Functionaal Analyse Homework Assignment 2 23 Feb 2017

Problem 2.1

The 2-norm on $C_{\mathbb{F}}[0,1]$ is defined by

$$||f||_2 = \left(\int_0^1 |f(t)|^2 \,\mathrm{d}x\right)^{\frac{1}{2}}, \quad f \in C_{\mathbb{F}}[0,1].$$

- a. Show that (C_F[0,1], || · ||₂) is not a Banach space.
 (*Hint: consider piecewise linear functions which are equal to zero from 0 to slightly below* ¹/₂ and equal to one from slightly above ¹/₂ to 1.)
- b. Conclude that the 2-norm is not equivalent to the standard norm on $C_{\mathbb{F}}[0,1]$

Problem 2.2

Let $(X, \|\cdot\|)$ be a normed space. Suppose that X has the property that a series $\sum_{n=1}^{\infty} x_n$ converges in X whenever $\sum_{n=1}^{\infty} \|x_n\|$ converges in \mathbb{R} .

a. Show that X is a Banach space. (This is a converse to R&Y 2.30).

Problem 2.3

Let X be a vector space over \mathbb{R} and let $\|\cdot\|$ be a norm on X satisfying the parallelogram rule,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 for all $x, y \in X$.

Show that there exists an inner product (\cdot, \cdot) on X such that $||x||^2 = (x, x)$ for all $x \in X$.

(Hint: first find a candidate for (\cdot, \cdot) , then show that $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ and then show that $(\alpha x, y) = \alpha(x, y)$ consecutively for $\alpha \in \mathbb{N}$, $\alpha \in \mathbb{Z}$, $\alpha \in \mathbb{Q}$, and $\alpha \in \mathbb{R}$.)

Problem 2.4

Let \mathscr{H} be a Hilbert space over \mathbb{R} and let $a, b \in \mathscr{H}$ be such that (a, b) > 0. Prove that there exists a unique element $x \in \mathcal{H}$ of minimal norm for which both conditions

$$(x,a) \ge 1$$
 and $(x,b) \ge 1$,

are satisfied.