2nd Homework sheet Model Theory

- Deadline: 20 February, 13:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the *beginning of the lecture*.
- Good luck!

Exercise 1 (100 points) We will call a formula φ positive, if it does not contain any negations \neg or implications \rightarrow ; in other words, if it can be obtained from atomic formulas using only \land , \lor , \exists and \forall . In addition, we will call a homomorphism $f: M \to N$ of \mathcal{L} -structures positive, if

$$M \models \varphi(m_1, \ldots, m_n) \Rightarrow N \models \varphi(f(m_1), \ldots, f(m_n))$$

holds for all positive formulas $\varphi(x_1,\ldots,x_n)$ and all $m_1,\ldots,m_n\in M$.

(a) (40 points) Let T be a consistent \mathcal{L} -theory and write

$$T_0 = \{ \psi : \psi \text{ is a positive sentence and } T \models \psi \}.$$

Prove that for any model A of T_0 there is a diagram of \mathcal{L} -structures

$$A \xrightarrow{k} C$$

such that: (1) B is a model of T, (2) k is an elementary embedding, (3) l is a positive homomorphism, and (4) the image of k is contained in the image of l.

(b) (20 points) Let $f: D \to A$ be a positive homomorphism of \mathcal{L} -structures. Prove that there exists a commuting square of \mathcal{L} -structures

$$D \xrightarrow{k} B$$

$$f \downarrow \qquad \downarrow g$$

$$A \xrightarrow{l} C$$

- in which the horizontal maps k and l are elementary embeddings, the vertical maps f and g are positive homomorphisms and the image of l is contained in the image of g.
- (c) (40 points) Let T be a consistent \mathcal{L} -theory whose models are closed under surjective images: so if $f \colon M \to N$ is a surjective homomorphism and M is a model of T, then so is N. Use parts (a) and (b) to prove that T can be axiomatised using positive sentences.