Problem 3.1

(a) Use Fourier series to show that,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(Hint: Consider the function $f \in L^2_{\mathbb{C}}[-\pi,\pi]$ given by f(x) = x (for $x \in [-\pi,\pi]$) and use Parseval's theorem (i.e. $R \oslash Y$ Theorem 3.47(c)). You may use that $L^2_{\mathbb{C}}[-\pi,\pi]$ is a Hilbert space, that it contains all continuous functions from $[-\pi,\pi]$ to \mathbb{C} , that the inner product of two continuous functions f and g is given by $(f,g) = \int_{\pi}^{\pi} f(x)\overline{g(x)} \, dx$, and Corollary 3.57 of $R \oslash Y$.)

Problem 3.2

Recall that for a given linear space X and subspace Y, the quotient space X/Y is defined as the collection of all equivalence classes of the equivalence relation $u \sim v$ whenever $u - v \in Y$. For $x \in X$, denote the equivalence class of x by [x].

(a) Let X be a Banach space and suppose Y is a closed linear subspace of X. Show that the quotient X/Y is again a Banach space, with its norm given by,

$$||[x]|| = \inf_{u \in [x]} ||u||,$$

where $[x] = \{u \in X : u - x \in Y\}$. (Hint: the easiest way to show completeness is probably to apply the result of exercise 2.2 in Homework Assignment 2 to X/Y.)

(b) Let \mathscr{H} be a Hilbert space and suppose Y is a closed linear subspace of \mathscr{H} . From the previous exercise we know that \mathscr{H}/Y is a Banach space. Prove that it is even a Hilbert space and that it is isomorphic to Y^{\perp} as a Hilbert space. (Two Hilbert spaces are isomorphic if there exists a linear bijection between them which preserves the inner product.)

Problem 3.3

- Let $(X, \|\cdot\|)$ be a Banach space.
 - (a) For each $k \in \mathbb{N}$, let $A_k \subseteq X$ be compact and $r_k \in \mathbb{R}$, $r_k > 0$, such that

$$A_{k+1} \subseteq \{x + u \colon x \in A_k \text{ and } u \in X \text{ with } \|u\| \le r_k\}$$

for every $k \in \mathbb{N}$ and,

$$\sum_{k=1}^{\infty} r_k < \infty.$$

Show that the closure of $\bigcup_{k=1}^{\infty} A_k$ is compact.

(b) Let $p \ge 1$ and let $\{r_k\}$ be a sequence in \mathbb{R} such that $r_k > 0$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} r_k < \infty$. Show that,

$$K = \left\{ x = \{ x_k \} \in \ell^p \colon |x_k| \le r_k \text{ for all } k \in \mathbb{N} \right\},\$$

is compact in ℓ^p .