3rd Homework sheet Model Theory

- Deadline: 27 February, 13:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the *beginning of the lecture*.
- Good luck!

Exercise 1 Let $L_3 = \{<, c_0, c_1, c_2, \ldots\}$, where c_0, c_1, \ldots are constant symbols. Let T_3 be the theory of dense linear orders without end points with sentences added asserting $c_0 < c_1 < \ldots$

- (a) $(25 \ points)$ Show that T_3 has exactly three countable models up to isomorphism.
 - *Hint:* Consider the questions: Does c_0, c_1, c_2, \ldots have an upper bound? A least upper bound?
- (b) $(25 \ points)$ Prove the following two general results and use them to prove that T_3 is complete.
 - (i) For any language L, two L-structures M and N are elementarily equivalent if and only if their reducts $M \upharpoonright L'$ and $N \upharpoonright L'$ are elementarily equivalent for any finite sublanguage L' of L.
 - (ii) If L is countable, T is an L-theory with no finite models, and any two countable models of T are elementarily equivalent, then T is complete.
- (c) (25 points) Let $L_4 = L_3 \cup \{P\}$, where P is a unary predicate. Let T_4 be T_3 with the added sentences $P(c_i)$ and

$$\forall x \, \forall y \, \big(\, x < y \rightarrow \exists z \, \exists w \, (\, x < z < y \land x < w < y \land P(z) \land \neg P(w)) \, \big).$$

In other words, P is a dense-codense subset. Show that T_4 is a complete theory with exactly four countable models.

(d) (25 points) Generalise (c) to give examples of complete theories which have exactly n countable models for $n=5,6,\ldots$