The syntax category

Definition. Let \mathbb{T} be a type theory. The syntax category of \mathbb{T} , written $Syn(\mathbb{T})$, is defined as follows:

- Objects: the contexts Γ of \mathbb{T} .
- Morphisms: tuples of terms

$$\Gamma \xrightarrow{[t_1, \dots, t_n]} \Delta$$

= [x_1 : A_1, x_2 : A_2(x_1), \dots, A_n(x_1, \dots, x_{n-1})]

such that

$$\begin{split} & \Gamma \vdash t_1 : A_1 \\ & \Gamma \vdash t_2 : A_2(x_1) \\ & \vdots \\ & \Gamma \vdash t_n : A_n(x_1, \dots, x_{n-1}). \end{split}$$

For any $\Delta \vdash A$ Type, we write $A\{f\}$ for $A[t_1/x_1, \ldots, t_n/x_n]$. Analogous for contexts and terms.

• Composition: if

then $g \circ f = [s_1\{f\}, \dots, s_m\{f\}].$

• Identity: $id_{\Gamma} = [x_1, \ldots, x_n]$ for any

$$\Gamma = [x_1 : A_1, \dots, x_n : A_n(x_1, \dots, x_{n-1})].$$

Proposition. $Syn(\mathbb{T})$ is a category.

Terms and types in $\text{Syn}(\mathbb{T})$ For any context $\overline{\Gamma} = [x_1 : A_1, \dots, x_n : A_n(x_1, \dots, x_{n-1})]$ of \mathbb{T} , the types A of Γ correspond to *display maps* and the terms t to its sections, as depicted in the following picture:

$$\Gamma \xleftarrow{[x_1, \dots, x_n]}{\underset{[x_1, \dots, x_n, t]}{\longleftarrow}} \Gamma.A$$

We write $p(\Gamma.A)$ for the display map corresponding to the type A and \overline{t} for the section corresponding to its term t.

Substitution in Syn(\mathbb{T}): a coherence problem For $\Delta \vdash \overline{A}$ Type and $f: \Gamma \to \Delta$, the type $A\{f\}$ of Γ is given by the pullback of f along $p(\Gamma.A)$:

where $\mathbf{q}(f, A) := [t_1, \dots, t_n, y]$, for $f = [t_1, \dots, t_n]$ and $\Gamma.A\{f\} = \Gamma, y : A\{f\}$, is the *weakening* of f with A. Because pullbacks are only defined up to isomorphism, substitution in the syntax category is not strictly associative, as it is in the syntax itself.

Categories with families

Definition. A category with families is a structure $(\mathbb{C}, Ty, Tm, -\{-\}, \top, \langle \rangle_{-}, -.-, \mathsf{p}, \mathsf{v}_{-}, \langle -, - \rangle_{-})$, where

- \mathbb{C} is a category with terminal object \top and arrows $\langle \rangle_{\Gamma} : \Gamma \to \top$.
- For every Γ ∈ C collections:
 Ty(Γ);
 Tm(Γ, A) for all A ∈ Ty(Γ).
- For each morphism $f : \Gamma \to \Delta$ functions: - $-\{f\} : \mathsf{Ty}(\Delta) \to \mathsf{Ty}(\Gamma);$ - $-\{f\} : \mathsf{Tm}(\Delta, A) \to \mathsf{Tm}(\Gamma, A\{f\}).$
- For every $\Delta \in \mathbb{C}$ and $A \in \mathsf{Ty}(\Gamma)$, - $\Delta.A \in \mathbb{C}$ with corresponding: - $\mathsf{p}(A) : \Delta.A \to \Delta$; - $\mathsf{v}_A \in \mathsf{Tm}(\Delta.A, A\{\mathsf{p}(A)\})$; - for every $f : \Gamma \to \Delta$ and $t \in \mathsf{Tm}(\Gamma, A\{f\})$, $\langle f, t \rangle_A : \Gamma \to \Delta.A$.

such that for each $\Gamma, \Delta, \Theta \in \mathbb{C}$, $f: \Gamma \to \Delta, g: \Delta \to \Theta, A \in Ty(\Theta), t \in Tm(\Theta, A)$ and $s \in Tm(\Delta, A\{g\}),$

$$\begin{split} A\{\mathrm{id}_{\Theta}\} &= A & \in Ty(\Theta) \\ A\{g \circ f\} &= A\{g\}\{f\} & \in Ty(\Gamma) \\ t\{\mathrm{id}_{\Theta}\} &= t & \in Tm(\Theta, A) \\ t\{g \circ f\} &= t\{g\}\{f\} & \in Tm(\Gamma, A\{g \circ f\}) \\ \mathsf{p}(A) \circ \langle g, s \rangle_A &= g & : \Delta \to \Theta \\ \mathsf{v}_A\{\langle g, s \rangle_A\} &= s & \in Tm(\Delta, A\{g\}) \\ \langle g, s \rangle_A \circ f &= \langle g \circ f, s\{f\} \rangle_A & : \Gamma \to \Theta.A \\ \langle \mathsf{p}(A), \mathsf{v}_A \rangle_A &= \mathrm{id}_{\Theta.A} & : \Theta.A \to \Theta.A. \end{split}$$

Definition. For any $t \in \mathsf{Tm}(\Delta, A)$, we define

$$\bar{t} = \langle id_{\delta}, t \rangle_A : \Delta \to \Delta.A$$

Proposition. $\overline{\cdot}$ is a bijective map from $\mathsf{Tm}(\Delta, A)$ to the collection of sections of p(A).

Definition. For $f: \Gamma \to \Delta$, the *weakening* of f by A is given by

$$\mathsf{q}(f,A) = \langle f \circ \mathsf{p}(A) \{ f \}, \mathsf{v}_{A\{f\}} \rangle_A : \Gamma.A\{f\} \to \Delta.A$$

Interpreting type formers

To avoid ambiguities and make clear which projection we mean, we may write $p(\Gamma.A)$ for $p(A) : \Gamma.A \to \Gamma$ (or similarly, $p(\Gamma.A.B)$ for $p(B) : \Gamma.A.B \to \Gamma.B$).

Definition. A Category with Families supports Π types if for any context Γ and any two types $A \in \mathsf{Ty}(\Gamma)$ and $B \in \mathsf{Ty}(\Gamma.A)$ we have that

- (1) there is a type $\Pi(A, B) \in \mathsf{Ty}(\Gamma)$,
- (2) for any $t \in \mathsf{Tm}(\Gamma.A, B)$, there is a term $\lambda_{A,B}(t) \in \mathsf{Tm}(\Gamma, \Pi(A, B)),$
- (3) there is a morphism

$$\operatorname{App}_{A,B}: \Gamma.A.\Pi(A,B)\{p(A)\} \to \Gamma.A.B$$

such that

$$\mathsf{p}(\Gamma.A.B) \circ \mathsf{App}_{A.B} = \mathsf{p}(\Gamma.A.\Pi(A,B))$$

and,

$$\mathsf{App}_{A,B} \circ \overline{(\lambda_{A,B}(t))\{\mathsf{p}(\Gamma.A)\}} = \bar{t},$$

for any $t \in \mathsf{Tm}(\Gamma.A, B)$,

- (4) all of these construct are stable under substitution, i.e., for $f : \Delta \to \Gamma$, we have
 - (a) $\Pi(A, B)\{f\} = \Pi(A\{f\}, B\{q(f, A)\}),$
 - (b) $(\lambda_{A,B})(t)\{f\} = \lambda_{A\{f\},B\{q(f,A)\}}(t\{q(f,A)\}),$
 - $\begin{array}{ll} \text{(c)} & \mathsf{App}_{A,B} \circ \mathsf{q}(\mathsf{q}(f,A),\Pi(A,B)\{\mathsf{p}(A)\}) = \\ & \mathsf{q}(\mathsf{q}(f,A),B) \circ \mathsf{App}_{A\{f\},B\{\mathsf{q}(f,A)\}}. \end{array}$

Definition. A Category with Families supports identity types if for any context Γ and any type $A \in \mathsf{Ty}(\Gamma)$ we have that

- (1) there is a type $\mathsf{Id}_A \in \mathsf{Ty}(\Gamma.A.A\{\mathsf{p}(A)\}),$
- (2) there is a morphism

$$\operatorname{\mathsf{Refl}}_A: \Gamma.A \to \Gamma.A.A\{\mathsf{p}(A)\}.\mathsf{Id}_A$$

such that $p(\mathsf{Id}_A) \circ \mathsf{RefI}_A = \bar{v}_A$,

- (3) for every type $B \in \mathsf{Ty}(\Gamma.A.A\{\mathsf{p}(A)\}.\mathsf{Id}_A)$ and term $H \in \mathsf{Tm}(\Gamma.A, B\{\mathsf{Refl}_A\})$ there is a term $R^{\mathsf{Id}}(H) \in \mathsf{Tm}(\Gamma.A.A\{\mathsf{p}(A)\}, B)$ such that $R^{\mathsf{Id}}(H)\{\mathsf{Refl}\} = H,$
- (4) all of these constructs are stable under substitution, i.e.,
 - (a) $\mathsf{Id}_{A}\{\mathsf{q}(\mathsf{q}(f, A), A\{\mathsf{p}(A)\})\} = \mathsf{Id}_{A\{f\}},$
 - (b) $q(q(q(f, A), A\{p(A)\}), Id_A) \circ Refl_{A\{f\}} = Refl_A \circ q(f, A).$

Soundness and Completeness of CwF

Theorem. There is a sound and complete interpretation function of type theory in categories with families.

Example: Heyting Algebras and Peano's Third Axiom

Reminder. A Heyting algebra is a lattice H which as a poset admits an operation of implication $\rightarrow: A \rightarrow B$ satisfying the condition (really a universal property) $(x \land a) \leq b$ if and only if $x \leq (a \rightarrow b)$. We denote with 1 and 0 the maximal and minimal elements of H, respectively.

Let H be a Heyting algebra and consider it as a category C_H in the usual way (i.e., the objects of C_H are the elements of H and there is a unique morphism from $a \in H$ to $b \in H$ if and only if $a \leq b$). This category can be equipped with the structure of a category with families:

- C_H has the terminal object 1,
- for any context $\Gamma \in C_H$, we let $\mathsf{Ty}(\Gamma) = H$, and $\mathsf{Tm}(\Gamma, A) = \mathsf{Hom}_{\mathcal{C}_H}(\Gamma, A)$,
- for comprehension of $\Gamma \in \mathcal{C}_H$ and $A \in \mathsf{Ty}(\Gamma) = H$ we define $\Gamma A = \Gamma \wedge A$.
- Both substitutions $-\{f\}$ are the identity.

We interpret type constructors as follows:

\mathbf{Type}	Interpretation
$\Pi(A,B)$	$A \to B$
$\Sigma(A,B)$	$A \wedge B$
Id_A	1
N	1
0	0

Theorem. Every Heyting algebra H exhibits the structure of a category with families C_H that supports Π types, Σ -types, identity types, natural numbers and the empty type.

Recall Peano's third axiom:

$$x \in \mathbb{N} \to Sx \neq 0 \tag{P}$$

Proposition. Peano's third axiom (P) is provable in type theory with universes.

Proposition. Let H be a Heyting algebra. Then judgements of the form $p : Id_A(a, b) \vdash t(p) : 0$ are not valid in C_H .

Corollary. For any Heyting algebra H, (P) is not provable in C_H .

Corollary. Peano's third axiom (P) is independent of type theory.

Homework

Exercise. Let H be a Heyting algebra and C_H be the associated category with families. Show that C_H supports Π -types. (Hint: you are allowed to use all well-known facts about Heyting algebras and categories that arise from a partial order.)