Functionaal Analyse

Exercises 1

Thursday 9 Feb 2017

Exercise 1.1

Let S be a nonempty set, let

$$
B(S)=\{f: S \rightarrow \mathbb{R}: f \text { is bounded }\}
$$

and endow $B(S)$ with the uniform metric, that is,

$$
d(f, g)=\sup _{x \in S}|f(x)-g(x)|, \quad f, g \in B(S) .
$$

a. Prove that if $f, g \in B(S)$ and $\lambda \in \mathbb{R}$ then $f+g \in B(S), f g \in B(S)$, and $\lambda f \in B(S)$.
b. Prove that $(B(S), d)$ is complete.
c. Suppose that S is a metric space and consider the subset $C_{b}(S)$ of $B(S)$ consisting of continuous bounded functions. Prove that $C_{b}(S)$ is a closed subspace of $B(S)$.
d. Does it follow from b. and c. that $C_{b}(S)$ endowed with the uniform metric is complete?

Exercise 1.2

Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in $C[a, b]$ which is pointwise bounded, that is, for every $x \in[a, b]$ there exists M_{x} such that $\left|f_{n}(x)\right| \leq M_{x}$ for all $n \in\{1,2,3, \ldots\}$.
a. Prove that there exists a subinterval of $[a, b]$ on which the f_{n} are uniformly bounded, that is, there exist $c, d \in[a, b]$ with $c<d$ and $M \geq 0$ such that $\left|f_{n}(x)\right| \leq M$ for all $x \in[c, d]$ and all $n=1,2,3, \ldots$.

Exercise 1.3

Which of the following formulas defines a metric? Give for each case a proof or a counterexample.
a. $d(f, g)=\sup _{x \in[0,1]} x|f(x)-g(x)|$ (for $\left.f, g \in B(S)\right)$ on $B[0,1]$.
(Recall: $B[0,1]$ is the set of all bounded functions from $[0,1]$ to \mathbb{R}.)
b. $d(f, g)=\int_{0}^{1} x|f(x)-g(x)| \mathrm{d} x$ (for $f, g \in C[0,1]$) on $C[0,1]$.
c. $d(f, g)=\int_{-1}^{1} x|f(x)-g(x)| \mathrm{d} x$ (for $f, g \in C[-1,1]$) on $C[-1,1]$.
d. $d(f, g)=\int_{a}^{b}\left|f^{\prime}(x)-g^{\prime}(x)\right| \mathrm{d} x$ (for $\left.f, g \in C^{1}[a, b]\right)$ on $C^{1}[a, b]$.

