinguish between different cardinalities: we
will show, for instance, that if a first-order theory T in some countable language has an infinite
model, then T has models of all infinite sizes. To show this, we use the method of diagrams.

1. Diagrams

Definition 3.1. If M is a model in a language L, then the collection of quantifier-free
LM -sentences true in M is called the diagram of M and written Diag(M). The collection of
all LM -sentences true in M is called the elementary diagram of M and written ElDiag(M).

Lemma 3.2. The following amount to the same thing:

• A model N of Diag(M).
• An embedding h:M → N .

As do the following:

• A model N of ElDiag(M).
• An elementary embedding h:M → N .

Proof. I suspect that a genuine proof of this lemma would only obscure the main point.
The task is to reflect on the question what it would mean to give a model of Diag(M). It would
involve finding a model N and assigning to each constant cm an interpretation in N in such a
way that if ϕ is quantifier-free and ϕ(cm1 , . . . , cmn) is true in M , then it is true in N as well.
This is the same thing as giving an embedding h:M → N (see also Lemma 1.13). A similar
reflection should make the second point of the lemma clear. �

2. The  Loś-Tarski Theorem

As a first indication of the usefulness of the method of diagrams, we will prove a charac-
terisation theorem for universal theories.

Definition 3.3. A sentence is universal if it starts with a string of universal quantifiers
followed by a quantifier-free formula. A theory is universal if it consists of universal sentences.
A theory has a universal axiomatisation if it has the same class of models as a universal theory
in the same language.

Theorem 3.4. (The  Loś-Tarski Theorem) T has a universal axiomatisation iff models of
T are closed under substructures.

11
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Proof. It is easy to see that models of a universal theory are closed under substructures,
so we concentrate on the other direction. So let T be a theory such that its models are closed
under substructures. Write

T∀ = {ϕ : T |= ϕ and ϕ is universal }.

Clearly, T |= T∀. We need to prove the converse.

So suppose M is a model of T∀. Now it suffices to show that T ∪ Diag(M) is consistent.
Because once we do that, it will have a model N . But since N is a model of Diag(M), it
will be an extension of M ; and because N is a model of T and models of T are closed under
substructures, M will be a model of T .

So the theorem will follow once we show that T ∪ Diag(M) is consistent. We argue by
contradiction: so suppose T ∪Diag(M) would be inconsistent. Then, by the compactness the-
orem, there are quantifier-free formulas ψ1(m1), . . . , ψn(mn) ∈ Diag(M) which are inconsistent
with T . Write ψ(m): = ψ1(m1) ∧ ψ2(m2) ∧ . . . ∧ ψn(mn). Then ψ(m) is a single formula from
Diag(M) inconsistent with T .

Replace the constants m from M in ψ by variables x and consider the sentence ∃xψ(x);
because the constants from M do not appear in T , the theory T is already inconsistent with
∃xψ(x) (see Exercise 8 below). Therefore T |= ¬∃xψ(x) and T |= ∀x¬ψ(x); in other words,
∀x¬ψ(x) ∈ T∀. Since M is a model of T∀, it follows that M |= ∀x¬ψ(x) and M |= ¬ψ(m).
This contradicts ψ(m) ∈ Diag(M). �

3. The theorems of Skolem and Löwenheim

As another application of the compactness theorem we can show that first-order logic is
unable to see the difference between different infinite cardinalities. Two theorems due to Skolem
and Löwenheim make this point in a very clear way.

Definition 3.5. The cardinality of a model is the cardinality of its underlying domain.
The cardinality of a language L is the sum of the cardinalities of its sets of constants, function
symbols and relation symbols.

We will write:

– |X| for the cardinality of a set X,
– |M | for the cardinality of a model M , and
– |L| for the cardinality of a language L.

3.1. Downward. To prove the first theorem due to Skolem and Löwenheim we need a
test for recognising elementary embeddings.

Theorem 3.6. (Tarski-Vaught Test) An embedding h:M → N is elementary if and only
if for any LM -formula ϕ(x): if N |= ∃xϕ(x), then there is an element m ∈ M such that
N |= ϕ(h(m)).

Proof. Let us first check the necessity of the condition: if h:M → N is an elementary
embedding and ϕ(x) is an LM -formula such that N |= ∃xϕ(x), then M |= ∃xϕ(x) as well.
So there is an element m ∈ M such that M |= ϕ(m) and hence N |= ϕ(h(m)), because h is
elementary.
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Conversely, suppose that the condition is satisfied and we wish to prove that

M |= ϕ(m)⇔ N |= ϕ(h(m))

for any L-formula ϕ and any tuple m of parameters from M . The idea is to prove this bi-
implication by induction on the structure of ϕ. To make our lives easier we will assume that
the only logical connectives appearing in ϕ are ∧,¬ and ∃: since every first-order formula is
logically equivalent to one only containing these connectives, we may do this without loss of
generality.

Let us start by noting that the desired equivalence is valid for atomic formulas, since h is
an embedding (see Lemma 1.13). The induction cases for ∧ and ¬ are trivial, so we are left
with the case of ∃xψ(x,m). The induction hypothesis is

M |= ψ(m,m)⇔ N |= ψ(h(m), h(m))

for all m,m ∈M . Then:

M |= ∃xψ(x,m)⇔ (∃m ∈M)M |= ∃xψ(m,m)⇔
(∃m ∈M)N |= ψ(h(m), h(m))⇔ N |= ∃xϕ(x,m).

(Here we have used the condition in the right to left direction of the last bi-implication.) �

Theorem 3.7. (Downwards Skolem-Löwenheim Theorem) Suppose M is an L-structure
and X ⊆ M . Then there is an elementary substructure N of M with X ⊆ N and |N | ≤
|X|+ |L|+ ℵ0.

Proof. We construct N as
⋃
i∈NNi where the Ni are defined inductively as follows: we

start by putting N0 = X, while

• if i is even, then Ni+1 is obtained from Ni by adding the interpretations of the con-
stants and closing under fM for every function symbol f (that is, we add all elements
of the form fM (n1, . . . , nk) with f an k-ary function symbol in L and n1, . . . , nk ∈ Ni).

• if i is odd, we look at all LNi
-sentences of the form ∃xϕ(x). If such a sentence is true

in M , then we pick a witness n ∈M such that M |= ϕ(n) and put it in Ni+1.

Then the first item guarantees that N is a substructure, while the second item ensures that it
is an elementary substructure (using the Tarski-Vaught test). �

3.2. Upward. To find larger models we again use the method of diagrams.

Theorem 3.8. (Upwards Skolem-Löwenheim Theorem) Suppose M is an infinite L-structure
and κ is a cardinal number with κ ≥ |M |, |L|. Then there is an elementary embedding i:M → N
with |N | = κ.

Proof. Let Γ be the elementary diagram of M and ∆ be the set of sentences {ci 6= cj : i 6=
j ∈ κ} where the ci are κ-many fresh constants. M is a model of any finite subset of Γ ∪∆:
indeed, in any finite subset of Γ ∪ ∆ only finitely many fresh constants ci occur; the idea is
to interpret the ci as different elements in M (which we can always do since the model M
is infinite). Therefore, by the Compactness Theorem, the theory Γ ∪ ∆ has a model A. By
construction M is an elementary substructure of A and |A| ≥ κ. By the downward Downwards
Skolem-Löwenheim Theorem A has an LM -elementary substructure N of cardinality κ. Since
N is still a model of the elementary diagram of M , there is an elementary embedding i:M →
N . �
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4. Exercises

Exercise 8. Assume T is a theory and ϕ(x) is a formula in which the constant c does not
occur.

(a) Prove: T |= ϕ(c) iff T |= ∀xϕ(x).
(b) Prove: T is consistent with ϕ(c) iff T is consistent with ∃xϕ(x).

Exercise 9. A class K of L-structures is a PC∆-class, if there is an extension L′ of L and
an L′-theory T ′ such that K consists of all reducts to L of models of T ′.

Show that a PC∆-class of L-structures is L-elementary if and only if it is closed under
L-elementary substructures.

Exercise 10. (Challenging!) An existential sentence is a sentence which consists of a
string of existential quantifiers followed by a quantifier-free formula.

Show that a theory T can be axiomatised using existential sentences if and only if its models
are closed under extensions.



CHAPTER 4

Directed systems and Craig interpolation

In this chapter we will introduce an important method for creating new models from old
ones: colimits of directed systems. This we will then use to prove a fundamental property of
first-order logic: the Craig interpolation theorem.

1. Directed systems

Definition 4.1. A partially ordered set (K,≤) is called directed, if K is non-empty and
for any two elements x, y ∈ K there is an element z ∈ K such that x ≤ z and y ≤ z.

Note that non-empty linear orders (aka chains) are always directed.

Definition 4.2. A directed system of L-structures consists of a family (Mk)k∈K of L-
structures indexed by a directed partial order K, together with homomorphisms fkl:Mk →Ml

for k ≤ l, satisfying:

• fkk is the identity homomorphism on Mk,
• if k ≤ l ≤ m, then fkm = flmfkl.

If K is a chain, we call (Mk)k∈K a chain of L-structures

If we have a directed system, then we can construct its colimit, another L-structure M with
homomorphisms fk:Mk → M . To construct the underlying set of the model M , we first take
the disjoint union of all the universes:∑

k∈K

Mk = {(k, a) : k ∈ K, a ∈Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l, b):⇔ (∃m ≥ k, l) fkm(a) = flm(b).

The underlying set of M will be the set of equivalence classes, where denote the equivalence
class of (k, a) by [k, a].

M has an L-structure: if c is some constant symbol, then we put

cM = [k0, c
Mk0 ],

where k0 is some arbitrary element from K. If R is a relation symbol in L, we put

RM ([k1, a1], . . . , [kn, an])

if there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .

15
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And if g is a function symbol in L, we put

gM ([k1, a1], . . . , [kn, an]) = [k, gMk(fk1k(a1), . . . , fknk(an))],

where k is an element ≥ k1, . . . , kn. (Check that this makes sense!) In addition, the homomor-
phisms fk:Mk →M are obtained by sending a to [k, a].

The following theorem collects the most important facts about colimits of directed systems.
Especially useful is part 5, often called the elementary system lemma.

Theorem 4.3. (1) All fk are homomorphisms.
(2) If k ≤ l, then flfkl = fk.
(3) If N is another L-structure for which there are homomorphisms gk:Mk → N such

that glfkl = gk whenever k ≤ l, then there is a unique homomorphisms g:M → N
such that gfk = gk for all k ∈ K (this is the universal property of the colimit).

(4) If all maps fkl are embeddings, then so are all fk.
(5) If all maps fkl are elementary embeddings, then so are all fk.

Proof. Exercise! �

The following fact about colimits of directed systems is also very useful:

Lemma 4.4. Let (K,≤) be a directed poset and (Mk)k∈K be a directed system. If J is a
cofinal subset of K (meaning that for each k ∈ K there is a j ∈ J such that k ≤ j), then
(Mj)j∈J is a directed system as well and the colimits of the directed systems (Mk)k∈K and
(Mj)j∈J are isomorphic.

2. Robinson’s Consistency Theorem

The aim of this section is to prove the statement:

(Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1 ∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend
a complete L-theory T . If both T1 and T2 are consistent, then so is T1 ∪ T2.

We first need two lemmas.

Lemma 4.5. Let L ⊆ L′ be languages and suppose A is an L-structure and B is an L′-
structure. Suppose moreover A ≡ B � L. Then there is an L′-structure C and a diagram of
elementary embeddings (f in L and f ′ in L′)

A

f   

B

f ′
~~

C.

Proof. Consider T = DiagLel(A) ∪ DiagL
′

el (B) (making sure we use different constants for
the elements from A and B!). We need to show T has a model; so suppose T is inconsistent.
Then, by compactness, a finite subset of T has no model; taking conjunctions, we have sentences

ϕ(a) ∈ DiagLel(A) and ψ(b) ∈ DiagL
′

el (B) that are contradictory. But as the aj do not occur in
L′B , we must have that B |= ¬∃xϕ(x). This contradicts A ≡ B � L. �
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Lemma 4.6. Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an L′-
structure. Any pair of L-elementary embeddings f :A→ B and g:A→ C fit into a commuting
square

A
g

  

f

~~

B

h
  

C

k
~~

D

where D is an L′-structure, h is an L-elementary embedding and k is an L′-elementary embed-
ding.

Proof. Without loss of generality we may assume that L contains constants for all ele-
ments of A. Then simply apply Lemma 4.5. �

Theorem 4.7. (Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend a complete L-theory
T . If both T1 and T2 are consistent, then so is T1 ∪ T2.

Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is complete, their
reducts to L are elementary equivalent, so, by Lemma 4.5, there is a diagram

A0

f0

  

B0
h0

// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding. Now by applying
Lemma 4.6 to f0 and the identity on A0, we obtain

A0

f0   

k0 // A1

B0
h0

// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way we obtain a diagram

A0

f0   

k0 // A1

f1

  

k1 // A2
// . . .

B0
h0

// B1

g0

OO

h1

// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi are L2-elementary.
Let C be the L-structure which is the colimit of the entire diagram. By Lemma 4.4, C is also
the colimit of the Ai and of the Bi. Therefore C can also be equipped with an L1∪L2-structure,
with A0 and B0 both embedding elementarily into C by the elementary systems lemma; hence
C is a model of both T1 and T2, as desired. �
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3. Craig Interpolation

Theorem 4.8. Let ϕ and ψ be sentences in some language such that ϕ |= ψ. Then there
is a sentence θ, a “(Craig) interpolant”, such that

(1) ϕ |= θ and θ |= ψ;
(2) every predicate, function or constant symbol that occurs in θ occurs also in both ϕ and

ψ.

Proof. Let L be the common language of ϕ and ψ. We will show that T0 |= ψ where
T0 = {σ : σ is an L-sentence and ϕ |= σ}. Let us first check that this suffices for proving the
theorem: for then there are θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by compactness. So
θ: = θ1 ∧ . . . ∧ θn is an interpolant.

So we need to prove the following claim: If ϕ |= ψ, then T0 |= ψ where T0 = {σ ∈ L : ϕ |= σ}
and L is the common language of ϕ and ψ. Proof of claim: Suppose not. Then T0 ∪ {¬ψ} has
a model A. Write T = ThL(A). Observe that we now have T0 ⊆ T and:

(1) T is a complete L-theory.
(2) T ∪ {¬ψ} is consistent (because A is a model).
(3) T ∪{ϕ} is consistent. (Proof: Suppose not. Then, by the compactness theorem, there

would a sentence σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)

This means we can apply Robinson’s Consistency Theorem to deduce that T ∪ {¬ψ,ϕ} is
consistent. But that contradicts ϕ |= ψ. �

4. Exercises

Exercise 11. The aim of this exercise is to prove the Chang- Loś-Suszko Theorem. To
state it we need a few definitions.

A ∀∃-sentence is a sentence which consists first of a sequence of universal quantifiers, then
a sequence of existential quantifiers and then a quantifier-free formula. A theory T can be
axiomatised by ∀∃-sentences if there is a set T ′ of ∀∃-sentences such that T and T ′ have the
same models.

In addition, we will say that a theory T is preserved by directed unions if for any directed
system consisting of models of T and embeddings between them, also the colimit is a model T .
And T is preserved by unions of chains if for any chain of models of T and embeddings between
them, also the colimit is a model of T .

Show that the following statements are equivalent:

(1) T is preserved by directed unions.
(2) T is preserved by unions of chains.
(3) T can be axiomatised by ∀∃-sentences.

Hint: To show (2) ⇒ (3), suppose T is preserved by unions of chains and let

T∀∃ = {ϕ : ϕ is a ∀∃-sentence and T |= ϕ}.

Then prove that starting from any model B of T∀∃ one can construct a chain of embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .
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such that:

(1) Each An is a model of T .
(2) The composed embeddings Bn → Bn+1 are elementary.
(3) Every universal sentence in the language LBn

true in Bn is also true in An (when
regarding An is an LBn-structure via the embedding Bn → An).

Exercise 12. Use Robinson’s Consistency Theorem to prove the following Amalgamation
Theorem: Let L1, L2 be languages and L = L1 ∩ L2, and suppose A,B and C are structures
in the languages L, L1 and L2, respectively. Any pair of L-elementary embeddings f :A → B
and g:A→ C fit into a commuting square

A
g

  

f

~~

B

h
  

C

k
~~

D

where D is an L1 ∪ L2-structure, h is an L1-elementary embedding and k is an L2-elementary
embedding.

Exercise 13. The aim of this exercise is to prove Beth’s Definability Theorem.

Let L be a language a P be a predicate symbol not in L, and let T be an L ∪ {P}-theory.
T defines P implicitly if any L-structure M has at most one expansion to an L∪{P}-structure
which models T . There is another way of saying this: let T ′ be the theory T with all occurrences
of P replaced by P ′, another predicate symbol not in L. Then T defines P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn
(
P (x1, . . . , xn)↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn
(
P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)

)
.

Show that T defines P implicitly if and only if T defines P explicitly.





CHAPTER 5

Back and forth

1. Categoricity and Vaught’s Test

Certain theories return again and again in model theory, because from a model-theoretic
perspective they have many desirable properties. In this chapter we will discuss two of them.

One property both theories in this chapter share is that they are complete. (Recall that
an L-theory T is complete if it is consistent and for any L-sentence ϕ we have either T |= ϕ or
T |= ¬ϕ.) Not many theories occurring in mathematics have this property, so if one can find a
natural example then this is something special.

But how could one show that a theory is complete? For this one often applies Vaught’s
Test.

Definition 5.1. Let κ be an infinite cardinal and let T be a theory with models of size κ.
We say that T is κ-categorical if any two models of T of cardinality κ are isomorphic.

Theorem 5.2. (Vaught’s Test) Let T be a consistent L-theory with no finite models that
is κ-categorical for some infinite cardinal κ ≥ |L|. Then T is complete.

Proof. Suppose T is not complete; then there is a sentence ϕ such that T 6|= ϕ and
T 6|= ¬ϕ. This means that there are models M and N of T such that M |= ϕ and N |= ¬ϕ.
Since κ ≥ |L| we can use the upward and downwards Skolem-Löwenheim theorems to arrange
that both M and N have cardinality κ. But this contradicts the κ-categoricity of T . �

Vaught’s Test reduces the problem of showing completeness to the problem of showing
categoricity. For the latter purpose we often use a technique called back and forth: the idea is
to construct an isomorphism between two models of the same size by some inductive procedure.
This is best illustrated through the examples.

2. Dense linear orders

The theory DLO of dense linear orders without endpoints is the theory in the language <
saying that:

(1) < defines an ordering: if x < y then not x = y and not y < x, and if x < y and y < z
then x < z.

(2) The order < is linear: x < y or x = y or y < x.
(3) It is dense: this says that x < y implies that there is a z with x < z < y.
(4) It has no endpoints: for every x there are y and z such that y < x < z.

Examples are (Q, <) and (R, <).

21
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Definition 5.3. Let M and N be two L-structure. A function f :A ⊆ M → N with
A = {a1, . . . , an} a finite subset of M is called a local isomorphism if

M |= ϕ(a1, . . . , an)⇔ N |= ϕ(f(a1), . . . , f(an))

holds for every atomic (or, equivalently, quantifier-free) L-formula ϕ(x1, . . . , xn).

By considering the formula xi = xj we see that local isomorphisms are injective.

Proposition 5.4. Let f :A ⊆M → N be a local isomorphism between two models M and
N of DLO. For any m ∈M there is a local isomorphism g:A∪{m} ⊆M → N with g � A = f .

Proof. Let M and N be two dense linear orders without endpoint and f :A ⊆ M → N
be a local isomorphism. For DLO the latter just means that f preserves and reflects the order
relation <.

Our task is to show that for any m ∈ M we can extend the local isomorphism f to one
whose domain includes m. For this we put A0: = {a ∈ A : a < m} and A1: = {a ∈ A : a > m}
and make some case distinctions:

(i) m ∈ A. In this case we can simply put g: = f .
(ii) A0 = A. In this case m is larger than any element in A and we use that N has no

endpoints to find an element n ∈ N which is larger than any element in f(A). Then
we put g(m): = n (and on all elements in A the function g is defined in the same way
as f).

(iii) A1 = A. In this case m is smaller than any element in A and we use that N has no
endpoints to find an element n ∈ N which is smaller than any element in f(A). Then
we put g(m): = n.

(iv) Neither A0 nor A1 is the whole of A or empty. Let a0 be the largest element of A0 and
a1 be the smallest element of A1. Using that N is dense we find an element n ∈ N
such that f(a0) < n < f(a1). Then we put g(m): = n.

�

Theorem 5.5. The theory DLO is ω-categorical.

Proof. Let M and N be two countable dense linear orders without endpoints. Fix enu-
merations M = {m0,m1, . . .} and N = {n0, n1, . . .}. We will construct an increasing sequence
of local isomorphisms fk from some subset of M to N such that mi belongs to the domain of
f2i+2 and ni belongs to the codomain of f2i+1. Then f =

⋃
i fi will be the desired isomorphism

between M and N . We start with f0 = ∅.

So suppose we have constructed fk and we want to construct fk+1. If k + 1 = 2i+ 2, then
we apply the previous proposition on mi and fk to construct a local isomorphism fk+1 which
extends fk and whose domain includes mi (this is the forth in back and forth).

If k + 1 = 2i + 1, then we consider f−1
k , which is a local isomorphism from some finite

subset of N to M . So by the previous proposition there is a local isomorphism g whose domain
includes both ni and the image of fk. Then we put fk+1 = g−1, which is a local isomorphism
as desired. �

Corollary 5.6. The theory DLO is complete.
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3. Algebraically closed fields

Recall that a field K is called algebraically closed if every non-constant polynomial has a
root in K. Throughout this section we will fix some characteristic, which could be either 0 or
some prime p. We will write ACF0 for the theory of fields of characteristic 0, while ACFp is
the theory of algebraically closed fields of characteristic p.

3.1. Recap on fields. Consider an inclusion K ⊆ L of fields. Recall that L can be
considered as a K-vector space and that we write [K:L] for its dimension.

Proposition 5.7. If we have two field extensions K ⊆ L ⊆M , then [M :K] = [M :L][L:K].

If K ⊆ L and ξ ∈ L, then there are two possibilities:

(1) ξ is algebraic over K. This means that there is a non-zero polynomial p(x) with
coefficients from K such that p(ξ) = 0. In this case we can consider the monic
polynomial m(x) ∈ K[x] with m(ξ) = 0 which has least possible degree: this is called
the minimal polynomial of ξ. This polynomial has to be irreducible and K(ξ), the
smallest subfield of L which contains both K and ξ, is isomorphic to K[x]/(m(x)). In
this case [K(ξ):K] is finite.

(2) ξ is transcendental over K. In this case K(ξ) is isomorphic to the quotient field K(x)
and [K(ξ):K] is infinite.

An extension K ⊆ L is called algebraic if all elements in L are algebraic over K. From
Proposition 5.7 it follows that:

(1) K(ξ) is algebraic over K precisely when ξ is algebraic over K.
(2) If K ⊆ L and L ⊆M are two field extensions and they are both algebraic, then so is

K ⊆M .

3.2. Algebraic closure.

Definition 5.8. If K ⊆ L is a field extension, then L is an algebraic closure of K, if L is
algebraic over K, but no proper extension of L is algebraic over K.

Theorem 5.9. Algebraic closures are algebraically closed.

Proof. Let L be the algebraic closure of K and p(x) be a non-constant polynomial with
coefficients from L without any roots in L. Without loss of generality we may assume that p(x)
is irreducible (otherwise replace p(x) with one of its irreducible factors); but then L[x]/(p(x))
is a proper algebraic extension of L and K, which is a contradiction. �

Theorem 5.10. Every field K has an algebraic closure.

Proof. Let X the collection of algebraic field extensions of K and order by embedding of
fields. We restrict attention to those fields whose cardinality is bounded by the maximum of
|K| and ℵ0, and therefore X is a set (essentially). Clearly, every chain of embeddings has an
upper bound in X, so by Zorn’s Lemma X has a maximal element L. This field is an algebraic
closure of X: for if L ⊂ M is a proper extension of fields and ξ ∈ M − L, then ξ cannot be
algebraic over K. For otherwise L ⊂ L(ξ) ∈ X, contradicting maximality of L. �

Theorem 5.11. Algebraic closures are unique up to (non-unique) isomorphism.
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Proof. By a back and forth argument. Let L and M be algebraic closures of K. Since
L and M must have the same infinite cardinality κ = max(|K|,ℵ0), we can fix enumerations
{li : i ∈ κ} and {mi : i ∈ κ} of L and M , respectively. By induction on i ∈ κ we will construct
an increasing sequence of isomorphisms fi:Li → Mi between subfields of L and M such that⋃
Li = L and

⋃
Mi = M . We start by declaring f0 to be isomorphism between the isomorphic

copies of K inside L and M ; and at limit stages we simply take the union.

At successor stage i + 1, we can write i = λ + k with λ a limit ordinal and k a finite
ordinal. If k = 2j, then look at the minimal polynomial m(x) = anx

n + an−1x
n−1 + . . . + a0

of lλ+j over Li: such a thing exists because L is algebraic over K and hence over Li. Because
M is algebraically closed, there exists a root m ∈ M of the polynomial n(x) = fi(an)xn +
fi(an−1)xn−1 + . . .+ f(a0); since fi is an isomorphism, the polynomial n(x) is irreducible over
Mi and since M is algebraically closed, n(x) must be the minimal polynomial of m ∈ M over
Mi. So we can extend the isomorphism by sending lλ+j to m:

fi+1:Li(lλ+j) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If k = 2j + 1, then we can use a similar argument to show that the isomorphism fi can be
extended to one whose codomain includes mλ+j . �

3.3. Categoricity. A similar argument shows:

Theorem 5.12. The theories ACF0 and ACFp are λ-categorical for any uncountable λ.

Proof. Let L and M be two algebraically closed fields of the same uncountable cardinality
λ and fix enumerations {li : i ∈ λ} and {mi : i ∈ λ} of L and M , respectively. By induction on
i ∈ λ we will construct an increasing sequence of isomorphisms fi:Li → Mi between subfields
of L and M of cardinality strictly less than λ such that

⋃
Li = L and

⋃
Mi = M . We start by

declaring f0 to be isomorphism between the isomorphic copies of Q (if the characteristic is 0)
or Fp (if the characteristic is p) inside L and M ; and at limit stages we simply take the union.

At successor stage i + 1, we can again write i = λ + k with λ a limit ordinal and k a
finite ordinal. If k = 2j, then there are two possibilities for lλ+j vis-à-vis Li: it can either
be algebraic or transcendental. If it is algebraic, we proceed as in the proof of the previous
theorem. We look at the minimal polynomial m(x) = anx

n + an−1x
n−1 + . . .+ a0 of lλ+j over

Li and use that M is algebraically closed to find an element m ∈M with minimal polynomial
n(x) = fi(an)xn + fi(an−1)xn−1 + . . . + f(a0) over Mi. And we extend the isomorphism by
sending lλ+j to m:

fi+1:Li(lλ+j) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If, one the other hand, lλ+j is transcendental over Li, we use the fact that |Mi| < |M | to deduce
that M also contains an element m ∈M which transcendental over Mi. And the isomorphism
can be extended by sending lλ+j to m:

fi+1:Li(lλ+j) ∼= Li(x) ∼= Mi(x) ∼= Mi(m).

If k = 2j + 1, then we can use a similar argument to show that the isomorphism fi can be
extended to one whose codomain includes mλ+j . �

Corollary 5.13. The theories ACF0 and ACFp are complete.
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4. Exercises

Exercise 14. Show that DLO is not λ-categorical for any λ > ω.

Exercise 15. Show that the embedding (Q, <) ⊆ (R, <) is elementary.

Exercise 16. By a graph we will mean a pair (V,E) where V is a non-empty set and E is
a binary relation on V which is both symmetric and irreflexive. We will refer to the elements
of V as the vertices and the elements of E as the edges. If xEy holds for two x, y ∈ V , we say
that x and y are adjacent.

A graph (V,E) will be called random if for any two finite sets of vertices X and Y which
are disjoint there is a vertex v 6∈ X ∪ Y which adjacent to all of the vertices in X and to none
of the vertices in Y . We will write RG for the theory of random graphs.

Show that the theory RG is ω-categorical, and hence complete.

Exercise 17. Show that the theory ACF0 is not ω-categorical.

Exercise 18. Let ϕ be a sentence in the language of rings. Show that the following are
equivalent:

(i) ϕ is true in the complex numbers.
(ii) ϕ is true in every algebraically closed field of characteristic 0.
(iii) ϕ is true in some algebraically closed field of characteristic 0.
(iv) There are arbitrarily large primes p such that ϕ is true in some algebraically closed

field of characteristic p.
(v) There is an m such that for all p > m, the sentence ϕ is true in all algebraically closed

fields of characteristic p.





CHAPTER 6

Ehrenfeucht-Fräıssé games

This chapter will be devoted to a game-theoretic characterisation of the notion of elementary
equivalence. This interpretation in terms of games are not just fun: it can often be applied in
situations where other methods fail.

Throughout this chapter we will, for simplicity, be working in a finite language without
function symbols.

1. Definition of the game

Definition 6.1. Given two models M and N and a natural number n ∈ N we define a
game as follows. It is a two-player game in which two players, player I (who is male) and
player II (who is female), move in turn. Player I starts and the game ends after n rounds, so
after both players have played n moves. A move by a player consists of picking an element
from one of the two structures. Player I has complete freedom and can pick an element from
whichever structures he likes, but player II always has to reply by picking an element from the
other structure (that is, player II is not allowed to respond by picking an element from the
same structure as the one player I just played in). So if in round i player I chooses an element
ai ∈ M , player II replies by picking an element bi ∈ N , and if in round i player I chooses
an element bi ∈ N , then player II replies by picking an element ai ∈ M . After n rounds the
two players have constructing two sequences (a1, . . . , an) and (b1, . . . , bn) of elements from M
and N , respectively. Player II wins if {(ai, bi) : 1 ≤ i ≤ n} is a well-defined injective function
f : {a1, . . . , an} → N and, moreover, this function is a local isomorphism; otherwise player I
wins. We denote this game by Gn(M,N) and we call it an Ehrenfeucht-Fräıssé game.

Let us first remark that:

Proposition 6.2. One of the players has a winning strategy in Gn(M,N).

This is a consequence of a general result in game theory:

Theorem 6.3. (Zermelo) In a two-player game of perfect information in which there are
no infinite plays and no ties, one of the two players has a winning strategy.

Proof. (Sketch) Let us say that a position in the game is losing for a player if in that
position the other player has a winning strategy. The idea is that if none of the two players has
a winning strategy, both can play in such a way that they avoid any losing positions. That is, if
player II does not have a winning strategy, player I can play a move after which the position is
not lost for him. But if player I also does not have a winning strategy, the position after he has
played this move is also not lost for player II. That means that player II can reply by playing
a move after which the position is not lost for her. But after player II has played such a move,
the position is also not lost for player I: because otherwise the position just before player II

27
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played her move must have been lost for player I. This means that player I can reply by playing
a move after which the position is not lost for him; actually, it will not be lost for either of the
two players. By proceeding in this vein both players end up playing a game of infinite length,
which contradicts the assumption that any possible way of playing the game ends after a finite
number of moves in a win for one of the two players. �

The reason we are interested in Ehrenfeucht-Fräıssé games is that they allow us to charac-
terise elementary equivalence.

Theorem 6.4. Let L be a finite language without function symbols and let M and N be
L-structures. Then M ≡ N if and only if the player II has a winning strategy in Gn(M,N) for
all n.

A more refined statement is true. To formulate it, we need the following definition.

Definition 6.5. The quantifier-depth dp(ϕ) of a formula ϕ is defined inductively as follows:

- dp(ϕ) = 0 if ϕ is atomic.
- dp(ϕ�ψ) = max{dp(ϕ),dp(ψ)} for � ∈ {∧,∨,→}.
- dp(¬ϕ) = dp(ϕ),
- dp(∃xϕ) = dp(∀xϕ) = dp(ϕ) + 1.

We will write M ≡n N if
M |= ϕ⇔ N |= ϕ

for any sentence ϕ with quantifier-depth at most n.

Theorem 6.6. Let L be a finite language without function symbols and let M and N be
L-structures. Then M ≡n N if and only if the player II has a winning strategy in Gn(M,N).

The proof of this theorem is a bit finicky: we will give it in Section 3. But before we give
this proof, let us first discuss an application.

2. An application

We give one application of this theorem. Let L = {<} and let T be the L-theory asserting
that < is a discrete linear order without greatest or smallest element. Discreteness means:

∀x∃y0 ∃y1

(
y0 < x < y1 ∧ ∀z ( z < x→ z ≤ y0 ∧ x < z → y1 ≤ z )

)
,

where x ≤ y abbreviates x < y ∨ x = y. In other words, discreteness means that each element
has an immediate successor and predecessor. For example, (Z, <) is a model of T .

We claim that T is a complete theory, or, equivalently that any model N of T is elementarily
equivalent to (Z, <).

Proposition 6.7. The theory T of discrete linear orders with no top or bottom element is
a complete theory. In particular, (Z, <) |= ϕ if and only if T |= ϕ for all L-sentences ϕ.

Proof. We are going to use games. But before we do this, we should first try to understand
how a model N of T looks like.

For elements a, b ∈ N let us write aEb if b is the nth successor or predecessor of a for some
natural number n. Then E is an equivalence relation and each E-class is a linear order that
looks like (Z, <). In addition, the collection of E-classes is linearly ordered as well (by saying
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that [a] < [b] if ¬E(a, b) ∧ a < b). This means that every model of T is of the form (L× Z, <),
where L is a linear order and < is the lexicographic order on L × Z (that is, (i, a) < (j, b) if
i < j, or both i = j and a < b). Conversely, every linear order of this form is a model of T .

So let M be (Z, <), and let N be L×Z with the lexicographic order, where L is any linearly
ordered set. We wish to show that M ≡ N and we do this by supplying for each natural number
n a winning strategy for player II in the game Gn(M,N).

If a, b ∈ Z, we define the distance between a and b to be dist(a, b) = |b − a|, and if
x = (i, a), y = (j, b) ∈ L × Z, we define the distance to be dist(x, y) = |b − a| if i = j and
dist(a, b) = ∞ if i 6= j. The problem for player II is that player I can play elements that are
infinitely far apart in N and force player II to play elements that are finitely far apart in M .
The crux is that the number of rounds that the game will last has been fixed in advance (and
player II knows this number) and if player II can play elements that are sufficiently far apart
to avoid conflicts, then she can win the game. Indeed, we claim that if the game lasts i more
rounds then Player II only has to ensure that distances < 2i are preserved. More precisely,
player II can win by ensuring the following condition:

(†) After m rounds of Gn(M,N) we have ai < aj iff bi < bj and ai = aj iff
bi = bj and min(dist(ai, aj), 2

n−m) = min(dist(bi, bj), 2
n−m).

Clearly, if player II can actually achieve this, she will win because after n rounds there will be
a local isomorphism.

So it remains to argue that player II can always choose a move to preserve (†). In round 1,
player II chooses an arbitrary element and (†) holds. Suppose that we have played m rounds
and (†) holds, and the moves played so far have been a1, . . . , am in M and b1, . . . , bm in N .
Suppose that player I plays b ∈ L× Z. There are several cases to consider.

(1) b < bi for all i. Suppose bj is the smallest element of the bi. Then choose a =
aj −min(dist(b, bj), 2

n−m−1).
(2) bi < b < bj for some i and j. Choose i and j such that bi < b < bj and there are no

bk such that bi < bk < bj .
(a) If dist(b, bi) < 2n−m−1, then put a = ai + dist(b, bi).
(b) If dist(b, bj) < 2n−m−1, then put a = aj − dist(b, bj).
(c) If dist(b, bi) ≥ 2n−m−1 and dist(b, bj) ≥ 2n−m−1, then dist(bi, bj) ≥ 2n−m and

dist(ai, aj) ≥ 2n−m. Put a = ai + 2n−m−1.
(3) If b > bi for all i. Suppose bj is the biggest element of the bi. Then choose a =

aj + min(dist(b, bj), 2
m−n−1).

This explains the strategy if player I plays b ∈ L × Z. The case where player I plays a ∈ Z is
simpler and left to the reader. �

3. A proof

The aim of this section give a proof (sketch) for Theorem 6.6. We start off with some
syntactic considerations.

A formula is a boolean combination of formulas in S if it can be obtained from S by applying
conjunction, disjunction, implication and negation (that is, all the possible propositional oper-
ations). In addition, let us say that a collection of formulas S is finite up to logical equivalence
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if there is a finite set of formulas S0 ⊆ S such that each element in S is logically equivalent to
some element in S0.

Lemma 6.8. Let A be a collection of formulas and assume B consists of all boolean combi-
nations of A.

(i) If M and N make the same formulas in A true, then they also make the same formulas
in B true.

(ii) If A is finite up to logical equivalence, then so is B.

Proof. (i) is proved by induction on the logical complexity of the formulas in B.

(ii): Suppose each element in A is logically equivalent to some element of {ϕ0, . . . , ϕn−1}.
Then each element ψ ∈ B is equivalent to a formula of the form∨

σ∈S

( ∧
{i :σ(i)=1}

ϕi ∧
∧

{i :σ(i)=0}

¬ϕi
)

for some S ⊆ {0, 1}n. Details are left to the reader. �

Definition 6.9. Let us say that for a set of variables {x1, . . . , xm} and a natural number
n a formula ϕ is special if:

(1) either n = 0 and ϕ is an atomic formula with free variables among {x1, . . . , xm}, or
(2) n > 0 and ϕ is of the form ∃xm+1 ϕ where ϕ is a formula with quantifier-depth at

most n− 1 and free variables among {x1, . . . , xm+1}.

Lemma 6.10. Let L be a finite language without function symbols.

(i) Every formula with quantifier-depth at most n and free variables among {x1, . . . , xm}
is logically equivalent to a boolean combination of special formulas with respect to
{x1, . . . , xm} and n.

(ii) The collection of formulas with quantifier-depth at most n and free variables among
{x1, . . . , xm} is finite up to logical equivalence.

Proof. (i) Each quantifier-free formula is a boolean combination of atomic formulas, and
each formula of quantifier-depth at most n+1 is a boolean combination of formulas of the form
∃xϕ and ∀xϕ with ϕ having quantifier-depth at most n. Up to logical equivalemce, we can
rename variables so that x becomes xm+1 and eliminate ∀xϕ in favour of ¬∃x¬ϕ.

(ii) is proved by induction. For n = 0 observe that the number of atomic formulas with
free variables among {x1, . . . , xm} is finite. So then this follows from point (i) in this lemma
and point (ii) in the previous lemma. For the induction step we argue in the same way, with
special formulas instead of atomic formulas. �

Theorem 6.11. Let L be a finite language without function symbols and let M and N be
L-structures. Then M ≡n N if and only if the player II has a winning strategy in Gn(M,N).

Proof. (Sketch) ⇒: Suppose M ≡n N . We will outline a winning strategy for player II.
Suppose player I plays a move a ∈M (the case that player I plays an element b ∈ N is similar).
We claim that player II can choose an element b ∈ N in such a way that (M,a) ≡n−1 (N, b).
(This statement should be understood in the following way: if we would add a constant c to
the language and interpret it as a in M and b in N , then M and N are (n − 1)-elementary
equivalent in the extended language.)



4. EXERCISES 31

Indeed, suppose that {ϕi(x0) : i ∈ I} is a finite set of formulas of quantifier-depth at most
n−1 and with free variable {x0} and suppose that each such formula is equivalent to an element
in this set. Put

ψ(x0): =
∧
{ϕi(x0) : M |= ϕi(a)} ∧

∧
{¬ϕi(x0) : M 6|= ϕi(a)}.

Then M |= ∃x0 ψ(x0), because M |= ψ(a). Since M ≡n N and ∃x0 ψ(x0) is of quantifier-depth
n, there is an element b ∈ N such that N |= ψ(a). But then (M,a) ≡n−1 (N, b), as desired.

If player II continues in this way, the players will end up producing sequences (a1, . . . , an)
in M and (b1, . . . , bn) in N such that

(M,a1, . . . , an) ≡0 (N, b1 . . . , bn).

But then the function f(ai) = bi is a local isomorphism, so player II will win the game.

⇐: Suppose M 6≡n N . Now we will outline a winning strategy for player I.

If M 6≡n N there must a sentence of the form ∃xψ(x) where ψ has quantifier-depth n− 1
which is true in one structure, but not in the other. Suppose it is true in M (the case where
it is true in N is similar). Then player I starts by picking an element a ∈ M such that
M |= ψ(a). Player II has to respond by picking an element b ∈ N . But then N 6|= ψ(b), so
(M,a) 6≡n−1 (N, b).

If player I continues in this way, the players will end up producing sequences (a1, . . . , an)
in M and (b1, . . . , bn) in N such that

(M,a1, . . . , an) 6≡0 (N, b1 . . . , bn).

But then f(ai) = bi, even when this defines a function, cannot be a local isomorphism. Therefore
player I wins the game. �

4. Exercises

Exercise 19. Give a direct proof of Proposition 6.2, that is, without using Theorem 6.3.
Hint: Simply use induction on n.

Exercise 20. Let L be the first-order language of linear ordering. Show that if h < 2k

then there is a formula ϕ(x, y) of L of quantifier depth ≤ k which expresses (in any linear
ordering) “x < y and there are at least h elements strictly between x and y”.

Exercise 21. The circle of length N ∈ N is the structure CN : = (CN , R), where CN =
{0, . . . , N − 1} and R = {(i, j) ∈ CN × CN : j = i+ 1 mod N}.

(a) Give a function f :N→ N such that CN ≡n CN ′ whenever N,N ′ ≥ f(n).
(b) Is there a first-order formula ϕ such that CN |= ϕ if and only if N is even?

Exercise 22. Show that there is no formula of first-order logic which expresses “(a, b) is
in the transitive closure of R”, even on finite structures. (For infinite structures it is easy to
show there is no such formula.)





CHAPTER 7

Types

1. Terminology

One of the most important notions in model theory is that of a type. Intuitively, a type is
the complete list of formulas ϕ(x1, . . . , xn) satisfied by some tuple (a1, . . . , an).

Definition 7.1. Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables. If A
is an L-structure and a1, . . . , an ∈ A, then the type of (a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an) };
we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A is understood. An n-
type in L is a set of formulas of the form tpA(a1, . . . , an) for some L-structure A and some
a1, . . . , an ∈ A. (I will sometimes call types complete types to distinguish them from the partial
types defined below.)

Some observations:

– If i:A → B is an elementary embedding and a1, . . . , an ∈ A, then (a1, . . . , an) and
(f(a1), . . . , f(an)) have the same type.

– Two n-tuples (a1, . . . , an) from A and (b1, . . . , bn) from B satisfy the same n-type
precisely when (A, a1, . . . , an) ≡ (B, b1, . . . , bn). (This is supposed to mean: add new
constants c1, . . . , cn to the language and regard A and B as (L ∪ C)-structures by
interpreting ci as ai in A and as bi in B.)

It will occasionally be useful to also consider “incomplete” (or even inconsistent) lists of
formulas: this is a partial type.

Definition 7.2. Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables. A
partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

– If p(x1, . . . , xn) is a partial n-type in L, we say (a1, . . . , an) realizes p in A if every
formula in p is true of a1, . . . , an in A.

– If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say that p is
realized or satisfied in A if there is some n-tuple in A that realizes p in A. If no such
n-tuple exists, then we say that A omits p.

What distinguishes the (complete) types among the partial types? Essentially, the types
are the maximally consistent partial types. This follows from the fact that they can be realized
in some model, and that they contain either ϕ(x1, . . . , xn) or ¬ϕ(x1, . . . , xn) for any L-formula
ϕ whose free variables are among the fixed variables x1, . . . , xn. And, indeed, if a partial type
has these two properties it must be a complete type: for if a partial n-type p is realized by
(a1, . . . , an), we must have p ⊆ tp(a1, . . . , an). If p is also complete, then p ⊇ tp(a1, . . . , an)
follows as well. (For if ϕ 6∈ p, then ¬ϕ ∈ p, so ¬ϕ ∈ tp(a1, . . . , an), hence ϕ 6∈ tp(a1, . . . , an).)

33
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2. Types and theories

Definition 7.3. Let T be a theory in L and let p = p(x1, . . . , xn) be a partial n-type in
L. If T has a model realizing p, then we say that p is consistent with T or that p is a type of
T . The set of all complete n-types consistent with T is denoted by Sn(T ).

Observe:

Lemma 7.4. Let T be a theory and p be a partial n-type consistent with T . Then p can be
extended to a complete n-type q which is still consistent with T .

Proof. If p(x) is some partial n-type consistent with T then, by definition, there is some
model M of T in which there is some n-tuple of elements a realizing p(x). Then q = tpM (a) is
a complete type consistent with T and extending p. �

Suppose p is consistent with T and M is a model of T : does this mean that p will be
realized in M? The answer is no: the types consistent with T are those types that are realized
in some model of T . It may very well happen that M is a model of T and p is an n-type
consistent with T , but p is not realized in M , even when the theory T is complete. So what
can we say?

Definition 7.5. If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that p is finitely satisfiable in A if any finite subset of p is realized in A.

Proposition 7.6. Let M be a model of a complete theory T . Then a partial type p is
consistent with T if and only if it is finitely satisfiable in M .

Proof. First suppose that p is consistent with T . To show that p is finitely satisfiable in
M , let ϕ1(x), . . . , ϕn(x) be finitely many formulas in p. We must have

T |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

for if this is not true, then T |= ¬∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
by completeness of T . But then p

cannot be satisfied in any model of T , contradicting the fact that p is consistent with T . So, if
M is a model of T , we must have

M |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

since ϕ1(x), . . . , ϕn(x) were arbitrary, the type p is finitely satisfiable in M .

Conversely, suppose that p is finitely satisfiable in M . Add a fresh constant c to the
language and look at the theory

T ′ = T ∪ {ϕ(c) : ϕ ∈ p}.
If p is finitely satisfiable in M , then M is a model for every finite subset of T ′. So, by the
compactness theorem, T ′ has a model N : this is a model of T in which p is realized, showing
that p is consistent with T . �

The next lemma formulates some useful properties of finitely satisfiable partial types.

Lemma 7.7. Let M be a model and p be a partial type.

(1) If M ≡ N and p is finitely satisfiable in M , then p is also finitely satisfiable in N .
(2) p is finitely satisfiable in M if and only if p is realized in some elementary extension

of M .
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(3) If p is finitely satisfiable in M , then p can be extended to a complete type q which is
still finitely satisfiable in M .

Proof. (1) If M ≡ N then M and N are models of the same complete theory T . So
if p is finitely satisfiable in M , then it is consistent with T and hence finitely satisfiable
in N (using the previous proposition twice, once for M and once for N).

(2) Consider the theory T = ElDiag(M) ∪ {ϕ(c) : ϕ ∈ p}, where c is a fresh constant
which does not occur in L. If p is finitely satisfiable in M , then M is a model of
every finite subset of T , so, by the compactness theorem, T has a model N . This, by
construction, is a model in which M embeds and in which p is realized.

Conversely, if p is realized in some elementary extension of M , then this extension
is a model which is elementary equivalent to M and in which p is (finitely) satisfied,
so p is finitely satisfiable in M by (1).

(3) By (2) p is realized in some elementary extension, by some element a say. Then the
type of a in this elementary extension is a complete type extending p.

�

3. Type spaces

Crucially, the set Sn(T ) can be given the structure of a topological space. To see this,
consider sets in Sn(T ) of the form

[ϕ(x1, . . . , xn)] = { p ∈ Sn(T ) : ϕ ∈ p },
where ϕ(x1, . . . , xn) is some formula. The following lemma states some basic properties of
sets of the form [ϕ]: they are not hard to prove (in fact, they are direct consequences of the
completeness properties of types).

Lemma 7.8.

[ϕ] ⊆ [ψ]⇔ T |= ϕ→ ψ

[ϕ] = [ψ]⇔ T |= ϕ↔ ψ

[⊥] = ∅
[>] = Sn(T )

[ϕ] ∩ [ψ] = [ϕ ∧ ψ]

[ϕ] ∪ [ψ] = [ϕ ∨ ψ]

[ϕ]c = [¬ϕ]

Since
[ϕ ∧ ψ] = [ϕ] ∩ [ψ] and [>] = Sn(T )

sets of the form [ϕ] constitute a basis. The topology generated from these sets is called the
logic topology and we have:

Theorem 7.9. The set Sn(T ) with the logic topology is a compact Hausdorff space with a
basis of clopens.

Proof. Since [ϕ]c = [¬ϕ] it is clear that each basic open set is also closed. In addition, if
p and q are two n-types and p 6= q, then there is some formula ϕ such that ϕ ∈ p and ϕ 6∈ q (or
vice versa). But the latter means that ¬ϕ ∈ q, so [ϕ] and [¬ϕ] are two disjoint open sets with p
being an element of the first set and q being an element of the second. So Sn(T ) is Hausdorff.
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To see that Sn(T ) is compact, let (Ui)i∈I be a collection of opens such that
⋃
i∈I Ui. The

task is to find a finite subset I0 ⊆ I such that
⋃
i∈I0 Ui = Sn(T ). Since every open set is a union

of basis elements, we may just as well assume that each Ui is of the form [ϕi]. Now suppose
that

⋃
i∈I [ϕi] = Sn(T ) but there is no finite subset I0 such that

⋃
i∈I0 [ϕi] = Sn(T ).

Consider the partial type

p(x) = {¬ϕi(x) : i ∈ I}.
We claim that p(x) is consistent with T : for if not, there would be i1, . . . , in ∈ I such that

{¬ϕi1 , . . . ,¬ϕin}
would already be inconsistent with T , by the compactness theorem. But then

[¬ϕi1 ∧ . . . ∧ ¬ϕin ] = [¬ϕi1 ] ∩ . . . ∩ [¬ϕin ] = ∅,
and hence

[ϕi1 ∨ . . . ∨ ϕin ]c = [¬(ϕi1 ∨ . . . ∨ ϕin)] = [¬ϕi1 ∧ . . . ∧ ¬ϕin ] = ∅.
Therefore

[ϕi1 ∨ . . . ∨ ϕin ] = [ϕi1 ] ∪ . . . ∪ [ϕin ] = Sn(T ),

contradicting our assumption.

So the type p(x) is consistent with T . But that means that p can be extended to a complete
type q(x) which is still consistent with T (see Lemma 7.4). So q ∈ Sn(T ), but q 6∈ [ϕi] for any
i as q extends p. This contradicts our assumption that

⋃
i∈I [ϕi] = Sn(T ). We conclude that

Sn(T ) is compact. �

Remark 7.10. Compact Hausdorff spaces with a basis of clopens are called Stone spaces,
after Marshall Stone who established a duality between these spaces and Boolean algebras.

4. Exercises

Exercise 23. Suppose M is an L-structure and σ:M → M is an automorphism of M .
Show that for any n-tuple m = (m1, . . . ,mn) of elements from M , the types of m and σ(m) =
(σm1, . . . , σmn) are the same.

Exercise 24. Let κ be an infinite cardinal with κ ≥ |L|, and let T be a κ-categorical L-
theory without finite models. Show that if M is a model of T of cardinality κ, then M realizes
all n-types over T .

Exercise 25. Use the previous two exercises to determine all Sn(T ) for

(a) T = DLO, the theory of dense linear orders without endpoints.
(b) T = RG, the theory of the random graph.
(c) T = ACF0, the theory of algebraically closed fields of characteristic 0.

Exercise 26. In this exercise we look at the theory V SQ of vector spaces over Q of positive
dimension. The language of this theory contains symbols + and 0, for vector addition and the
null vector, as well as unary operations mq, one for every q ∈ Q, for scalar multiplication with
q. The theory V SQ has axioms expressing that (+, 0) is an infinite Abelian group on which Q
acts as a set of scalars.

(a) For which infinite κ is V SQ κ-categorical?
(b) Show that V SQ is complete.
(c) Determine all type spaces Sn(T ) for T = V SQ.
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Exercise 27. Show that the theory of (R, 0,+) has exactly two 1-types and ℵ0 many
2-types. Hint: Think of the previous exercise.

Exercise 28. We work in the language consisting of a single binary relation symbol E.
Let T be the theory expressing that E is an equivalence relation, that all the equivalence classes
are infinite and that there are infinitely many equivalence classes.

(a) Convince yourself that there is such a first-order theory T .
(b) For which infinite κ is T κ-categorical?
(c) Give a complete description of all Sn(T ).

Exercise 29. (a) Consider M = (Z,+) and T = Th(M). Determine for any pair
of elements a, b ∈ M whether they realize the same or different 1-types. Are there
1-types consistent with T that are not realized in M?

(b) Idem dito for M = (Z, ·).





CHAPTER 8

Isolated types and the omitting types theorem

Types can either be isolated or not: this is the most important distinction one can make
between different kinds of types. A type is isolated if it is an isolated point in the type space:
this turns out to be equivalent to saying that it is generated by a single formula (for this reason
isolated types are also often called principal types).

Isolated types and non-isolated types behave very differently. Indeed, suppose T is a
complete theory formulated in a countable language. Then every isolated type will be realized
in every model of T , while for any non-isolated type there will be at least one model in which
it is omitted. The aim of this chapter is to prove these facts.

1. Isolated types

Definition 8.1. A formula ϕ(x) is called complete or isolating over a theory T if ∃xϕ(x)
is consistent with T and we have

T |= ϕ(x)→ ψ(x) or T |= ϕ(x)→ ¬ψ(x)

for any formula ψ(x).

Note that if a formula ϕ(x) is complete, then

p(x) = {ψ(x) : T |= ϕ(x)→ ψ(x) }

is a type. Indeed, we will have {p} = [ϕ], showing that p is isolated point in the type space. In
general, we have:

Proposition 8.2. Let T be a theory and p be a complete type of T . Then the following
are equivalent:

(1) The type p is an isolated point in the space Sn(T ).
(2) The type p contains a complete formula.
(3) There is a formula ϕ(x1, . . . , xn) ∈ p such that

T |= ϕ(x)→ ψ(x)

for every ψ(x) ∈ p(x).

Proof. These are all different ways of saying that {p} = [ϕ] for some formula ϕ. �

A type will be called isolated if it satisfies any of the equivalent conditions in the previous
proposition. It will be useful to extend the notion of isolatedness to partial types, which we do
as follows:

39
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Definition 8.3. Let T be an L-theory and p(x) be a partial type. Then p(x) is isolated
in T if there is a formula ϕ(x) such that ∃xϕ(x) is consistent with T and

T |= ϕ(x)→ ψ(x)

for all ψ(x) ∈ p(x).

Proposition 8.4. Let T be a complete theory and p be a partial type which is consistent
with T . If p is isolated, then p is realized in every model of T .

Proof. Let M be a model of T and suppose that ϕ(x) is a formula such that ∃xϕ(x) is
consistent with T and

T |= ϕ(x)→ ψ(x)

for all ψ(x) ∈ p(x). If ∃xϕ(x) is consistent with T and T is complete, we must have

T |= ∃xϕ(x),

and therefore

M |= ∃xϕ(x).

So we have some n-tuple m such that M |= ϕ(m). This implies that M |= ψ(m) for every
ψ ∈ p, so p is realized in M . �

2. The omitting types theorem

Our next task it to prove a kind of converse to Proposition 8.4, showing that non-isolated
types can be omitted. For this we need the following result, which was Proposition 2.5:

Proposition 8.5. (=Proposition 2.5) Suppose T is a consistent theory in a language L
and C is a set of constants in L. If for any formula ψ(x) in the language L there is a constant
c ∈ C such that

∃xψ(x)→ ψ(c) ∈ T,
then T has a model whose universe consists entirely of interpretations of elements of C.

Theorem 8.6. (Omitting types theorem) Let T be a consistent theory in a countable lan-
guage. If a partial type p(x) is not isolated in T , then there is a countable model of T which
omits p(x).

Proof. Let C = {ci ; i ∈ N} be a countable collection of fresh constants and LC be the
language L extending with these constants. Let {ψi(x) : i ∈ N} be an enumeration of the
formulas with one free variable in the language LC .

We will now inductively create a sequence of sentences ϕ0, ϕ1, ϕ2, . . ., and then apply Propo-
sition 8.5 to T ′ = T ∪ {ϕ0, ϕ1, . . .} and the set of constants C.

If n = 2i, we take a fresh constant c ∈ C (one that does not occur in ϕm with m < n) and
put

ϕn = ∃xψi(x)→ ψi(c).

This makes sure that the witnessing condition from Proposition 8.5 will be satisfied.

If n = 2i+1 we make sure that ci omits p(x), as follows. Consider δ =
∧
m<n ϕm, and write

δ as δ(ci, c) where c is a sequence of constants not containing ci. Since p(x) is not isolated,
there must be a formula σ(x) ∈ p(x) such that

T 6|= ∃y δ(x, y)→ σ(x);
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in other words, there is a formula σ(x) ∈ p(x) such that T ∪{∃y δ(x, y)}∪{¬σ(x)} is consistent.
Put ϕn = ¬σ(ci).

The proof is now finished by showing by induction that each T ∪{ϕ0, . . . , ϕn} is consistent
and then applying Proposition 8.5. �

3. Exercises

Exercise 30. Consider all the type space Sn(T ) from the exercises in the previous chapter.
Determine for each type in Sn(T ) whether it is isolated or not. Also, if the type is isolated, find
a complete formula in it; and if the type is not isolated, find a model in which it is omitted.

Exercise 31. Prove the generalised omitting types theorem: Let T be a consistent theory
in a countable language and let {pi : i ∈ N} be a sequence of partial ni-types (for varying ni).
If none of the pi is isolated in T , then T has a countable model which omits all pi.

Exercise 32. Prove that the omitting types theorem is specific to the countable case: give
an example of a consistent theory T in an uncountable language and a partial type in T which
is not isolated, but which is nevertheless realised in every model of T .





CHAPTER 9

Prime models

Type spaces provide a lot of information about a theory. In fact, certain model-theoretic
properties of a theory turn out to correspond precisely with certain topological properties of
the type spaces. We will see a first example of this phenomenon here: we will prove that a
theory has what is called a prime model if and only if the isolated points are dense in every type
space of this theory. In order to prove this we exploit quite heavily the properties of isolated
and non-isolated types that we established in the previous chapter (that is, they rely on the
fact that isolated types are realized in every model of a theory, while non-isolated types can be
omitted).

I should add that what I wrote in the previous paragraph is true only for sufficiently nice
theories. In fact, from now on we will often assume that a theory T

– is complete,
– has infinite models, and
– is formulated in a countable language.

If T satisfies these conditions, I will call T nice (this is not standard terminology). Note that
nice theories have models of every infinite cardinality κ, do not have finite models and are such
that every type over T is already realized in a countable model of T .

1. Atomic models

Before we embark on a study of prime models, we will first look at atomic models.

Definition 9.1. A model A is atomic if it only realises isolated types in Sn(Th(A)); put
differently, a model is atomic if it omits all non-isolated types in Sn(Th(A)).

Before we proceed, let us unwind this definition. Suppose A is an atomic model and a is
a tuple of elements from A. Then, by definition, p: = tpA(a) is an isolated type over Th(A).
This means that it contains a complete formula ϕ(x) such that

Th(A) |= ϕ(x)→ ψ(x)

if and only if ψ(x) ∈ p. What this does is reducing the “local question” whether a satisfies a
formula ψ(x) to the “global question” whether A |= ϕ(x) → ψ(x). In other words, a model A
is atomic if for any tuple a of elements from A there is formula ϕ(x) such that for any formula
ψ(x) we have A |= ψ(a) if and only if

A |= ϕ(x)→ ψ(x).

Proposition 9.2. If A is atomic and a ∈ A, then (A, a) is atomic as well.
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Proof. Let b be a tuple of elements from (A, a). Look at (a, b). Since A is atomic there
is a formula ϕ(y, x) with A |= ϕ(a, b) and

A |= ϕ(y, x)→ ψ(y, x)

for every ψ(y, x) with A |= ψ(a, b). But then ϕ(a, x) is a formula satisfied by b such that

(A, a) |= ϕ(a, x)→ χ(x)

for every χ(x) with (A, a) |= χ(b) (because each such χ(x) can be obtained from a formula
ψ(y, x) with a substituted for y). �

For the further study of atomic models we need the notion of an elementary map.

Definition 9.3. Let M and N be two L-structures. A partial function f :X ⊆ M → N
from a subset X of M to N will be called an elementary map if

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(f(m1), . . . , f(mn))

for all L-formulas ϕ(x1, . . . , xn) and elements m1, . . . ,mn ∈ X. Note that this is equivalent to
saying that (M,x)x∈X ≡ (N, fx)x∈X .

Proposition 9.4. Let f : {a1, . . . , an} ⊆ A → M be an elementary map whose domain
is a finite subset of an atomic model A. Then for any a ∈ A there is an elementary map
g: {a1, . . . , an} ∪ {a} →M which extends f .

Proof. Suppose f : {a1, . . . , an} ⊆ A → M is an elementary map whose domain is a
finite subset of an atomic model A. Let us write a for the n-tuple 〈a1, . . . , an〉 and fa for
the n-tuple 〈fa1, . . . , fan〉. The fact that f is an elementary map is equivalent to saying that
(A, a) ≡ (M,fa).

So let a ∈ A. Since (A, a) is atomic by the previous proposition, there is a formula ϕ(x)
such that (A, a) |= ϕ(a) and

(A, a) |= ϕ(x)→ ψ(x)

for any formula ψ(x) such that (A, a) |= ψ(a). Because (A, a) |= ϕ(a) and (A, a) ≡ (M,fa), we
have (A, a) |= ∃xϕ(x) and (M,fa) |= ∃xϕ(x). So let m ∈ M be such that (M,fa) |= ϕ(m).
Then the type of a over (A, a) and the type of m over (M,fa) both contain the formula ϕ(x),
which is complete over Th(A, a) = Th(M,fa). This implies that these types are identical
and we have (M,a, a) ≡ (M,fa,m). So if we put g(a) = m and g(ai) = f(ai), then g is an
elementary map extending f . �

Theorem 9.5. Suppose A and M are two L-structures. If A is countable and atomic and
A ≡M , then A embeds elementarily into M .

Proof. Suppose {a0, a1, a2, . . .} is an enumeration of A. Using the previous proposition
one can construct an increasing sequence of elementary maps fn: {a0, . . . , an} → M , starting
with f0 = ∅ (which is an elementary map as A ≡M). But then f =

⋃
n∈N fn is an elementary

embedding A into M . �

Theorem 9.6. Suppose A and B are two L-structures which are both countable and atomic.
If A ≡ B, then A ∼= B.
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Proof. We use the back and forth method. So suppose {a0, a1, a2, . . .} and {b0, b1, b2, . . .}
are enumerations of A and B, respectively. Using Proposition 9.4 one can construct an in-
creasing sequence of elementary maps fn:X ⊆ A → B such that an ∈ dom(f2n+1) and
bn ∈ ran(f2n+2), starting with f0 = ∅. Then f =

⋃
n∈N fn is an isomorphism between A

and B. �

2. Prime models

Definition 9.7. Let T be a theory. A model M of T is called prime if it can be elementarily
embedded into any model of T .

Theorem 9.8. A model of a nice theory T is prime iff it is countable and atomic.

Proof. ⇒: Let A be a prime model of a nice theory T . As a nice theory has countable
models and A embeds in any model, A has to be countable as well. Moreover, if p is a non-
isolated type of T , then there is a model B of T in which it is omitted, by the Omitting Types
Theorem. Since A embeds elementarily into B, the type p will be omitted in A as well.

⇐: Let A be a countable and atomic model of a nice theory T and M be any other model
of T . Since T is complete, we have A ≡ M , so A embeds elementarily into M by Theorem
9.5. �

Corollary 9.9. Any two prime models of a nice theory T are isomorphic.

Proof. This follows from Theorem 9.6 and Theorem 9.8. �

Theorem 9.10. A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Proof. Let us first translate the statement that that isolated n-types are dense in Sn(T )
in more logical terms. To say that the isolated types are dense means that every non-empty
(basic) open set contains at least one isolated type: so any [ϕ] which is not empty contains
at least one isolated type p. But if p is isolated there is a complete formula ψ such that
{p} = [ψ] ⊆ [ϕ]. So the isolated types are dense in Sn(T ) if every consistent formula ϕ(x) is
the consequence over T of some complete formula ψ(x).

⇒: Let A be a prime model of T . Because a consistent formula ϕ(x) is realised in all
models of a complete theory, it is realized in A as well, by a say. Since A is atomic, ϕ(x)
belongs to the isolated type tpA(a), so is the consequence over Th(A) = T of some complete
formula ψ(x).

⇐: Suppose isolated types are dense in every type space Sn(T ). Then we define for each
natural number n a partial n-type

pn(x1, . . . , xn) = {¬ϕ(x1, . . . , xn) : ϕ is complete },
and claim that these are not isolated. Because if pn would be isolated there would be a consistent
formula ψ(x) such that

T |= ψ(x)→ ¬ϕ(x)

for any complete formula ϕ(x). But this would mean that ψ(x) could not be a consequence
of any complete formula, contradicting the fact that the isolated types are dense. So by the
generalised omitting types theorem there is a countable model A omitting all pn. But a structure
omitting all pn has to be atomic. �
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3. Exercises

Exercise 33. Let T be the theory of (R, <,Q) where Q is a predicate for the rational
numbers. Does T have a prime model?



CHAPTER 10

ω-categoricity

In this chapter we will see another example of a model-theoretic properties of a theory
which corresponds precisely with certain topological properties of the type spaces. Indeed, we
will prove that a nice theory is ω-categorical if and only if all its type spaces are finite. (Recall
that a theory is ω-categorical if all its countably infinite models are isomorphic.)

1. ω-categorical theories

Theorem 10.1. (Ryll-Nardzewski Theorem) For a nice theory T the following are equiva-
lent:

(1) T is ω-categorical;
(2) all n-types are isolated;
(3) all models of T are atomic;
(4) all countable models of T are prime.

Proof. (1)⇒ (2): If Sn(T ) contains a non-isolated type p then there is a countable model
where p is realized and a countable model where p is omitted (by the Omitting Types Theorem).
So T cannot be ω-categorical.

(2) ⇒ (3): If all types of a theory T are isolated, then any model of T can only realize
isolated types. So all models of T are atomic.

(3) ⇒ (4) follows from Theorem 9.8.

(4) ⇒ (1) follows from Corollary 9.9. �

So a nice theory T is ω-categorical iff all types over T are isolated. But to say that every
type is isolated means that there are only finitely many types.

Proposition 10.2. The following are equivalent for any theory T :

(1) All n-types are isolated.
(2) Every Sn(T ) is finite.
(3) For for every n there are only finite many formulas ϕ(x1, . . . , xn) up to equivalence

relative to T .

Proof. (1) ⇔ (2) holds because Sn(T ) is a compact Hausdorff space.

(2) ⇒ (3) If there are only finitely many n-types p1, . . . , pm, then each pi is isolated by
some complete formula ψi. We claim that each formula with free variables among x1, . . . , xn is
equivalent over T to some disjunction of the ψi, showing that up to logical equivalence there
are only finitely many formulas with free variables among x1, . . . , xn.

47
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If ϕ is any formula with free variables among x1, . . . , xn, then [ϕ] ⊆ Sn(T ), so

[ϕ] = {pi : i ∈ I}
for some I ⊆ {1, . . . ,m}. But then

[ϕ] =
⋃
i∈I
{pi} =

⋃
i∈I

[ψi] = [
∨
i∈I

ψi],

so T |= ϕ↔
∨
i∈I ψi.

(3) ⇒ (2): If every formula ϕ(x1, . . . , xn) is equivalent modulo T to one of

ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn),

then every n-type is completely determined by saying which ψi it does and does not contain. �

Corollary 10.3. Suppose A is a model in a countable language and a is some tuple of
elements from A. Then Th(A) is ω-categorical iff Th(A, a) is ω-categorical.

Proof. Every m-type p(a, x) of Th(A, a) determines an (n+m)-type p(y, x) of Th(A): so
if there are only finitely many (n+m)-types consistent with Th(A), then there are only finitely
many m-types consistent with Th(A, a).

Conversely, an m-type p consistent with Th(A) will be realized by some elements c in some
elementary extension B of A. If i:A→ B is the elementary embedding and b = ia, then (B, b)
is an elementary extension of (A, a). Then q = tp(B,b)(c) is a type over Th(A, a) extending

p. Since p ⊆ q, these extensions q have to be different for different types p, and therefore the
theory Th(A) cannot have more n-types than Th(A, a). So if the latter has only finitely many
n-types, then so does the former. �

2. Vaught’s Theorem

All of this has the following odd consequence. There are nice theories Tn having, up to
isomorphism, n models, for n = 1, 3, 4, 5, 6, . . . (see Exercise 34 below). But the case n = 2 is
impossible.

Theorem 10.4. (Vaught’s Theorem) A nice theory cannot have exactly two countable mod-
els (up to isomorphism).

Proof. If T is a nice theory which has more than one model (up to isomorphism), then T
is not ω-categorical, so there must be some type p over T which is not isolated. But then there
is a countable model A in which p is realized, by a say, and a model B in which p is omitted.
Clearly, A and B cannot be isomorphic.

Since T = Th(A) is not ω-categorical, also Th(A, a) is not ω-categorical, by the previous
corollary. So, again, there is a type q over Th(A, a) which is not isolated. Now we make a case
distinction:

(1) If q is realized in (A, a), let (C, c) be a countable model in which it is omitted. Then C
cannot be isomorphic to A; but C can also not be isomorphic to B because C realizes
p, while B omits it.

(2) If q is omitted in (A, a), let (C, c) be a countable model in which it is realized. Then C
cannot be isomorphic to A; but C can also not be isomorphic to B because C realizes
p, while B omits it.
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We conclude that any nice theory which is not ω-categorical must have at least three non-
isomorphic models. �

3. Exercises

Exercise 34. Let L3 = {<, c0, c1, c2, . . .}, where c0, c1, . . . are constant symbols. Let T3

be the theory of dense linear orders with sentences added asserting c0 < c1 < . . ..

(a) Show that T3 is a nice theory which has exactly three countable models up to iso-
morphism. Hint: Consider the questions: Does c0, c1, c2, . . . have an upper bound? A
least upper bound?

(b) Let L4 = L3 ∪ {P}, where P is a unary predicate. Let T4 be T3 with the added
sentences P (ci) and

∀x ∀y
(
x < y → ∃z ∃w (x < z < y ∧ x < w < y ∧ P (z) ∧ ¬P (w))

)
.

In other words, P is a dense-codense subset. Show that T4 is a nice theory with
exactly four countable models.

(d) Generalise (c) to give examples of nice theories which have exactly n countable models
for n = 5, 6, . . .

Exercise 35. A theory T has quantifier elimination if for any formula ϕ(x) there is a
quantifier-free formula ψ(x) such that

T |= ϕ(x)↔ ψ(x).

(a) Suppose T is a nice ω-categorical theory and each p ∈ Sn(T ) contains a complete
formula which is also quantifier-free. Deduce that T has quantifier elimination.

(b) Use (a) to show that T = DLO and T = RG have quantifier elimination.





CHAPTER 11

κ-saturated models

In the previous chapters we have looked at prime models and models of nice ω-categorical
theories: these models realize few types (indeed, as few types as possible). In this and the next
chapters we look at rich models which will realize as many types as possible: these are called
κ-saturated models. In fact, κ-saturated models of a complete theory T realise all types over
T . For this reason κ-saturated models are useful for computing type spaces: the type space of
a complete theory T can be exhaustively analysed by looking at configurations of elements in
a single κ-saturated model.

1. κ-saturated models: definition

To define κ-saturated models we need to introduce some notational conventions. Let A be
an L-structure and X a subset of A. We often refer to the elements in X as parameters. In
addition, we will use the following notation:

• We write LX for the language L extended with constants for all elements of X.
• We write (A, a)a∈X for the LX -expansion of A where we interpret the constant a ∈ X

as itself.

Definition 11.1. Let A be an infinite L-structure and κ be an infinite cardinal. We say
that A is κ-saturated if the following condition holds:

if X is any subset of A with |X| < κ and p(x) is any 1-type in LX that is
finitely satisfiable in (A, a)a∈X , then p(x) can be realized in (A, a)a∈X .

We first make a number of observations:

(1) If A is κ-saturated, then |A| ≥ κ and A is also λ-saturated for any infinite λ ≤ κ.
(2) If Y is a subset of a κ-saturated model A and |Y | < κ, then (A, y)y∈Y is κ-saturated

as well. The reason for this is that any 1-type over a set of parameters X with |X| < κ
in (A, y)y∈Y is also a 1-type over the set of parameters X ∪ Y in A, and |X ∪ Y | < κ.

(3) The definition of κ-saturation only talks about 1-types; however, if p(x1, . . . , xn) is
an n-type over a set of parameters X with |X| < κ and p is finitely satisfiable in an
κ-saturated model A, then it is realized. To see this, consider the types

p1(x1), p2(x1, x2), . . . , pn(x1, . . . , xn)

which are the types obtained from p by considering only those formulas that contain
x1, . . . , xi free. Then p1 is realized, because it is finitely satisfiable in A and A is
κ-saturated; moreover, if a1, . . . , ai realize pi, then pi+1(a1, . . . , ai, xi+1) is finitely
satisfied in (A, y)y∈X∪{a1,...,ai}, by Lemma 11.2 below, and hence realized by some
ai+1 by the previous remark. So each pi is realized, including p = pn.
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(4) The definition only talk about complete types, but this is not a genuine restriction.
Indeed, Lemma 7.7(3) tells us that any partial type that is finitely satisfied in a model
can be extended to a complete type that is finitely satisfied in that model.

Lemma 11.2. Let p(x1, . . . , xn, y) be an (n + 1)-type and let q(x1, . . . , xn) be the n-type
obtained from p by taking only those ϕ ∈ p that do not contain y free. If p is finitely satisfiable
in M and (a1, . . . , an) realizes q in M , then also p(a1, . . . , an, y) is finitely satisfiable in M .

Proof. Let ϕ1(x, y), . . . , ϕn(x, y) be finitely many formulas in p. The formula

ψ(x): = ∃y
(
ϕ1(x, y) ∧ . . . ∧ ϕn(x, y)

)
has to belong to p: if it would not, its negation would have to belong to p, and p could not
be finitely satisfiable. This means that ψ ∈ q, by definition, so M |= ψ(a). We conclude that
p(a, y) is finitely satisfiable. �

As promised, we have:

Proposition 11.3. Let M be an κ-saturated model of a complete theory T . Then M
realizes any type over T .

Proof. Let M be a model of a complete theory T . If p belongs to Sn(T ) then p is finitely
satisfiable in M by Proposition 7.6. So if M is κ-saturated, then p will be realized in M . �

2. κ-saturated models: existence

It can hard to determine whether a concrete model is κ-saturated or not: we will see some
criteria later in this chapter. However, it is not so hard to prove that they exist. In fact, we
have:

Theorem 11.4. Every structure has an κ-saturated elementary extension. So any consis-
tent theory has κ-saturated models for each κ.

The proof relies on the following lemma:

Lemma 11.5. Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied in (A, a)a∈X is
realized in (B, a)a∈X .

Proof. Let (pi(xi))i∈I be the collection of all such 1-types and bi be new constants.
Consider:

T : =
⋃
i∈I

pi(bi).

Since the pi are finitely satisfiable in (A, a)a∈A, every finite subset of T can be satisfied in
(A, a)a∈A. So, by the compactness theorem, T has a model B. Since T contains ElDiag(A),
the model A embeds into B. �

Proof. (Of Theorem 11.4.) Let us first look at the case κ = ω. Let A be an L-structure.
We will build an elementary chain of L-structures (Ai : i ∈ N). We set A0 = A and at successor
stages we apply the previous lemma. Now let B be the colimit of the entire chain.

We claim B is ω-saturated: for if X ⊆ B is a finite subset, then X is already a finite subset
of some Ai and any 1-type p with parameters from X will be realized in Ai+1, by construction,
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say by a ∈ Ai+1. Since the embedding from Ai+1 in B is elementary, the type p will also be
realized by a in B.

Note that in the previous argument we relied on the following property of ω: if (Ai)i∈ω is
an increasing sequence of sets and X is a subset of

⋃
i∈ω Ai with |X| < ω, then X ⊆ Ai for

some i ∈ ω. An infinite cardinal κ is called regular if for any increasing sequence of sets (Ai)i∈κ
and any subset X of

⋃
i∈κAi with |X| < κ there is an i ∈ κ with X ⊆ Ai. It is not hard to see

that the argument we just gave works for every regular cardinal: if κ is a regular cardinal and
A is any model, then we can create by transfinite recursion an elementary chain (Ai : i ∈ κ) of
models, starting with A0 = A; at successor stages we apply Lemma 11.5 and at limit stages we
take colimits. The colimit of the entire chain will be a model in which A embeds elementarily
and it will be κ-saturated, because κ is regular.

At this point the proof would be finished once we know that there are arbitrarily large
regular cardinals, that is, if for every cardinal κ there is a regular cardinal λ with λ ≥ κ.
According to the set theorists this is true: indeed, λ = κ+ is always regular. �

3. Tests for κ-saturation

In this section we give an equivalent characterisation of κ-saturation which is often easier
to verify. For this we need a lemma and a definition.

Lemma 11.6. Let f :X ⊆ M → N be an elementary map, and m ∈ M . If κ is an infinite
cardinal such that N is κ-saturated and |X| < κ, then f can be extended to an elementary map
whose domain includes m.

Proof. If f :X ⊆ M → N is an elementary map, then (M,x)x∈X ≡ (N, fx)x∈X . So if
p = tp(M,x)x∈X

(m), then p is finitely satisfied in (N, fx)x∈X by Lemma 7.7(1). Since (N, fx)x∈X
is also κ-saturated, we find an element n ∈ N realizing p in this model. This means that we
can extend f to an elementary map g whose domain includes m by putting g(x) = f(x) for
every x ∈ X and g(m) = n. �

Definition 11.7. A model M is called κ-homogeneous, if for any subset X of M with
|X| < κ, any elementary map f :X ⊆ M → M and any element m ∈ M , the map f can be
extended to an elementary map g whose domain includes m. A model M is called κ-universal,
if for any model N with N ≡M and |N | < κ there is an elementary embedding N �M .

Theorem 11.8. Let M be an infinite L-structure and κ be an infinite cardinal with κ ≥ |L|.
Then M is κ-saturated if and only if M is κ-homogeneous and κ+-universal.

Proof. Assume M is a κ-saturated L-structure with κ ≥ |L|. Lemma 11.6 immediately
implies that M is κ-homogeneous, so it suffices to prove that M is also κ+-universal. To this
purpose let N be a model with N ≡ M and |N | ≤ κ. Choose an enumeration N = (nα)α∈κ;
the idea is to construct by transfinite recursion on α an increasing sequence of elementary maps
fα: {nβ :β < α} ⊆ N → M . (Note that |{nβ :β < α}| < κ for each α ∈ κ.) Since N ≡ M , we
can start by putting f0 = ∅; at successor stages we use Lemma 11.6 and at limit stages we take
unions.

Conversely, suppose M is an infinite model which is κ-homogeneous and κ+-universal and
p is a complete 1-type with parameters X ⊆ M and |X| < κ which is finitely satisfied in M .
We know by the Skolem-Löwenheim Theorems that p is realized by some element n in some
LX -structure N with |N | ≤ κ. Since M is a κ+-universal L-structure there is an L-elementary
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embedding i:N → M . Note that i need not be an LX -elementary embedding, so that for any
x ∈ X there may be a difference between i(xN ) and xM . But by the completeness of p we know
that the partial map f from M to itself defined by sending i(xN ) to xM is elementary. Since M
is κ-homogeneous, we know that this elementary map can be extended by one whose domain
includes i(n); write g for such an extension and m = g(i(n)). Then m realizes p in M . �

4. Exercises

Exercise 36. Let L be a language and κ be an infinite cardinal with κ ≥ |L|. An infinite
L-structure M is called strongly κ-homogeneous if every elementary map f :X ⊆M →M with
|X| < κ can be extended to an automorphism of M .

(a) Show that a κ-homogeneous model of cardinality κ is strongly κ-homogeneous.
(b) Show that a saturated model of cardinality κ is strongly κ-homogeneous.
(c) Show that prime models of nice theories are strongly ω-homogeneous.
(d) Give an example of a model which is ω-saturated but not strongly ω-homogeneous.

Exercise 37. Let M be an infinite L-structure and κ be an infinite cardinal with κ >
|L|+ ℵ0. Show that M is κ-saturated if and only if it is κ-homogeneous and κ-universal.

Exercise 38. Suppose U is an non-principal ultrafilter on N. Let (Mi)i∈N be a sequence
of L-structures, and let ∗M =

∏
Mi/U .

Let A ⊆ ∗M be arbitrary, and choose for each a ∈ A an fa ∈
∏
Mi such that a = [fa].

Let p(x) = {ϕi(x) : i < ω} be a set of LA-formulas such that p(x) is finitely satisfiable in ∗M .
By taking conjunctions, we may, withour loss of generality, assume that ϕi+1(x) → ϕi(x) for
i < ω. Let ϕi(x) be θi(x, ai,1, . . . , ai,mi

), where θi is an L-formula.

(a) Let
Di = {n < ω : Mn |= ∃x θi(x, fai,1(n), . . . , fai,mi

(n)) }.
Show that Di ∈ U .

(b) Find g ∈
∏
Mi such that if i ≤ n and n ∈ Di, then

Mn |= θi(g(n), fai,1(n), . . . , fai,mi
(n)).

(c) Show that g realizes p(x). Where do you use the fact that U is non-principal?
(d) Assume that L is countable. Conclude that ∗M is ℵ1-saturated.
(e) Show that if the Continuum Hypothesis holds then every nice theory has a saturated

model with size ℵ1.

Exercise 39. Let κ be an infinite cardinal and suppose T is a κ-categorical theory in a
countable language. Show that if M is an ω-homogeneous model of cardinality κ, then M is
ω-saturated.



CHAPTER 12

Saturated models and small theories

In the previous chapter we have defined the notion of a κ-saturated model, and we have
seen that κ-saturated models have size at least κ, and that every consistent theory has κ-
saturated models for each κ. A model M which is κ-saturated and has size κ is often simply
called saturated. Now it is not true that every consistent theory has saturated models of every
possible size κ.

For example, take a language L consisting of a countable number of unary predicates
P0, P1, P2, . . ., and consider the following L-structure M : its elements are the finite subsets of
the natural numbers and for such an m ∈ M we will say that it has the property Pn precisely
when n ∈ m. Let T = Th(M) (note that T is a nice theory). For each function f :N → {0, 1}
we have a partial type

pf = {Pi(x) : f(i) = 1} ∪ {¬Pi(x) : f(i) = 0}.

These are finitely satisfiable in M , so consistent with T , meaning that an ω-saturated model
would have to realize all pf . But an element realizing pf cannot also realize pg when g 6= f ,
hence an ω-saturated model of T would have to have size at least that of the continuum. In
particular, T does not have countable saturated models. (A fancier version of this example
would take the theory T = Th(N,+, ·, 0, 1) and consider partial types pf containing formulas
saying that x is divisible by the nth prime number if f(n) = 1, and not divisible by that prime
number if f(n) = 0.)

In this chapter we will look at saturated models and isolate a necessary and sufficient
condition for nice theories to have a countable saturated model. We will also show that if a
nice theory has a countable saturated model, it must also have a prime model.

1. Saturated models

Definition 12.1. An infinite model M is called saturated if it is |M |-saturated.

Theorem 12.2. Suppose A and B are two saturated models having the same cardinality.
If A and B are elementarily equivalent, then they are isomorphic.

Proof. Suppose |A| = |B| = κ and A = (aα)α∈κ and B = (bα)α∈κ are enumerations
of A and B respectively. Assume also that A ≡ B. We will use back and forth to show
A ∼= B: indeed, we will create by transfinite recursion an increasing sequence of elementary
maps fα:X ⊆ A→ B with |X| < κ, such that for any limit ordinal λ < κ and natural number
n we have aλ+n ∈ dom(fλ+2n+2) and bλ+n ∈ ran(fλ+2n+1). Then f =

⋃
α∈κ fα is the desired

isomorphism.

Recall that Lemma 11.6 told us that for any m ∈M and any elementary map f :X ⊆M →
N , where |X| < κ and N is κ-saturated, there is an elementary map g:X ∪ {m} ⊆ M → N
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extending f . So we can create the increasing sequence of elementary maps by starting with
f0 = ∅, applying this lemma at the successor stages and taking unions at limit stages. �

Corollary 12.3. For a nice theory T the following are equivalent:

(1) T is ω-categorical;
(2) all models of T are ω-saturated;
(3) all countable models of T are saturated.

Proof. (1) ⇒ (2): Assume T is a nice ω-categorical theory and a is a finite tuple of
parameters from a model A of T . Assume moreover that p(x) is a 1-type which is finitely
satisfiable in (A, a). Then Th(A, a) is ω-categorical as well by Corollary 10.3 and therefore p is
isolated over this theory by Theorem 10.1. So p is realized in (A, a) by Proposition 8.4.

(2) ⇒ (3) is obvious, while (3) ⇒ (1) follows from the previous theorem. �

2. Small theories

In this section we will characterise those nice theories which have countable saturated
models. We will also show that nice theories which have countable saturated models have
prime models as well.

Intuitively, a countable ω-saturated model has to harmonize two antagonistic tendencies:
on the one hand such models are rich, because ω-saturated; on the other hand, they are small,
because only countable. You may suspect that theories can only have such models if their type
spaces are not too big, and you would be right.

Definition 12.4. A theory T is small if all its type spaces are countable.

Theorem 12.5. A nice theory T has a countable ω-saturated model if and only if it is
small.

Proof. If T is complete and has an ω-saturated model M , then every n-type is realized
in M . So if M is countable, there can be at most countably many n-types for any n.

For the other direction, we take a closer look at the proof of Theorem 11.4 and assume that
A is a model of small theory T . First of all, we may assume that A is countable (by downward
Löwenheim-Skolem). In that case how many 1-types p(a, x) are there where a is a finite set of
parameters from A? The answer is that there at most countably many, because the collection
of finite sequences with parameters from A is countable and there are countably many types
of the form p(y, x). This means that the model B in the proof of Lemma 11.5 may be taken
to be countable as well. And that in turn means that in the proof of Theorem 11.4 we have to
consider a countable chain of countable models: but then its colimit, which was an ω-saturated
model, is countable as well. �

To prove that nice and small theories have prime models, we need to understand these
small theories a bit better.

Definition 12.6. Let {0, 1}∗ be the set of finite sequences consisting of zeros and ones. A
binary tree of formulas in variables x = x1, . . . , xn over T is a collection {ϕs(x) : s ∈ {0, 1}∗}
such that T |=

(
ϕs0(x) ∨ ϕs1(x))→ ϕs(x)

)
and T |= ¬

(
ϕs0(x) ∧ ϕs1(x)

)
.

Theorem 12.7. The following are equivalent for a nice theory T :
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(1) |Sn(T )| < 2ω.
(2) There is no binary tree of consistent formulas in x1, . . . , xn over T .
(3) |Sn(T )| ≤ ω.

Proof. (1) ⇒ (2): We show that the existence of a binary tree of consistent formulas
implies that the type space has size at least that of the continuum. If {ϕs(x) : s ∈ {0, 1}∗} is a
binary tree of consistent formulas, then

pα = {ϕs : s ⊆ α}

is a consistent partial type for every α:N → {0, 1}. Since consistent partial types can be
extended to complete types and nothing can realize both pα and pβ when α and β are distinct,
we see that the existence of a binary tree of consistent formulas implies that there are at least
2ω many types.

(2)⇒ (3): We show that the uncountability of Sn(T ) implies that there must exist a binary
tree of consistent formulas. If |Sn(T )| > ω, then we have |[ϕ]| > ω for any tautology ϕ. So
we can construct a binary tree of consistent formulas by repeated application of the following
claim.

Claim: If |[ϕ]| > ω, then there is a formula ψ(x) such that |[ϕ∧ψ]| > ω and |[ϕ∧¬ψ]| > ω.
Proof: Suppose not. Define

p(x): = {ψ(x) : |[ϕ ∧ ψ]| > ω}.
By assumption this collection contains a formula ψ(x) or its negation, but not both. In addition,
if p contains ψ0 ∨ ψ1, then

|[ϕ ∧ (ψ0 ∨ ψ1)]| = |[ϕ ∧ ψ0] ∪ [ϕ ∧ ψ1]| > ω,

so p will contain either ψ0 or ψ1. This implies that if p contains ψ1, . . . , ψn then it also contains
ψ1 ∧ . . . ∧ ψn: for if ψ1 ∧ . . . ∧ ψn 6∈ p, then ¬(ψ1 ∧ . . . ∧ ψn) ∈ p, hence ¬ψi ∈ p for some i.
Since each ψ ∈ p is consistent, this implies that each finite subset of p is consistent; hence p is
consistent and therefore a complete type.

But now we arrive at a contradiction, as follows: if ψ 6∈ p, then |[ϕ∧ψ]| ≤ ω, by definition.
In addition, the language is countable, so

[ϕ] =
⋃
ψ 6∈p

[ϕ ∧ ψ] ∪ {p}

is a countable union of countable sets and hence countable, contradicting our assumption for
ϕ.

(3) ⇒ (1): This is clear, because ω < 2ω. �

Corollary 12.8. If T is nice and small, then isolated types are dense. So T has a prime
model.

Proof. If isolated types are not dense, then there is a consistent ϕ(x) which is not a
consequence of a complete formula. Call such a formula perfect. We claim that perfect formulas
can be “decomposed” into two consistent formulas which are jointly inconsistent. Repeated
application of this claim leads to a binary tree of consistent formulas, so T cannot be small, by
the previous theorem.

To see that any perfect formula ϕ can be decomposed into two perfect formulas, note that
perfect formulas cannot be complete, so there is a formula ψ such that both ϕ∧ ψ and ϕ∧¬ψ
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are consistent. But as these formulas imply ϕ and ϕ is not a consequence of a complete formula,
these formulas have to be perfect as well. �

3. Exercises

Exercise 40. Let T be a theory in a countable language without a binary tree of consistent
formulas. Show that T is small.



CHAPTER 13

Quantifier elimination

In this penultimate chapter we take a closer look at quantifier elimination. We have seen
the concept already a few times, but to remind you: a theory T has quantifier elimination if,
over T , any formula is equivalent to one without quantifiers. As one can imagine, this makes
models of T much easier to understand. Indeed, quantifier elimination is so useful that even
when a theory T does not have quantifier elimination, model theorists will typically search for
natural extensions of T which do have quantifier elimination. We will see a couple of examples
of that.

1. Consequences of quantifier elimination

Definition 13.1. A theory T in a language L has quantifier elimination if for any L-
formula ϕ(x1, . . . , xn) there is quantifier-free L-formula ψ(x1, . . . , xn) such that

T |= ϕ↔ ψ.

An easy, but crucial observation is the following:

Proposition 13.2. Assume T is an L-theory with quantifier elimination and A and B are
two L-structures which model T . Then any embedding h:A → B is elementary, and any local
isomorphism between A and B is an elementary map.

Corollary 13.3. Suppose T is an L-theory with quantifier elimination and κ is an infinite
cardinal with κ ≥ |L|. If M is an infinite model of T such that:

(1) every model N of T with |N | ≤ κ embeds into M , and
(2) for any element m ∈ M and any local isomorphism f :X ⊆ M → M where X is a

subset of M with |X| < κ, the map f can be extended to a local isomorphism whose
domain includes m.

Then M is κ-saturated.

Proof. Immediate from Theorem 11.8 and the previous proposition. �

Corollary 13.4. If a theory T has quantifier elimination and there is a model M of T
that can be embedded into every other model of T , then T is complete and M is prime.

Proof. If N is any model of T , then M can be embedded into it. By Proposition 13.2 this
embedding is elementary. Therefore M is prime and all models of T are elementarily equivalent.
So T is complete. �
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2. Tests for quantifier elimination

Clearly, in order to use the results from the previous section we need some tests for quantifier
elimination. In this section we give two. The first one is simple:

Definition 13.5. A literal is an atomic formula or a negated atomic formula. A formula
will be called primitive if it is of the form

∃xϕ(y, x)

where ϕ is a conjunction of literals.

Proposition 13.6. A theory T has quantifier elimination if and only if any primitive
formula is equivalent over T to a quantifier-free formula.

Proof. Suppose every primitive formula is equivalent over T to a quantifier-free formula.
Then every formula of the form

∃xϕ(y, x)

with ϕ quantifier-free is also equivalent to a quantifier-free formula: for we can write ϕ(y, x)
in disjunctive normal form, that is, as a disjunction

∨
i ϕi(y, x), where each ϕi(y, x) is a con-

junctions of literals. Then we can push the disjunction through the existential quantifier, using
that

∃x
∨
i

ϕi(y, x)↔
∨
i

∃xϕi(y, x),

so that we are left with a disjunction of primitive formulas, which is equivalent to a quantifier-
free formula, by assumption.

Now let ϕ be an arbitrary formula. We can rewrite ϕ into an equivalent formula using
only ¬,∧ and ∃, and then, working inside out, eliminate all the existential quantifiers using the
previous observation. �

The second is a bit more complicated, but generally easier to apply.

Theorem 13.7. Let κ be an infinite cardinal. A theory T has quantifier elimination if and
only if, given

(1) two models M and N of T , where N is κ-saturated,
(2) a local isomorphism f : {a1, . . . , an} ⊆M → N , and
(3) an element m ∈M ,

there is a local isomorphism g: {a1, . . . , an,m} ⊆M → N which extends f .

Proof. Necessity is clear: if T has quantifier elimination, then any local isomorphism is
an elementary map, so this follows from Lemma 11.6.

Conversely, let L be the language of T and suppose ∃xϕ(y, x) is a primitive formula not
equivalent over T to a quantifier-free formula in L. Extend the language with constants c and
work in the extended language. Now let T0 be the collection of all quantifier-free sentences
which are a consequence over T of ¬∃xϕ(c, x). Then the union of T , T0 and ∃y ϕ(c, y) has a
model M .

Next, consider T1, which consists of the theory T , all quantifier-free sentences in the ex-
tended language which are true in M , as well as the sentence ¬∃y ϕ(c, y). This theory T1 is
consistent: for if not, there would be a quantifier-free sentence ψ(c) which is false in M and
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and which is a consequence of ¬∃xϕ(c, x) over T . But such a sentence must belong to T0 and
therefore be true in M . Contradiction!

So T1 has a model N and we may assume that N is κ-saturated. Now let f be the map
which sends the interpretation of ci in M to its interpretation in N and let m be such that
M |= ϕ(c,m). This f is a local isomorphism, but cannot be extended to one whose domain
includes m, because ∃y ϕ(c, y) fails in N . �

3. Exercises

Exercise 41. Let L = {E} where E is a binary relation symbol. For each of the following
theories either prove that they have quantifier elimination, or give an example showing that
they do not have quantifier elimination; in the latter case, also formulate a natural extension
T ′ ⊇ T in an extended language L′ ⊇ L in which they do have quantifier elimination.

(a) E is an equivalence relation with infinitely many equivalence classes, each having size
2.

(b) E is an equivalence relation with infinitely many equivalence classes, each having
infinite size.

(c) E is an equivalence relation with infinitely many equivalence classes of size 2, infinitely
many equivalence classes of size 3, and each equivalence class has size 2 or 3.

Exercise 42. Let M = (Z, s), where s(x) = x+ 1, and let T = Th(M).

(a) Show that T has quantifier elimination.
(b) Give a concrete description of a countable ω-saturated model of T .
(c) Describe the type spaces of T .
(d) Show that Th(N, s) does not have quantifier elimination.

Exercise 43. (a) Show that the theory of (Z, <) has quantifier elimination in the
language where we add a function symbol s for the function s(x) = x+ 1.

(b) Give a concrete description of a countable ω-saturated model of Th(Z, <).
(c) Describe the type spaces of Th(Z, <)

Exercise 44. Let T be the theory of infinite vector spaces over Q.

(a) Show that T has quantifier elimination.
(b) Which models of T are κ-saturated?
(c) Describe the type spaces of T .





CHAPTER 14

Examples

In this final chapter of this syllabus we discuss two more examples of nice theories to
illustrate some of the concepts from this course.

1. Atomless Boolean algebras

Definition 14.1. A (bounded) lattice L is a partial order in which every finite subset
A ⊆ L has a least upper bound (a supremum or join, written

∨
A) and a greatest lower bound

(an infimum or meet, written
∧
A). More concretely this means that L has a smallest element

0, a largest element 1 and that for any two elements p, q ∈ L there are elements p∧ q and p∨ q
such that:

x ≤ p ∧ q ⇔ x ≤ p and x ≤ q,
p ∨ q ≤ x ⇔ p ≤ x and p ≤ x.

Exercise 45. Show that in any lattice ∧ and ∨ are associative, commutative and idem-
potent (that is, x ∧ x = x and x ∨ x = x hold). In addition, show that the absorbative laws
x = x ∧ (x ∨ y) and x = x ∨ (x ∧ y) hold, as well as 0 ∧ x = 0 and 1 ∨ y = y.

Exercise 46. Conversely, show that if L is a set equipped with two binary operations ∧
and ∨ and in which there are elements 0, 1 ∈ L such that all the properties from the previous
exercise hold, then there is a unique ordering on L turning L into a lattice. (Hint: observe that
in a lattice we have x ≤ y iff x = x ∧ y iff y = x ∨ y.)

Definition 14.2. A lattice L is called distributive if both distributive laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

are satisfied. A distributive lattice L is called a Boolean algebra if for any element x ∈ L there
is an element ¬x ∈ L (its complement) for which both

x ∧ ¬x = 0 and x ∨ ¬x = 1

hold.

Example 14.3. For any set X the powerset P(X) is a Boolean algebra with order given by
inclusion, meets and joins given by intersection and union, complements given by set-theoretic
complement and smallest and largest elements ∅ and X.

Example 14.4. If X is a topological space, then the clopens in X also form a Boolean
algebra with the same operations as in the previous example.

Exercise 47. Show that in any lattice one distributive law implies the other.
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Exercise 48. Let L be a distributive lattice and suppose x ∈ L is a complemented element,
meaning that there is an element y ∈ L such that x ∧ y = 0 and x ∨ y = 1. Show that for any
other element p ∈ L, we have

x ∧ p = 0 =⇒ p ≤ y and x ∨ p = 1 =⇒ y ≤ p.
Deduce that complements are unique.

Exercise 49. Show that if B is a Boolean algebra, then Bop, which is B with the order
reversed, is a Boolean algebra as well. In fact, B and Bop are isomorphic with the isomorphism
given by negating (taking complements). Deduce the De Morgan laws: ¬(p∧ q) = ¬p∨¬q and
¬(p ∨ q) = ¬p ∧ ¬q.

For what follows we need to understand finitely generated Boolean algebras. Recall that
a Boolean algebra B is finitely generated if there are elements b1, . . . , bn ∈ B such that B has
proper Boolean subalgebra also containing the elements b1, . . . , bn.

Theorem 14.5. Finitely generated Boolean algebras are finite.

Proof. Suppose B is generated by b1, b2, . . . , bn. Let C be the collection of elements in B
that can be written as “conjunctions” of the form c1 ∧ c2 ∧ . . . ∧ cn where ci is either bi or its
complement, and let D the collection of elements in B that can be written as “disjunctions” of
elements in C. The collections C and D are finite, because they contains at most 2n and 2(2n)

elements, respectively. But D is a Boolean subalgebra of B, because it contains 0 (no disjuncts),
1 (all disjuncts) and is closed under disjunction (clear), conjunction (by the distributive laws)
and negation (by the De Morgan laws). So B = D is finite; in fact, it contains at most 2(2n)

many elements. �

So we need to understand finite Boolean algebras. But these are always of the form P(X),
where X is finite. To show this, we need some definitions.

Definition 14.6. An element a in a Boolean algebra B is called an atom if a > 0 and
there are no elements strictly in between a and 0. A Boolean algebra in which for any element
x > 0 there is an atom a such that x ≥ a is called atomic. A Boolean algebra in which there
are no atoms is called atomless.

Proposition 14.7. Finite Boolean algebras are atomic.

Proof. Let B is a finite Boolean algebra. Suppose x0 ∈ B is an element different from
0 and there are no atoms a with x0 ≥ a. This means that x0 itself is no atom, so there is an
element x1 with x0 > x1 > 0. Of course, x1 cannot be atom, by our assumption on x0, so
there must be an element x2 such that x0 > x1 > x2 > 0. Continuing in this way we create an
infinitely descending sequence of elements in B, which contradicts its finiteness. �

Proposition 14.8. If B is an atomic Boolean algebra and x < y, then there is an atom
a ∈ B which lies below y, but not below x.

Proof. If x < y, then y ∧ ¬x 6= 0 (for if y ∧ ¬x = 0, then ¬x ≤ ¬y and x ≥ y by the
exercises). So there is an atom a with y∧¬x ≥ a. So we have y ≥ a and ¬x ≥ a; but the latter
implies that x 6≥ a, for if also x ≥ a, then 0 = x ∧ ¬x ≥ a. �

Theorem 14.9. All finite Boolean algebras B are of the form P(X) for a finite set X. In
fact, X can be chosen to be the collection of atoms in B.
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Proof. Let B be a finite Boolean algebra and let A be its collection of atoms. Then we
define maps f :B → P(A) by sending b ∈ B to the set f(b) = {a ∈ A : a ≤ b} and g:P(A)→ B
by sending a set X ⊆ A to g(X) =

∨
X. It will suffice to prove that f and g are order preserving

and each other’s inverses (since all operations in a Boolean algebra are uniquely determined in
terms of its order, any order isomorphism between Boolean algebras must be an isomorphism
of Boolean algebras). That they are order preserving is clear, so we only check that they are
each other’s inverses.

So if b is an element in B and X = {a ∈ A : a ≤ b}, then b is an upper bound for X, so
b ≥

∨
X. Here we must have equality: for if b >

∨
X, then the previous two results imply that

there is an atom a′ such that b ≥ a′ but not
∨
X ≥ a′. But the former implies that a′ ∈ X so

we should have
∨
X ≥ a′ after all. Contradiction! We deduce g(f(b)) = b.

Conversely, let X be a set of atoms in B and b =
∨
X. Clearly, all atoms in X are below

b, but the converse is true as well: for suppose a′ is an atom and b ≥ a′. Then

0 < a′ = (a′ ∧ b) = a′ ∧
∨
a∈X

a =
∨
a∈X

(a′ ∧ a).

So there must be an element a ∈ X such that a′ ∧ a is not zero. But since a and a′ are atoms
and a′ ∧ a is below each of them, we must have a = a ∧ a′ = a′. We deduce f(g(X)) = X,
which finishes the proof. �

Lemma 14.10. Suppose M and N are atomless Boolean algebras and f :A ⊆ M → N
is a local isomorphism with A finite. Then for any m ∈ M there is a local isomorphism
g:A′ ⊆M → N with A ∪ {m} ⊆ A′ and g � A = f .

Proof. Since finitely generated Boolean algebras are finite, we may assume, without loss
of generality, that A is a Boolean subalgebra of M . Let us write B = f(A): since f is a local
isomorphism, f induces an isomorphism between A and B, which is a Boolean subalgebra of N .
Let us also write a0, . . . , ak−1 for the atoms in the Boolean algebra A, and bi = f(ai); clearly,
the bi are the atoms of the Boolean algebra B.

For any m ∈M , there are three possibilities for m ∧ ai: it can be 0, or ai or something in
between. Let us call the function which says for every i which of these three scenarios happens,
the profile of m. Similarly, we can define the profile of elements n ∈ N , but then with respect
to the bi instead of the ai.

The proof will be finished once I show:

(1) For any m ∈M there is an n ∈ N which has the same profile, and vice versa.
(2) If m ∈ M and n ∈ N have the same profile, then the local isomorphism f can be

extended to one which sends m to n.

I will only sketch the argument: as for (1), let I = {i < k : m ∧ ai = ai} and J = {j < k : 0 <
(m ∧ aj) < aj}. For any j ∈ J we consider bj : since it is not an atom in N , we can choose an
element yj ∈ N with 0 < yj < bj .

Now put n: =
∨
i∈I bi ∨

∨
j∈J yj . Using that the bi are atoms in B and we therefore have

that bi ∧ bj = 0 whenever i 6= j, we see that n has the same profile as m.

As for (2): the crucial observation here is that if J = {j < k : 0 < (m ∧ aj) < aj}, then
the atoms of the Boolean subalgebra generated by a0, . . . , ak−1 and m are the ai with i ∈ Jc
together with aj ∧m and aj ∧ ¬m for every j ∈ J . Sending these to bi, bj ∧ n and bj ∧ ¬n,
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respectively, we have a function sending atoms to atoms which extends uniquely to a morphism
of Boolean algebras: this morphism extends the original map and sends m to n. �

Corollary 14.11. The theory ABA of atomless Boolean algebras is ω-categorical and
complete and has quantifier elimination.

Proof. First of all, observe that any atomless Boolean algebra has to be infinite (by
Proposition 14.7) and that there is a countable and atomless Boolean algebra (consider the
clopens in Cantor space). Using the previous lemma and Theorem 13.7 one can show that
ABA has quantifier elimination. The same lemma in combination with a standard back-and-
forth argument shows that this theory is also ω-categorical and therefore complete. �

Exercise 50. Show that all Boolean algebras of the form P(X) are atomic, but that there
are atomic Boolean algebras which are not of this form.

Exercise 51. Not so easy: show that ABA is not λ-categorical for any λ > ω.

2. Real closed ordered fields

2.1. Ordered fields.

Definition 14.12. An ordered field is a field equipped with a linear order ≤ satisfying

(1) if x ≤ y, then x+ z ≤ y + z,
(2) if x ≤ y and 0 ≤ z, then xz ≤ yz.

Let us call elements x for which x ≥ 0 positive; otherwise x is called negative. Note that if
x is negative, then x < 0 and

−x = 0− x ≥ x− x = 0,

so −x is positive. Using property (2) and the observation that x2 = (−x)2, it follows that
1 = 12 is positive and also 2, 3, 4, . . . are positive. But −1 is negative and hence ordered fields
always have characteristic 0.

Definition 14.13. If K is a field, then we call a subset P ⊆ F a positive cone, if:

(1) P is closed under sums and products.
(2) −1 6∈ P .
(3) for any x, either x or −x belongs to P .

Proposition 14.14. If K is an ordered field, then the elements x ∈ K satisfying x ≥ 0
form a positive cone. Conversely, if P is a positive cone on a field K, then K can be ordered
by putting x ≤ y iff y − x ∈ P .

In ordered fields sums of squares have to be positive. In fact, we have:

Proposition 14.15. Let K be a field and r ∈ K. If both −1 and r cannot be written as a
sum of squares, then K can be ordered in such a way that r becomes negative.

Proof. Let S be the collection of those elements in K that can be written as sums of
squares. This set has the following properties:

(1) it is closed under sums and products,
(2) it contains all squares,
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(3) and it does not contain −1.

Such a set is called a semipositive cone. We use two properties of such sets: first, if X is a
semipositive cone and s ∈ X − {0}, then ( 1

s )2 ∈ X and hence also 1
s ∈ X. And if X is a

semipositive cone and s 6∈ X, then X − sX is also semipositive cone. For if there would be
x0, x1 ∈ X such that x0 − sx1 = −1, then x1 6= 0 and

s =
1 + x0

x1
∈ X.

So put Y : = S − rS. This is a semipositive cone, and, using Zorn’s Lemma, we can extend
Y to a maximal semipositive cone Ymax. Then Ymax is a positive cone, for if x 6∈ Ymax, then
−x ∈ Ymax − xYmax = Ymax. �

2.2. Some analysis in ordered fields. Now suppose that K is an ordered field.

Proposition 14.16. Let p(x) = xd+ad−1x
d−1 +. . .+a0 and m = max(|ad−1|, . . . , |a0|)+1.

Then all roots of p(x) lie between −m and m.

Proof. If |x| ≥ m, then

|P (x)− xd| ≤ (|m| − 1) (|x|d−1 + |x|d−2 + . . .+ 1) ≤ (|m| − 1)
|x|d − 1

|x| − 1
≤ |x|d − 1

so P (x) 6= 0. �

Proposition 14.17. If p(x) ∈ K[x] and p(0) > 0, then there is an ε > 0 such that P (x) > 0
for all x ∈ [−ε,+ε].

Proof. Let p(x) = adx
d + ad−1x

d−1 + . . .+ a0. Then put m = max(|ad|, |ad−1|, . . . , |a0|)
and ε = min(1, P (0)

2md ). Then x ∈ [−ε,+ε] implies

|p(x)− p(0)| ≤ |adxd + ad−1x
d−1 + . . .+ a0 − a0|

≤ mεd +mεd−1 + . . .+mε

≤ mdε

≤ 1

2
p(0)

and hence p(x) > 0. �

Proposition 14.18. If p(x) ∈ K[x] and p′(a) > 0, then there is an ε > 0 such that
p(x) > p(a) for every x ∈ (a, a+ ε] and p(x) < p(a) for every x ∈ [a− ε, a).

Proof. Write p(x) = (x−a)q(x)+p(a). Then p′(x) = q(x)+(x−a)q′(x), so q(a) = p′(a) >
0. Then choose ε such that q(x) > 0 for all x ∈ [a− ε, a+ ε] using the previous result. �

2.3. Real closed ordered fields.

Definition 14.19. An ordered field will be called real closed if it satisfies the intermediate
value theorem for polynomials: if for any polynomial P (x) and elements a < b such that
P (a) < 0 and P (b) > 0 there is an element c ∈ (a, b) such that P (c) = 0.

For example, the field R is real closed, but Q is not.
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Proposition 14.20. In a real closed field an element is positive iff it can be written as a
square.

Proof. We already know that squares are positive. So suppose a > 0 and consider p(x) =
x2 − a. Then p(a+ 1) = (a+ 1)2 − a = a2 + 2a+ 1− a = a2 + a+ 1 > 0 and p(0) < 0, so there
is an element r such that p(r) = 0 and hence r2 = a. �

Exercise 52. Use the previous proposition to write down a set of first-order sentences T
in the language of fields (without order!) such that M is a model T if and only if M is a field
which can be ordered in such a way that it becomes real closed.

Theorem 14.21. Let K be a real closed field and p(x) be a polynomial over K. If a < b ∈ K
and p′(x) > 0 for all x ∈ (a, b), then p(a) < p(b).

Proof. First suppose that p′(a) > 0 and p′(b) > 0. Then we can use Proposition 14.18
to find c, d with a < c < d < b such that p(a) < p(c) and p(d) < p(b). So if p(a) ≥ p(b),
then p(c) > p(b) > p(d) and there is an e0 ∈ (c, d) such that p(e0) = p(b). By repeating this
argument for ei and b instead of a and b we find for every i ∈ N an ei+1 ∈ (ei, b) such that
p(ei+1) = p(b), contradicting the fact that a polynomial can have only finitely many zeros.

In the general case choose arbitrary c, d such that a < c < d < b. We have p(c) < p(d) by the
previous argument. In addition, we have p(a) ≤ p(c), for if p(a) > p(c), then there is an e ∈ (a, c)
such that p(e) > p(c) by Proposition 14.17. But that would again lead to a contradiction by
an argument as in the previous paragraph. Similary, p(c) ≤ p(d), so p(a) < p(b). �

Corollary 14.22. (Rolle’s Theorem for real closed ordered fields) Let K be a real closed
ordered field and p(x) be a polynomial over K. If p(a) = p(b) for a < b, then there exists
c ∈ (a, b) with P ′(c) = 0.

Proof. For if P ′(c) 6= 0 for all c ∈ (a, b), then P ′ is either strictly positive or strictly
negative on (a, b), by real closure. �

2.4. Real closure.

Definition 14.23. Let K ⊆ L be an order preserving embedding between ordered fields.
L is a real closure of K, if L is algebraic over K and no ordered field properly extending L is
algebraic over K.

Note, by the way, that an inclusion of ordered fields K ⊆ L is order preserving iff it is order
reflecting, because ordered fields are linearly ordered.

Theorem 14.24. If L is a real closure of K, then L is real closed.

Proof. Suppose there are polynomials in L[x] for which the intermediate value theorem
for polynomials fails. Let p be a counterexample of minimal degree: so the intermediate value
theorem holds for polynomials in L[x] with degree smaller than p, but there are a < b ∈ L with
p(a) < 0 and p(b) > 0 for which no ξ ∈ (a, b) with p(ξ) = 0 exists.

In that case p has to be irreducible so L[x]/(p(x)) is a field extending L, still algebraic over
K. So once we show that L[x]/(p(x)) can be ordered in a way which extends to the order on
L, we have obtained our desired contradiction.
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Let A = {x ∈ [a, b] : (∃y ≥ x) p(y) < 0} and B = [a, b]−A = {x ∈ [a, b] : (∀y ≥ x) p(y) > 0}.
Since polynomials are continuous, both A and B are open and have no greatest or least element,
respectively. So if q(x) is any non-zero polynomial, then q has only finitely many roots, so there
are a0 ∈ A and b0 ∈ B such that q has no roots in the interval [a0, b0]. If q(x) has a degree
strictly smaller than p(x), then the intermediate value theorem holds for q(x) and q(x) is either
strictly positive or strictly negative on [a0, b0]. If the former holds we declare q(x) positive. It
is easy to see that this defines a positive cone on L[x]/(p(x)) extending the one on L. So we
have our desired contradiction. �

Theorem 14.25. Real closures exist and are unique up to unique isomorphism.

Proof. The existence of real closures follows from Zorn’s Lemma: consider all ordered
extensions of a field K which are still algebraic over K and all field embeddings between them
which preserve the ordering. Since fields algebraic over K have the same infinite cardinality as
K, this is essentially a set. Since chains have upper bounds given by unions, a maximal element
must exist, which is a real closure of K.

Now suppose both L0 and L1 are real closures of an ordered field K. By Zorn’s Lemma,
again, there are subfields K0 ⊆ L0 and K1 ⊆ L1 between which there exists an order preserving
isomorphism f which leaves K invariant and which is maximal with these properties. If either
L0 −K0 or L1 −K1 is non-empty, then we may assume, without loss of generality, that there
is an element ξ ∈ L0 −K0 with minimal polynomial p(x) over K such that all other elements
ξ′ ∈ Li −Ki have a minimal polynomial over K whose degree is at least that of p.

Since p is minimal, we have p′(ξ) 6= 0, so p changes sign in ξ. Moreover, in L1 and L2 it
holds that in between any two roots of p(x) lies a root of p′(x), by Rolle’s Theorem. Since roots
of p′(x) have a minimal polynomial whose degree is strictly smaller than that of p(x), these
roots of p′(x) lie already in K0 and K1. So for ξ there are three possibilities:

(1) ξ lies in between two roots of p′(x), call them x0 and x1, and it is the only root lying
in this interval. In that case p has different signs in x0 and x1. So the same applies to
f(x0) and f(x1) and the polynomial p can have only one root in K1 in between these
points. Then ξ should be sent to this root.

(2) ξ is bigger than the largest root of p′(x). Let x0 be this largest root and let x1 be
a number in K bounding the zeros of p from above (using Proposition 14.16). Then
again p changes sign between x0 and x1 and ξ should be sent to the unique root of p
in K1 between f(x0) and f(x1).

(3) ξ is smaller than the smallest root of p′(x). Then the same argument as in (2) applies.

This determines a field isomorphism between K(ξ) ∼= K[x]/(p(x)) ∼= K(ξ′). The question now
is why this field isomorphism should be order preserving. But this follows from the following
observation: if q(x) is any non-zero polynomial of degree strictly smaller than p(x), then q is
strictly positive or negative on some interval [x2, x3] with x2, x3 ∈ K0 and x0 < x2 < ξ < x3 <
x1. So the sign of q(ξ) in L0 can be determined by checking the sign of q(x2) and the sign of
q(ξ′) in L1 can be determined by checking to sign of q(f(x2)). But both answers should agree
because f is an order preserving isomorphism.

So we have an isomorphism between L0 and L1. This isomorphism is necessarily unique
because it should send the nth root from the left of the polynomial p(x) ∈ K[x] in L0 to the
nth root from the left of p(x) in L1. �

2.5. Quantifier elimination.
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Theorem 14.26. The theory RCOF of real closed ordered fields has quantifier elimination.

Proof. We use Theorem 13.7. So let K,L be two real closed ordered fields, where L in
addition is ω1-saturated, and suppose f : {k1, . . . , kn} → L is a local isomorphism and k ∈ K.
Then Q(k1, . . . , kn), considered as an ordered subfield of K, and Q(f(k1), . . . , f(kn)), considered
as an ordered subfield of L, are isomorphic. So we can use the previous theorem to extend f
to an isomorphism f of ordered fields between the real closure K of Q(k1, . . . , kn) inside K
and the real closure L of Q(f(k1), . . . , f(kn)) inside L. If k ∈ K, then we send k to f(k). So
the interesting case is where k is transcendental over K. To simplify notation, we will assume
K = L.

In that case we should send k to an element l ∈ L which is transcendental over the subfield
K and for which

(∀x ∈ K)x ≤ k ⇔ x ≤ l

holds. Such an element certainly exists because |K| = ω and L is assumed to be ω+-saturated.
And this is enough, for to see that the composite isomorphism

K(k) ∼= K(x) ∼= K(l)

is order preserving it suffices to check that p(k) and p(l) have the same sign for every irreducible
polynomial p ∈ K[x]. This is true for irreducible polynomials of degree one (by construction),
and if p has degree greater than one, then p has no roots in K or L (since K is maximal as an
algebraic extension over Q(k1, . . . , kn) inside K or L). So p does not change sign inside K or
L and p(k) and p(l) have the same sign as p(0). �

Corollary 14.27. The theory RCOF is complete.

Proof. Since the theory of real closed ordered fields has quantifier elimination and has
a model which can be embedded into any other model (to wit, the real numbers which are
algebraic over Q), this theory is complete by Corollary 13.4. �

Remark 14.28. The theory RCOF is not λ-categorical for any infinite λ, but that is not
so easy to prove!

2.6. Hilbert’s 17th Problem.

Theorem 14.29. (Hilbert’s 17th Problem) Let K be a real closed field. If f ∈ K(x1, . . . , xn)
is such that f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ K, then f can be written as

f = g2
1 + . . .+ g2

n

for suitable gi ∈ K(x1, . . . , xn).

Proof. Suppose f cannot be written as a sum of squares in K(x1, . . . , xn). The same
applies to −1, because −1 cannot be written as a sum of squares in K. So we can order
K(x1, . . . , xn) in such a way that f becomes negative. This order extends the original order
on K because K is real closed and hence positive elements in K can be written as squares (see
Proposition 14.20). Now embed K(x1, . . . , xn) with this order into a real closed field L. So we
have embeddings of fields

K ⊆ K(x1, . . . , xn) ⊆ L,
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all of which preserve and reflect the ordering. So the inclusion K ⊆ L reflects truth of atomic
sentences, and hence of quantifier-free sentences and hence, as the theory of real closed fields
has quantifier elimination, of all sentences. Therefore the sentence

∃x1 . . . ∃xn f(x1, . . . , xn) < 0,

which is true in L, must be true in K as well. �

Remark 14.30. Hilbert’s 17th Problem asked whether Theorem 14.29 holds in case K is
the reals. This was settled by Artin in 1927, who proved the result for general real closed fields.
The model-theoretic proof we just gave is due to Robinson.


