FUNCTIONAAL ANALYSE

Exercises 4

Thursday 2 Mar 2017

EXERCISE 4.1

Let X be the space of all sequences $x = \{\xi_j\}$ of components $\xi_j \in \mathbb{C}$ such that only a finite number of components ξ_j differ from zero.

a. Show that $||x|| = \sup\{|\xi_j| : j \ge 1\}$ is a norm on X. Is X a Banach space?

For given $\alpha \ge 0$, define $T_{\alpha}: X \to X$ by $(T_{\alpha}\xi)_j = j^{-\alpha}\xi_j$ for all $j \ge 1$.

b. Show that T_{α} is a bounded linear operator. Also show that T_{α} has an inverse $T_{\alpha}^{-1}: X \to X$ which is linear but not bounded.

Let c_0 denote the space of all sequences $x = \{\xi_j\}$ that converge to zero. Let $(\ell^p, \|\cdot\|_p)$ $(1 \le p < \infty)$ denote the normed space of all sequences $x = \{\xi_j\}$ such that $\|x\|_p := (\sum_j |\xi_j|^p)^{1/p} < \infty$.

- c. Show that $X \subset \ell^p \subset c_0 \subset \ell^\infty$, for any $1 \leq p < \infty$. Also show that c_0 is a closed subspace of ℓ^∞ .
- d. Show that X is a dense subspace in c_0 but not in ℓ^{∞} . Conclude that T_{α} has a continuous extension $S_{\alpha} : c_0 \to c_0$.
- e. Show that X is a dense subspace of $(\ell^p, \|\cdot\|_p)$, for any $1 \le p < \infty$. Conclude that T_{α} has a continuous extension $R_{\alpha} : \ell^p \to \ell^p$.
- f. Show that if q < p and α is such that $\alpha > q^{-1} p^{-1}$, then $R_{\alpha} : \ell^p \to \ell^p$ has range $R_{\alpha}(\ell^p) = \ell^q$.

EXERCISE 4.2

Let c be the space of all sequences $x = \{\xi_j\}$ of components $\xi_j \in \mathbb{C}$ that converge.

a. Show that c is isomorphic to c_0 . in other words, that there exists a one-to-one, continuous, linear $T: c \to c_0$ with continuous inverse T^{-1} defined on the range of T.

- b. Prove that for every $x \in B_{c_0} := \{x \in c_0 : ||x||_{\infty} = 1\}$, there exist $x_1, x_2 \in B_{c_0}, x = \frac{1}{2}(x_1 + x_2)$, while $x_1 \neq x_2$.
- c. Show that there exists an $x \in B_c := \{x \in c : ||x||_{\infty} = 1\}$ such that $x_1, x_2 \in B_{c_0}, x = \frac{1}{2}(x_1 + x_2)$ implies $x_1 = x_2$.
- d. Prove from b. and c. above that there does not exist an isometric isomorphism $T: c \to c_0$.

Exercise 4.3

Let X be a Banach space, let $A : X \to X$ be an element of B(X, X) and let $t \in \mathbb{R}$. Consider the sequence of operators $p_n : X \to X$ defined by,

$$p_n(t, A) = \sum_{k=0}^n \frac{t^k A^k}{k!}.$$

- a. Show that $p_n \in B(X, X)$. Show that the limit $e^{tA} : X \to X$, $(t, A) \mapsto \lim_{n \to \infty} p_n(t, A)$ lies in B(X, X).
- b. Make sense of the identity,

$$\frac{\partial}{\partial t}e^{tA}\Big|_{t=0} = A,$$

in B(X, X).