
Type theory and weak factorisation systems
Marlou Gijzen and Krsto Proroković

We will discuss two results. The first result is of Awodey and Warren, the second
result is from Gambino and Garner.

1. When C is a finitely complete category with a weak factorization system, then C
is a model of a form of Martin-Löf type theory with identity types [1].

2. When T is a dependent type theory with the axioms for identity types, then its
syntactic category Syn(T) admits a non-trivial weak factorisation system [2].
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1 Preliminaries

Before we get into this, we will define a weak factorisation system. Before that we need
the following definition:

Definition 1.1 (Left lifting property (LLP)). Let C be a category. Given two maps
f : A → B and g : C → D we say that f has the left lifting property with respect
to g, and g has the right lifting property w.r.t. f , denoted by or f t g, when for any
commutative square as below:

A C

B D

h

f gl

k

there exists a map l : B → C, the diagonal filler, such that g ◦ l = k and l ◦ f = h

Let C be a category. For a collection of mapsM, we define tM to be the collection of
maps in C having the LLP with respect to all maps inM. The collectionMt is defined
similarly.

Definition 1.2 (Weak factorization system). Let C be a category. A weak factorisation
system on C consists of a pair of collections of maps (L,R), such that the following
holds:

1. Every map f in C admits a factorization f = p ◦ i where i ∈ L and p ∈ R

2. R = Lt and L =t R

We remind you of the following definition:

Definition 1.3 (Display map). A display map is a morphism between contexts, defined
by ”projecting away” a variable: [Γ, x : A] → Γ, where Γ is a context and A is a type
relative to Γ.
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2 The result of Awodey and Warren

A model in Martin-Löf type theory is extensional if the following reflection rule is sat-
isfied:

` p : IdA(a, b)

` a = b : A

Type checking is decidable in the intensional theory, but not in extensional. That is the
main reason why we should prefer intensional theories.

Lemma 2.1 ([1]). In the standard interpretation of type theory every locally cartesian
closed category C is extensional.

Definition 2.2 (Model category). A model category is a bicomplete category C equipped
with subcategories F (fibrations), C (cofibrations) and W (weak equivalences) satisfying
the following conditions:

1. (”Three-for-two”) given a commutative triangle

A C

B

i

f p
(∗)

if any two of f , g, h are weak equivalences, then so is the third.

2. both (C,F ∩W) and (C ∩W,F) are weak factorization systems.

A map f is an acyclic cofibration if it is in C ∩W, i.e. both cofibration and a weak
equivalence. Similarly, an acyclic fibration is a map in F∩W, i.e. which is simultaneously
a fibration and a weak equivalence. An object A is said to be fibrant if the canonical
map A→ 1 is a fibration. Similarly, A is cofibrant if 0→ A is a cofibration.

In a model category C a path object AI for an object A consists of a factorization

A AI

A× A

r

∆ p

of the diagonal map ∆ : A→ A×A as an acyclic cofibration r followed by a fibration p.
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Theorem 2.3. Let C be a finitely complete category with a weak factorization system
and a functorial choice (−)I of path objects in C, and all of its slices, which is stable
under substitution, i.e. given any fibration B → A and any arrow σ : A′ → A, the
evident comparison map is an isomorphism

σ∗(BI) ∼= (σ∗B)I .

Proof. We may work in the empty context since the relevant structure is stable under
slicing. Given a functorial choice of path objects (∗), we interpret, given a fibrant object
A, the judgement x, y ` IdA(x, y) as the path object fibration p : AI → A×A. Because p
is a fibration, the formation is satisfied. Similarly, the introduction rule is valid because
r : A→ AI is a section of p.
For the elimination and conversion rules, assume that the following premises are given

x : A, y : A, z : IdA(x, y) ` D(x, y, z) type ,

x : A ` d(x) : D(x, x, rA(x)) .

We have, therefore, a fibration g : D → AI together with a map d : A → D such that
g ◦ d = r. This data yields the following commutative square:

A C

AI AI

d

r g

1

Because g is a fibration and r is, by definition an acyclic cofibration, there exists a
diagonal filler

A C

AI AI

d

r gJ

1

Choose such a filler J as the interpretation of the term:

x, y : A, z : IdA(x, y) ` JA,D(d, x, y, z) : D(x, y, z) .

Then commutativity of the bottom triangle on the diagram above is precisely the con-
clusion of the elimination rule nad commutativity of the top triangle is the computation
rule.
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3 The result of Gambino and
Garner

Before we can prove the main theorem, we need to introduce a couple of definitions and
lemma’s.

We remind you of the following definition:

Definition 3.1 (Syntactic category). We have a category Syn(T). Objects are the
contexts of T and the morphisms are tuples of terms (context morphisms).

Let us consider a fixed context Γ.

Definition 3.2 (Dependent context). Let Φ = [x0 : A0, x1 : A1(x0), . . . , xn : An(x0, . . . , xn−1)].
We say that Φ is a dependent context relative to Γ when we can derive Γ ` Φ : Cxt,
where we mean the following sequence of judgements:

Γ ` A0 : Type

Γ, x0 : A0 ` A1(x0) : Type

...

Γ, x0 : A0, . . . , xn−1 : An−1(x0, . . . , xn−1) ` An(x0, . . . , xn−1) : Type

Let a = (a0, a1, . . . , an). With Γ ` a : Φ we mean:

Γ ` a0 : A0

Γ ` a1 : A1(a0)

...

Γ ` an : An(a0, . . . , an−1)

We say that a is a dependent element of Φ with respect to Γ.

When we have a dependent context Φ, relative to Γ, we obtain a new context [Γ,Φ].
We also obtain the following morphisms:

Definition 3.3 (Dependent projections). A dependent projection is a map [Γ,Φ] → Γ,
”projecting away” the variables in Φ.

It is possible introduce expressions Γ ` Φ = Ψ : Cxt and Γ ` a = b : Φ, such that
these equalities satisfy reflexivity, symmetry and transitivity.

In addition to identity types we will introduce identity contexts :
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Definition 3.4. For a context Φ and a, b : Φ, we have an identity context IdΦ(a, b).

We have the following deduction rules for identity contexts, where we leave implicit a
context Γ, to which all notions are assumed to be relative:

` Φ : Cxt
Formation:

a : Φ, b : Φ ` IdΦ(a, b) : Cxt

` Φ : Cxt
Introduction:

a : Φ ` refl(a) : IdΦ(a, a)

a : Φ, b : Φ, u : IdΦ(a, b),∆(a, b, u) ` C(a, b, u) : Cxt

a : Φ,∆(a, a, refl(a)) ` d(a) : C(a, a, refl(a))
Elimination:

a : Φ, b : Φ, u : IdΦ(a, b),∆(a, b, u) ` J(d, a, b, u) : C(a, b, u)

a : Φ,∆(a, a, refl(a)) ` d(a) : C(a, a, refl(a))
Computation:

a : Φ,∆(a, a, refl(a)) ` J(d, a, a, refl(a)) = d(a) : C(a, a, refl(a))

Here ∆(a, b, u) is a dependent context.
We will need the following lemma’s:

Lemma 3.5 ([2]). For every context Φ, we can derive a rule of the form

a : Φ ` Φ(a) : Cxt

a : Φ, b : Φ, u : IdΦ(a, b), e : Φ(a) ` u∗(e) : Φ(b)

such that

a : Φ, e : Φ(a)

(refl(a))∗(e) = e : Φ(a)

holds

Lemma 3.6 ([2]). We can derive rules of the form

u : IdΦ(a, b), v : IdΦ(b, c)

v ◦ u : IdΦ(a, c)

a : Φ
1a : IdΦ(a, a)

such that

u : IdΦ(a, b)

1b ◦ u = u : IdΦ(a, b)

holds
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Lemma 3.7 ([2]). We can derive a rule

u : IdΦ(a, b)

ψu : IdΦ(u ◦ 1a, u)

such that

a : Φ
ψ1a = 11a : IdΦ(1a, 1a)

holds

Lemma 3.8 (Retract argument, [3]). Suppose f = p ◦ i and f has the RLP with respect
to i. Then f is a retract of p.

We are now ready to prove the main theorem.

Theorem 3.9. Let T be a dependent type theory with axioms for identity types. Let D
be the set of display maps in Syn(T). The pair (L,R), where L :=t D and R := Lt,
forms a weak factorisation system on Syn(T).

We will show the theorem by proving the following two lemma’s:

Lemma 3.10. Every map f admits a factorisation f = p ◦ i, where i ∈ L and p is a
dependent projection.

Lemma 3.11. L =t R

Proof of Theorem 3.9. Note that a display map is a dependent projection. Also note
that D ⊆ R. We have that R is closed under composition, and we can create all
dependent projections from compositions of display maps, so R contains all dependent
projections. Then Lemma 3.10 gives us axiom 1 in Definition 1.2. Then by definition of
(L,R) and Lemma 3.11 we get axiom 2 in Definition 1.2, which proves the theorem.

We will now continue to prove the lemma’s that we used.

Proof of Lemma 3.10. Let f : Φ → Ψ be a context morphism. Define Id(f) := [x :
Φ, y : Ψ, u : IdΨ(f(x), y)]. We will now show that f = pf ◦ if , where pf := [y] and
if := [x, f(x), 1f(x)]. The factorization is displayed in the following picture:

Φ Id(f) Ψ
if pf

It is clear that pf is a dependent projection. So we only need to show that if ∈ A,
which means that if has the LLP with respect to all display maps.
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Φ [v : ∆, z : D(v)]

Id(f) [v ∈ ∆]

g

if d
df1

h

We thus want to show that the commuting diagram above, where d is some display
map, has a diagonal filler, df1. Display maps are closed under pullbacks (we proved this
in one of the lectures).

This means that we also have a commuting diagram as below:

X [v : ∆, w : D(v)]

Id(f) [v : ∆]

j

d̄ d

h

And a unique morphism e : Φ → X, such that d̄ ◦ e = if and j ◦ e = g. Moreover, d̄
is also a pullback and so X can be written as [Id(f), z : C(x, y, u)] where C(x, y, u) is a
dependent type relative to Id(f).

So if we can find a diagonal filler df2 for this diagram:

Ψ [Id(f), z : C(x, y, u)]

Id(f) Id(f)

e

if d̄
df2

1Id(f)

Then by concatenation of df2 with j, we get a diagonal filler for the first diagram.
The rest of the proof will be dedicated to finding df2

We can derive

x : Φ, y0 : Ψ, y1 : Ψ, v : IdΨ(y0, y1), u : IdΨ(f(x), y), z : C(x, y0, u) ` C(x, y1, v ◦u) : Type
(3.1)

since we can form v ◦ u : IdΨ(f(x), y1) with Lemma 3.6 and thus a context Id(f) =
[x : Φ, y1 : Ψ, v ◦ u : IdΨ(f(x), y1)], so we can obtain the type C(x, y1, v ◦ u) from the
display map d̄.

We can also derive

x : Φ, y : Ψ, u : IdΨ(f(x), y), z : C(x, y, u) ` z : C(x, y, 1y ◦ u) (3.2)

by the morphism e and again using Lemma 3.6.
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Then, by the elimination rule for identity contexts, we obtain from 3.1 and 3.2

x : Φ, y0 : Ψ, y1 : Ψ, v : IdΨ(y0, y1), u : IdΨ(f(x), y), z : C(x, y0, u) ` J(z, y0, y1, v) : C(x, y1, v◦u)
(3.3)

From 3.3 we can then obtain

x : Φ, y : Ψ, u : IdΨ(f(x), y), z : C(x, f(x), 1f(x)) ` J(z, f(x), y, u) : C(x, y, u ◦ 1f(x))
(3.4)

Since here z only depends on x, we can substitute it for d(x) to get

x : Φ, y : Ψ, u : IdΨ(f(x), y) ` J(d(x), f(x), y, u) : C(x, y, u ◦ 1f(x)) (3.5)

Since we have u : IdΨ(f(x), y), by Lemma 3.7 we also have ψu : Id(u ◦ 1f(x), u).
By this and by Lemma 3.5 we obtain

x : Φ, y : Ψ, u : IdΨ(f(x), y) ` (ψu)∗(J(d(x), f(x), y, u) : C(x, y, u) (3.6)

We now claim that the required filler, df2 can be defined as [x, y, u, (ψu)∗(J(d(x), f(x), y, u))].
That the bottom triangle commutes is obvious. The commutativity of the top triangle

follows from the following equalities:
(ψ1f(x)

)∗(J(d(x), f(x), f(x), 1f(x)) = J(d(x), f(x), f(x), 1f(x)) = d(x)

Proof of Lemma 3.11. Since L =t D and R = Lt, we have that D ⊆ R. This implies
that tR ⊆t D = L. We still need to show that L ⊆t R, that every map in L has the
LLP with respect to every map in R. We have that L =t D, so every map in L has
the LLP with respect to every display map. But dependent projections are composites
of display maps, so also every map in L has the LLP with respect to every dependent
projection.

Lemma 3.8 and Lemma 3.10 tell us that every map in R is a retract of a dependent
projection. From this we can conclude that L ⊆t R.
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4 Exercises

In the following exercises, consider the category of sets Set

1. What class of functions is equal to {∅ → {∗}}t?

2. What class of functions is equal to t{{a, b} → {∗}}?
We have that a function f : X → Y has a section when there is a function
g : Y → X such that f ◦ g = 1Y

3. Let L be all monomorphisms and R be all epimorphisms. Show that (L,R) is
a weak factorisation system for Set iff the Axiom of Choice holds (Hint: AC is
equivalent to some function having a section).
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