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The syntax category

Definition. Let T be a type theory. The syntazx cate-
gory of T, written Syn(T), is defined as follows:

e Objects: the contexts I' of T.

e Morphisms: tuples of terms

p et A

= [LL'l : A1, g Ag(xl), N 7An($1, ce xnfl)]

such that

'+ tl : A1

'k tg : AQ(I‘l)

Lkt An(zr,.. . @peq).
For any A + A Type, we write A{f} for
Alt1/x1,. .., tn/xy). Analogous for contexts and
terms.

e Composition: if

F f:[t17~.,tn] A
lg:[a,...’sm]
0= [yl : Bla o Ymt Bm(y17 s 7ym—1)]a
then g0 f = [s1{/}.- - sm{/}].
e Identity: idp = [z1,...,z,] for any
D=[r1:A1,... 20 An(x1, .., Tpe1)]

Proposition. Syn(T) is a category.

Terms and types in Syn(T) For any context
F=x1:A41,...,2y: An(x1,...,2m-1)] of T, the types
A of T' correspond to display maps and the terms ¢ to
its sections, as depicted in the following picture:

We write p(I'.A) for the display map corresponding to
the type A and t for the section corresponding to its
term .

Substitution in Syn(T): a coherence problem For A F
A Type and f : T — A, the type A{f} of T is given by
the pullback of f along p(I".A):

r.A{f) YA, q(f A)
P(F-A{f})J JP(A A)
r — A.

where q(f, A) := [t1,...,tn,y], for f =[t1,...,t,] and
A{f} =T,y : A{f}, is the weakening of f with A.
Because pullbacks are only defined up to isomorphism,
substitution in the syntax category is not strictly asso-
ciative, as it is in the syntax itself.

Categories with families

Definition. A category with families is a structure
(C7 Tya va _{_}7 Ta <>—a - PV, <_7 _>—)a where

e Cis a category with terminal object T and arrows
<>1’* :I'—>T.

e For every I' € C collections:

- Ty(@);
- Tm(T, A) for all A € Ty(T).

e For each morphism f :I' — A functions:
-—{f}: Ty(A) = Ty(D);
- ={f}: Tm(A, 4) = Tm(I', A{f}).

e For every A € C and A4 € Ty(I),
- A.A € C with corresponding;:
-p(4): AA = A
-va € Tm(AA, A{p(A)});
- for every f : T' = A and t € Tm(T, A{f}),
(fitha: T — AA.

such that for each I'; A, © € C,
fT—=Ag:A—=0, AcTyO),tecTm(0,A) and
s € Tm(A, A{g}),

Afide} = A € Ty(O)
A{go f} = A{g}{[f} € Ty(T)
t{ido} =t € Tm(0, A)
t{go f}=t{gH/} € Tm(L', A{go f})
p(A)o(g,s)a=g :A— 0
va{(g,s)a}t =s € Tm(A, A{g})
(g,8)a0f={(gof,s{fHa T —=0.4
(p(A),va)a =ide.a :0.4 — 6.A.

Definition. For any t € Tm(A, A), we define

t= <id5,t>AZA—>A.A

Proposition. ~ is a bijective map from Tm(A, A) to
the collection of sections of p(A).

Definition. For f : T' — A, the weakening of f by A
is given by

q(f, A) = (fep(A{f}vag)a : T A{f} = A.A



Interpreting type formers

To avoid ambiguities and make clear which projection
we mean, we may write p(I'.4) for p(4) : T.A =T (or
similarly, p(T.A.B) for p(B) : T.A.B — I".B).

Definition. A Category with Families supports II-
types if for any context I and any two types A € Ty(T")
and B € Ty(T'.A) we have that

(1) there is a type II(A, B) € Ty(T),

(2) for any t € Tm(I". A, B), there is a term
Aap(t) € Tm(I,1I(A, B)),

(3) there is a morphism
Appy p: T AII(A, B){p(A)} - T.A.B
such that
p(I.A.B) o App, g = p(I'.A.II(A, B))

and

7

Apps g o (Aa(t){p(Il"A)} =1,
for any t € Tm(T". A, B),
(4) all of these construct are stable under substitu-
tion, i.e., for f: A — I', we have
(a) T(A, B){f} = (A{f}, B{a(f, 4)}),
(b) (Aa,B)O{f} = Aagsy.Biacr.an {alf, A1),

(c) Appa g oa(a(f, A),II(A, B){p(A)}) =
a(a(f, A), B) © APPa( 1. B{a(f,A)}-

Definition. A Category with Families supports iden-
tity types if for any context I' and any type A € Ty(T)
we have that

(1) there is a type Id4 € Ty(I"A. A{p(A)}),
(2) there is a morphism

Refly : T.A — [.AA{p(A)}.1d4
such that p(ld4) o Refl4 = 04,

(3) for every type B € Ty(I'"A.A{p(A)}.ld4) and
term H € Tm(I.A, B{Refl4}) there is a
term RY(H) € Tm(I.A.A{p(A)}, B) such that
RY(H){Refl} = H,

(4) all of these constructs are stable under substitu-
tion, i.e.,
(a) Idafa(a(f; A), A{p(A) D} = dagsy,
(b) ala(a(f,A), A{p(A)}),Id4) oRefla(fy =

Refl4 o q(f, A).
Soundness and Completeness of CwF

Theorem. There is a sound and complete interpreta-
tion function of type theory in categories with families.

Example: Heyting Algebras and
Peano’s Third Axiom

Reminder. A Heyting algebra is a lattice H which as
a poset admits an operation of implication —: A — B
satisfying the condition (really a universal property)
(x Aa) < bif and only if 2 < (a — b). We denote
with 1 and 0 the maximal and minimal elements of H,
respectively.

Let H be a Heyting algebra and consider it as a cat-
egory Cg in the usual way (i.e., the objects of Cy are
the elements of H and there is a unique morphism from
a € H tob e H if and only if a < b). This category
can be equipped with the structure of a category with
families:

e Cpy has the terminal object 1,

e for any context I' € Cpr, we let Ty(T') = H, and
Tm(T', A) = Home,, (T, 4),

e for comprehension of I € Cy and A € Ty(I') = H
we define I'A =T"A A.

e Both substitutions —{f} are the identity.

We interpret type constructors as follows:

Type Interpretation
II(A,B) A—B

Y(A,B) AAB

Ida 1

N 1

0 0

Theorem. Every Heyting algebra H exhibits the struc-
ture of a category with families Cy that supports 11-
types, Y-types, identity types, natural numbers and the
empty type.

Recall Peano’s third axiom:

reN—=Sz#0 (P)

Proposition. Peano’s third axziom (P) is provable in
type theory with universes.

Proposition. Let H be a Heyting algebra. Then judge-
ments of the form p :1da(a,b) - t(p) : 0 are not valid

Corollary. For any Heyting algebra H, (P) is not
provable in Cp.

Corollary. Peano’s third axiom (P) is independent of
type theory.

Homework

Exercise. Let H be a Heyting algebra and Cy be the
associated category with families. Show that Cy sup-
ports II-types. (Hint: you are allowed to use all well-
known facts about Heyting algebras and categories that
arise from a partial order.)



