Type theory and weak factorisation systems
Marlou Gijzen and Krsto Prorokovi¢

We will discuss two results. The first result is of Awodey and Warren, the second
result is from Gambino and Garner.

1. When C is a finitely complete category with a weak factorization system, then C
is a model of a form of Martin-Lof type theory with identity types [1].

2. When T is a dependent type theory with the axioms for identity types, then its
syntactic category Syn(T) admits a non-trivial weak factorisation system [2].



1 Preliminaries

Before we get into this, we will define a weak factorisation system. Before that we need
the following definition:

Definition 1.1 (Left lifting property (LLP)). Let C be a category. Given two maps
f:A— Bandg:C — D we say that f has the left lifting property with respect
to g, and ¢ has the right lifting property w.r.t. f, denoted by or f m g, when for any
commutative square as below:

Ao
A

f l Lf

B 'T> D

there exists a map [ : B — C, the diagonal filler, such that gol =k and lo f =h

Let C be a category. For a collection of maps M, we define "M to be the collection of
maps in C having the LLP with respect to all maps in M. The collection M™ is defined
similarly.

Definition 1.2 (Weak factorization system). Let C be a category. A weak factorisation
system on C consists of a pair of collections of maps (£, R), such that the following
holds:

1. Every map f in C admits a factorization f = poi wherei € L and p € R
2. R=L"and L="R
We remind you of the following definition:

Definition 1.3 (Display map). A display map is a morphism between contexts, defined
by ”projecting away” a variable: [[',z : A] — T', where I is a context and A is a type
relative to I'.



2 The result of Awodey and Warren

A model in Martin-Lof type theory is extensional if the following reflection rule is sat-
isfied:

Fp:lda(a,b)
Fa=b:A

Type checking is decidable in the intensional theory, but not in extensional. That is the
main reason why we should prefer intensional theories.

Lemma 2.1 ([1]). In the standard interpretation of type theory every locally cartesian
closed category C is extensional.

Definition 2.2 (Model category). A model category is a bicomplete category C equipped
with subcategories § (fibrations), € (cofibrations) and 20 (weak equivalences) satisfying
the following conditions:

1. ("Three-for-two”) given a commutative triangle

A : s O
x / (+)
B

if any two of f, g, h are weak equivalences, then so is the third.

2. both (€, FN2W) and (€ N AW, F) are weak factorization systems.

A map f is an acyclic cofibration if it is in € N2, i.e. both cofibration and a weak
equivalence. Similarly, an acyclic fibration is a map in §N2J, i.e. which is simultaneously
a fibration and a weak equivalence. An object A is said to be fibrant if the canonical
map A — 1 is a fibration. Similarly, A is cofibrant if 0 — A is a cofibration.

In a model category C a path object A’ for an object A consists of a factorization

Ax A

of the diagonal map A : A — A x A as an acyclic cofibration r followed by a fibration p.



Theorem 2.3. Let C be a finitely complete category with a weak factorization system
and a functorial choice (=)' of path objects in C, and all of its slices, which is stable
under substitution, i.e. given any fibration B — A and any arrow o : A" — A, the
evident comparison map is an isomorphism

U*(BI) o (O'*B)I.

Proof. We may work in the empty context since the relevant structure is stable under
slicing. Given a functorial choice of path objects (), we interpret, given a fibrant object
A, the judgement x,y = Ida(z,y) as the path object fibration p : AT — Ax A. Because p
is a fibration, the formation is satisfied. Similarly, the introduction rule is valid because
r: A — Al is a section of p.

For the elimination and conversion rules, assume that the following premises are given

Ay Az Ida(z,y) = D(x,y,2) type,
r:AFd(x): D(x,z,ra(z)) .

We have, therefore, a fibration g : D — A! together with a map d : A — D such that
g od = r. This data yields the following commutative square:

A—2 ¢
(.
AI —1> AI

Because g is a fibration and r is, by definition an acyclic cofibration, there exists a
diagonal filler

A—25C
rl Jj L
Al _1> Al
Choose such a filler J as the interpretation of the term:
v,y Az Idg(x,y) F Jap(d,z,y, 2) : D(x,y,2).

Then commutativity of the bottom triangle on the diagram above is precisely the con-
clusion of the elimination rule nad commutativity of the top triangle is the computation
rule. ]



3 The result of Gambino and
(Garner

Before we can prove the main theorem, we need to introduce a couple of definitions and
lemma’s.
We remind you of the following definition:

Definition 3.1 (Syntactic category). We have a category Syn(T). Objects are the
contexts of T and the morphisms are tuples of terms (context morphisms).

Let us consider a fixed context I'.

Definition 3.2 (Dependent context). Let ® = [zq : Ag, 1 : A1(x0), ..., Tn : An(Toy -+ Tn1)]-
We say that ® is a dependent context relative to I' when we can derive I' = & : Cxt,
where we mean the following sequence of judgements:

I'E Ag: Type
[z Ag E Ai(xg) = Type

Cyzg: Aoy ooy 1t Ap1(xoy ooy nq) B Ap(o, .., 201) - Type
Let a = (agp, a1, ...,a,). With I' - a : ® we mean:

F}_CL()ZAQ
Fl—alel(ao)

C'ka,:Ayag, ..., an-1)
We say that a is a dependent element of ® with respect to I'.

When we have a dependent context @, relative to I', we obtain a new context [I', ®].
We also obtain the following morphisms:

Definition 3.3 (Dependent projections). A dependent projection is a map [I', ®] — T,
"projecting away” the variables in ®.

It is possible introduce expressions I' - & = U : Cxt and ' F a = b : @, such that
these equalities satisfy reflexivity, symmetry and transitivity.
In addition to identity types we will introduce identity contexts:



Definition 3.4. For a context ® and a,b : ®, we have an identity context Idgy(a,b).

We have the following deduction rules for identity contexts, where we leave implicit a
context I', to which all notions are assumed to be relative:

Formation: Fo:Cuat
: a:®b:PF Idg(a,b) : Cut
Introduction: E®: Cat

a:®Frefla): Ide(a,a)

a:®,b:Pu: Ide(a,b), Ala,b,u) - C(a,b,u) : Cxt
a:® Ala,a,refl(a)) - d(a): C(a,a,refl(a))
a:®b: P u: Ide(a,b), Ala,b,u) - J(d,a,b,u): C(a,b,u)

Elimination:

a:® Ala,a,refl(a)) Fd(a) : C(a,a,refl(a))
a:® Ala,a,refl(a)) - J(d,a,a,refl(a)) = d(a) : C(a,a,refl(a))

Computation:

Here A(a,b,u) is a dependent context.
We will need the following lemma’s:
Lemma 3.5 ([2]). For every context ®, we can derive a rule of the form

a:PF d(a): Cut
a:®b: P u: Ide(a,b),e: Pla) - u.le) : ()

such that

a:®e:P(a)
(refl(a)).(e) = e : @(a)

holds

Lemma 3.6 ([2]). We can derive rules of the form

w: Idg(a,b),v: Ide(b,c)

vou: Idg(a,c)

a:®
1,: Ide(a,a)
such that
u: Idg(a,b)
lyou=w:Idg(a,b)
holds



Lemma 3.7 ([2]). We can derive a rule

u: Idg(a,b)
Wy Idg(uol,,u)
such that
a:®d
1/}1a = 11a . Id@(lm 1a)
holds

Lemma 3.8 (Retract argument, [3]). Suppose f = poi and f has the RLP with respect
toi. Then f is a retract of p.

We are now ready to prove the main theorem.

Theorem 3.9. Let T be a dependent type theory with axioms for identity types. Let D
be the set of display maps in Syn(T). The pair (L, R), where L :=" D and R := L",
forms a weak factorisation system on Syn(T).

We will show the theorem by proving the following two lemma’s:

Lemma 3.10. Every map f admits a factorisation f = poi, wherei € L and p is a
dependent projection.

Lemma 3.11. £L="R

Proof of Theorem 3.9. Note that a display map is a dependent projection. Also note
that D C R. We have that R is closed under composition, and we can create all
dependent projections from compositions of display maps, so R contains all dependent
projections. Then Lemma 3.10 gives us axiom 1 in Definition 1.2. Then by definition of
(£,R) and Lemma 3.11 we get axiom 2 in Definition 1.2, which proves the theorem. [

We will now continue to prove the lemma’s that we used.

Proof of Lemma 3.10. Let f : ® — ¥ be a context morphism. Define Id(f) := [z :
Oy W,u: Idy(f(x),y)]. We will now show that f = ps o iy, where py := [y] and
if:= [z, f(x), 1] The factorization is displayed in the following picture:

o~ 1d(f) 2w

It is clear that ps is a dependent projection. So we only need to show that iy € A,
which means that ¢y has the LLP with respect to all display maps.



We thus want to show that the commuting diagram above, where d is some display
map, has a diagonal filler, df;. Display maps are closed under pullbacks (we proved this
in one of the lectures).

This means that we also have a commuting diagram as below:

X 1 [v:Aw: D(v)]

And a unique morphism e : & — X, such that doe =i s and joe = g. Moreover, d
is also a pullback and so X can be written as [Id(f), z : C(z,y,u)] where C(x,y,u) is a
dependent type relative to Id(f).

So if we can find a diagonal filler dfs for this diagram:

v —° [Id(f) z: Clx,y,u)]

is lg

Id(f) ——— Id(})

Lracp)

Then by concatenation of dfy with j, we get a diagonal filler for the first diagram.
The rest of the proof will be dedicated to finding df,
We can derive

x:Dyo: Wy W0 Idy(yo, 1), u: Ide(f(2),y), 2 : Clx,yo,u) F C(z,y1,vo0u) : Type
(3.1)
since we can form vowu : Idy(f(z),y1) with Lemma 3.6 and thus a context Id(f) =
[z : @,y 2 W,vou: Idy(f(x),y1)], so we can obtain the type C(z,y;1,v o u) from the
display map d.
We can also derive

r: @y U u: Idy(f(2),y),z: C(z,y,u) Fz:C(z,y,1, ou) (3.2)

by the morphism e and again using Lemma 3.6.



Then, by the elimination rule for identity contexts, we obtain from 3.1 and 3.2

@y Uy s Wov s Idy(yo, 1) w s Idw(f(2),y), 2 C(x,yo,u) B J(2,90,y1,v) : C(x, y1, vou)
(3.3)
From 3.3 we can then obtain

T CI)’y cVu ]d\Il(f(x)u y)’ Z C(Q], f(CL’), 1f(:v)) + J(Z, f(l'), Ys u) : C(ZE, Y,uo 1f(:v))
(3.4)
Since here z only depends on z, we can substitute it for d(z) to get

r:®y:Vu: Ide(f(x),y) F J(d(x), f(x),y,u) : C(z,y,uo lyy) (3.5)

Since we have v : Idy(f(x),y), by Lemma 3.7 we also have 1, : Id(u o 1, u).
By this and by Lemma 3.5 we obtain

z: Py Vou: Ide(f(x),y) F (Vo) (J(d(x), f(x),y,u) : Clz,y,u) (3.6)

We now claim that the required filler, dfs can be defined as [z, y, u, (¢,)(J(d(z), f(x), y,u))].
That the bottom triangle commutes is obvious. The commutativity of the top triangle
follows from the following equalities:

Proof of Lemma 3.11. Since £ =" D and R = L", we have that D C R. This implies
that "R C" D = £. We still need to show that £ C" R, that every map in £ has the
LLP with respect to every map in R. We have that £ =" D, so every map in £ has
the LLP with respect to every display map. But dependent projections are composites
of display maps, so also every map in £ has the LLP with respect to every dependent

projection.
Lemma 3.8 and Lemma 3.10 tell us that every map in R is a retract of a dependent
projection. From this we can conclude that £ C" R. ]



4 Exercises

In the following exercises, consider the category of sets Set
1. What class of functions is equal to {# — {*}}"?

2. What class of functions is equal to "{{a, b} — {*}}?

We have that a function f : X — Y has a section when there is a function
g:Y — X such that fog=1y

3. Let £ be all monomorphisms and R be all epimorphisms. Show that (£,R) is
a weak factorisation system for Set iff the Axiom of Choice holds (Hint: AC is
equivalent to some function having a section).
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