Functionaal Analyse

Exercises 3

Thursday 23 Feb 2017

Exercise 3.1

Let X be a normed space and let $\left\{a_{n}\right\}$ be a sequence in X. The vectors $\left\{a_{n}\right\}$ are said to be linearly independent if, for any $n \geq 1, a_{n}$ cannot be written as a finite linear combination from $\left\{a_{m}: m \neq n\right\}$. By constrast, we say that $\left\{a_{n}\right\}$ is topologically independent if, for any $n \geq 1, a_{n}$ does not lie in the closed linear span $\overline{\mathrm{Sp}}\left\{a_{m}: m \neq n\right\}$.
a. Prove that topological independence implies linear independence.

In the rest of this problem, let X be the Banach space $\left(C_{\mathbb{R}}[0,1],\|\cdot\|_{\infty}\right)$. First we consider the sequence $\left\{f_{n}\right\} \subset C_{\mathbb{R}}[0,1], f_{n}(x)=(2 / \pi)^{1 / 2} \sin (n x)$.
b. For any $n \geq 1$ and all $f \in \operatorname{Sp}\left\{f_{m}: m \neq n\right\}$,

$$
\begin{equation*}
\int_{0}^{1}\left(f_{n}(x)-f(x)\right)^{2} d x \geq 1 \tag{1}
\end{equation*}
$$

Prove this by switching to $L_{\mathbb{R}}^{2}[0,1]$ and using Bessel's inequality.
c. Show that it follows from (1) that for any $n \geq 1$,

$$
\begin{equation*}
\inf \left\{\left\|f_{n}-f\right\|_{\infty}: f \in \operatorname{Sp}\left\{f_{m}: m \neq n\right\}\right\}>0, \tag{2}
\end{equation*}
$$

Explain that (2) implies that $\left\{f_{n}\right\}$ is topologically independent.
Next we consider the sequence $\left\{g_{n}\right\} \subset C_{\mathbb{R}}[0,1], g_{n}(x)=x^{n}$. Although clearly linearly independent, we shall see that $\left\{g_{n}\right\}$ is not topologically independent.
d. Consider sequences of real-valued polynomials $\left\{p_{n}\right\} \in C_{\mathbb{R}}[0,1]$ with only even powers of x, that is, for every $n \geq 1, p_{n}$ is of the form,

$$
p_{n}(x)=\sum_{k \in S_{n}} a_{n, k} x^{2 k}
$$

(for some finite subset S_{n} of $\{0,1, \ldots\}$ and some finite collection of coefficients $\left.\left\{a_{n, k}: k \in S_{n}\right\} \subset \mathbb{R}\right)$. Prove that there exists a sequence $\left\{p_{n}\right\}$ of such polynomials that converges to the function $[0,1] \rightarrow \mathbb{R}: x \mapsto x$ in $\|\cdot\|_{\infty}$-norm. (Hint: note that the function $s(y)=\sqrt{y}$ is continuous on $[0,1]$, so the StoneWeierstrass theorem applies.)
e. Assume that there exists a sequence $\left\{p_{n}\right\}$ that converges to the identity function $x \mapsto x$, as proved in part d. Show that $\left\{g_{n}\right\}$ is linearly independent but not topologically independent.

Exercise 3.2

a. Let α, β be such that $-1<\alpha, \beta<1$ and define $L: \ell_{\mathbb{R}}^{2} \rightarrow \ell_{\mathbb{R}}^{2}$ component-wise for every $k \geq 1$, as follows,

$$
L\left(\left\{\xi_{n}\right\}\right)_{k}=\sum_{j \geq 1} \alpha^{k} \beta^{j} \xi_{j}
$$

for all $\left\{\xi_{n}\right\} \in \ell_{\mathbb{R}}^{2}$. First show that for every $\xi \in \ell_{\mathbb{R}}^{2}$, the image $L \xi$ lies in $\ell_{\mathbb{R}}^{2}$. Next, show that L is bounded, with norm:

$$
\|L\|=\frac{|\alpha \beta|}{\sqrt{1-\alpha^{2}} \sqrt{1-\beta^{2}}}
$$

Exercise 3.3

b. Let $\left(H_{1},\langle\cdot, \cdot\rangle_{1}\right)$ and $\left(H_{2},\langle\cdot, \cdot\rangle_{2}\right)$ be real Hilbert spaces and let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Suppose that $\left\{e_{j}\right\}$ is an orthonormal basis for H_{2}. Show that there exists a sequence $\left\{f_{j}\right\}$ in H_{1} such that, for all $x \in H_{1}$,

$$
T x=\sum_{j \geq 1}\left\langle x, f_{j}\right\rangle_{1} e_{j} .
$$

