Problem 5.1

Consider the Banach space,

$$\ell^{\infty} = \{ x : \mathbb{N} \to \mathbb{F} : \sup_{n \in \mathbb{N}} |x(n)| < \infty \}$$

with its norm,

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x(n)|, \qquad x \in \ell^{\infty}.$$

Prove or disprove each of the following statements:

- (a) There exists an $f \in (\ell^{\infty})'$ such that $f(x) = \lim_{n \to \infty} x(n)$ for every $x \in \ell^{\infty}$ for which $\lim_{n \to \infty} x(n)$ exists.
- (b) There exists an $f \in (\ell^{\infty})'$ such that $f(x) = \sum_{n=1}^{\infty} x(n)$ for every $x \in \ell^{\infty}$ for which $\sum_{n=1}^{\infty} x(n)$ exists.
- (c) There exist two distinct functionals $f, g \in (\ell^{\infty})'$ such that $f(x) = g(x) = \lim_{n \to \infty} x(n)$ for every $x \in \ell^{\infty}$ for which $\lim_{n \to \infty} x(n)$ exists.
- (d) There exists an $f \in (\ell^{\infty})' \setminus \{0\}$ such that $f(e_n) = 0$ for all $n \in \mathbb{N}$. (Here $e_n \in \ell^{\infty}$ is defined by $e_n(k) = \delta_{nk}$, for all $n, k \in \mathbb{N}$.)

Problem 5.2

(a) Let C be a non-empty convex subset of a real normed space $(X, \|\cdot\|)$. Denote $H(f, \gamma) = \{x \in X : f(x) \le \gamma\}$ for $f \in X'$ and $\gamma \in \mathbb{R}$. Show that the closure \overline{C} of C satisfies

$$\overline{C} = \bigcap_{f \in X', \, \gamma \in \mathbb{R}: \, C \subseteq H(f, \gamma)} H(f, \gamma)$$

(b) Give an example of a real normed space $(X, \|\cdot\|)$ and a non-convex set C for which the equality in (a) does not hold.

Problem 5.3

Let $(X, \|\cdot\|)$ be a reflexive Banach space. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of bounded linear operators from X into X such that $\lim_{n\to\infty} f(T_nx)$ exists for all $f \in X'$ and all $x \in X$. Show that there exists a bounded linear operator T from X into X such that,

$$f(Tx) = \lim_{n \to \infty} f(T_n x)$$
 for all $f \in X'$ and all $x \in X$.

(Hint: Use the Uniform Boundedness Principle (twice!) to show that $\sup_{n \in \mathbb{N}} ||T'_n|| < \infty$. Show that the map S defined by $(Sf)(x) := \lim_{n \to \infty} (T'_n f)(x)$ is a bounded linear operator from X' into X'. Use S' and reflexivity to find T.)