4th Exercise sheet Model Theory 17 Feb 2017

Exercise 1 Prove Theorem 4.3 and Lemma 4.4 in the syllabus.

Exercise 2 The aim of this exercise is to prove the Chang-Loś-Suszko Theorem. To state it we need a few definitions.

A $\forall \exists$ -sentence is a sentence which consists first of a sequence of universal quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula. A theory T can be axiomatised by $\forall \exists$ -sentences if there is a set T' of $\forall \exists$ -sentences such that T and T' have the same models.

In addition, we will say that a theory T is preserved by directed unions if for any directed system consisting of models of T and embeddings between them, the colimit is a model T as well. And T is preserved by unions of chains if for any chain of models of T and embeddings between them, the colimit is a model of T as well.

Show that the following statements are equivalent:

- (1) T is preserved by directed unions.
- (2) T is preserved by unions of chains.
- (3) T can be axiomatised by $\forall \exists$ -sentences.

Hint: To show (2) \Rightarrow (3), suppose T is preserved by unions of chains and let $T_{\forall \exists} = \{\varphi : \varphi \text{ is a } \forall \exists \text{-sentence and } T \models \varphi\}.$

Then prove that starting from any model B of $T_{\forall\exists}$ one can construct a chain of embeddings

$$B = B_0 \rightarrow A_0 \rightarrow B_1 \rightarrow A_1 \rightarrow B_2 \rightarrow A_2 \dots$$

such that:

- 1. Each A_n is a model of T.
- 2. The composed embeddings $B_n \to B_{n+1}$ are elementary.
- 3. Every universal sentence in the language L_{B_n} true in B_n is also true in A_n (when regarding A_n is an L_{B_n} -structure via the embedding $B_n \to A_n$).