Functionaal Analyse
 Homework Assignment 1
 23 Mar 2017

Problem 4.1

Let H be a Hilbert space. Let $\left\{a_{n}\right\}$ be a sequence in H such that for each $h \in H$ the sum $\sum_{n=1}^{\infty}\left|\left(h, a_{n}\right)\right|^{2}$ is finite. (Such a sequence is said to be 'weakly square summable'.)
(a) Prove that if $\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{2}<\infty$, then

$$
\sum_{n=1}^{\infty}\left|\left(h, a_{n}\right)\right|^{2} \leq C\|h\|^{2} \quad \text { for all } h \in H
$$

where $C=\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{2}$.
(b) Give an example of a sequence $\left\{a_{n}\right\}$ for which $\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{2}=\infty$.
(c) Prove that there exists a constant $C \geq 0$ such that

$$
\sum_{n=1}^{\infty}\left|\left(h, a_{n}\right)\right|^{2} \leq C\|h\|^{2} \quad \text { for all } h \in H
$$

Hint: show that the operator $T: h \mapsto\left\{\left(h, a_{n}\right)\right\}$ from H to ℓ^{2} has a closed graph.
(d) Prove that for each $\left\{\beta_{n}\right\} \in \ell^{2}$ the limit

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \beta_{n} a_{n}
$$

exists in the Hilbert space H.
Hint: consider the supremum $\sup _{\|h\| \leq 1}\left|\left(h, \sum_{n=M}^{N} \beta_{n} a_{n}\right)\right|$ for $N>M \geq 1$.

Problem 4.2

Let $(X,\|\cdot\|)$ be a normed space. A completion of X is a Banach space Y such that X is isometrically isomorphic to a dense subspace of Y.
(a) Show that X has a completion and that every two completions of X are isometrically isomorphic.
Hint: use appropriate results of $R \mathcal{E} Y$ about the second dual of X.
(b) Prove that, if X is an inner product space, then its completion is a Hilbert space.

Problem 4.3

As an example of a normed-space completion as in problem 4.2, note that for any $1 \leq p<\infty$, the space $L^{p}[a, b]$ is the completion of $C[a, b]$ with respect to the norm, $\|g\|_{p}=\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p}$. We specialize to the case $p=1$, i.e. for $g \in C[a, b]$, define,

$$
\|g\|_{1}=\int_{a}^{b}|g(t)| d t .
$$

Consider the linear functional $\ell: C[a, b] \rightarrow \mathbb{F}$ given by

$$
\ell(g)=\int_{a}^{b} g(t) d t
$$

(a) Prove that the linear functional ℓ is bounded and compute $\|\ell\|$.
(b) Prove that there exists a unique bounded linear functional $\widehat{\ell}: L^{1}[a, b] \rightarrow \mathbb{F}$ that extends ℓ to the $\|\cdot\|_{1}$-completion $L^{1}[a, b]$.
(The above constitutes an alternative way to define the space of Lebesgue integrable functions $g \in L^{1}[a, b]$ with Lebesgue integral $\widehat{\ell}(g)$ (usually denoted $\left.\int_{a}^{b} g(t) d t\right)$.)

Problem 4.4
(a) Let X be a normed space, suppose $L \neq X$ is a closed linear subspace and that $a \in X$ is not in L. Prove that there exists $f \in X^{\prime}$ such that $\|f\|=1, f(x)=0$ for all $x \in L$, and $f(a)=d(a, L)$.
Hint: in the quotient space X / L one has $\|[x]\|=d(x, L):=\inf \{\|x-z\|: z \in$ L\}. Can you use a corollary of the Hahn-Banach theorem in this context?
(b) As a corollary of part (a), prove the following theorem: Let X be a normed space and let L be a linear subspace of X. Then L is dense in X if and only if $\left\{f \in X^{\prime}: f(x)=0\right.$ for all $\left.x \in L\right\}=\{0\}$.

