Functionaal Analyse

Exercises 4

Thursday 2 Mar 2017

Exercise 4.1

Let X be the space of all sequences $x=\left\{\xi_{j}\right\}$ of components $\xi_{j} \in \mathbb{C}$ such that only a finite number of components ξ_{j} differ from zero.
a. Show that $\|x\|=\sup \left\{\left|\xi_{j}\right|: j \geq 1\right\}$ is a norm on X. Is X a Banach space?

For given $\alpha \geq 0$, define $T_{\alpha}: X \rightarrow X$ by $\left(T_{\alpha} \xi\right)_{j}=j^{-\alpha} \xi_{j}$ for all $j \geq 1$.
b. Show that T_{α} is a bounded linear operator. Also show that T_{α} has an inverse $T_{\alpha}^{-1}: X \rightarrow X$ which is linear but not bounded.

Let c_{0} denote the space of all sequences $x=\left\{\xi_{j}\right\}$ that converge to zero. Let $\left(\ell^{p},\|\cdot\|_{p}\right)$ $(1 \leq p<\infty)$ denote the normed space of all sequences $x=\left\{\xi_{j}\right\}$ such that $\|x\|_{p}:=$ $\left(\sum_{j}\left|\xi_{j}\right|^{p}\right)^{1 / p}<\infty$.
c. Show that $X \subset \ell^{p} \subset c_{0} \subset \ell^{\infty}$, for any $1 \leq p<\infty$. Also show that c_{0} is a closed subspace of ℓ^{∞}.
d. Show that X is a dense subspace in c_{0} but not in ℓ^{∞}. Conclude that T_{α} has a continuous extension $S_{\alpha}: c_{0} \rightarrow c_{0}$.
e. Show that X is a dense subspace of $\left(\ell^{p},\|\cdot\|_{p}\right)$, for any $1 \leq p<\infty$. Conclude that T_{α} has a continuous extension $R_{\alpha}: \ell^{p} \rightarrow \ell^{p}$.
f. Show that if $q<p$ and α is such that $\alpha>q^{-1}-p^{-1}$, then $R_{\alpha}: \ell^{p} \rightarrow \ell^{p}$ has range $R_{\alpha}\left(\ell^{p}\right)=\ell^{q}$.

Exercise 4.2

Let c be the space of all sequences $x=\left\{\xi_{j}\right\}$ of components $\xi_{j} \in \mathbb{C}$ that converge.
a. Show that c is isomorphic to c_{0}. in other words, that there exists a one-to-one, continuous, linear $T: c \rightarrow c_{0}$ with continuous inverse T^{-1} defined on the range of T.
b. Prove that for every $x \in B_{c_{0}}:=\left\{x \in c_{0}:\|x\|_{\infty}=1\right\}$, there exist $x_{1}, x_{2} \in B_{c_{0}}$, $x=\frac{1}{2}\left(x_{1}+x_{2}\right)$, while $x_{1} \neq x_{2}$.
c. Show that there exists an $x \in B_{c}:=\left\{x \in c:\|x\|_{\infty}=1\right\}$ such that $x_{1}, x_{2} \in B_{c_{0}}$, $x=\frac{1}{2}\left(x_{1}+x_{2}\right)$ implies $x_{1}=x_{2}$.
d. Prove from b. and c. above that there does not exist an isometric isomorphism $T: c \rightarrow c_{0}$.

Exercise 4.3

Let X be a Banach space, let $A: X \rightarrow X$ be an element of $B(X, X)$ and let $t \in \mathbb{R}$. Consider the sequence of operators $p_{n}: X \rightarrow X$ defined by,

$$
p_{n}(t, A)=\sum_{k=0}^{n} \frac{t^{k} A^{k}}{k!} .
$$

a. Show that $p_{n} \in B(X, X)$. Show that the limit $e^{t A}: X \rightarrow X,(t, A) \mapsto$ $\lim _{n \rightarrow \infty} p_{n}(t, A)$ lies in $B(X, X)$.
b. Make sense of the identity,

$$
\left.\frac{\partial}{\partial t} e^{t A}\right|_{t=0}=A
$$

in $B(X, X)$.

