Functionaal Analyse Homework Assignment 1 9 Feb 2017

Problem 1.1

Let (M, d) be a metric space. For $x \in M$ and r > 0 define the open ball $B_x(r)$ with center x and radius r as,

$$B_x(r) = \{ y \in M : d(x, y) < r \},\$$

and the closed ball $C_x(r)$ with center x and radius r as,

$$C_x(r) = \{ y \in M : d(x, y) \le r \}.$$

a. Show that it is *not* true in general that $\overline{B_x(r)} = C_x(r)$, by constructing a counterexample.

Problem 1.2

Consider the space ℓ_1 of absolutely convergent sequences x in \mathbb{F} , that is, $x : \mathbb{N} \to \mathbb{F}$: $k \mapsto x_k$ such that,

$$\|x\|_1 = \sum_{k=1}^{\infty} \left|x_k\right| < \infty.$$

(Throughout this problem we do not use theorem 1.61 in R and Y.)

a. Show that $\|\cdot\|_1 : \ell_1 \to \mathbb{R}$ is a norm on ℓ_1 .

Let $\{x_n\}$ be a Cauchy sequence in ℓ_1 . (To avoid confusion, note that each individual x_n is a map $\mathbb{N} \to \mathbb{F} : k \mapsto x_{n,k}$.)

- b. Show that for each $k \ge 1$, the sequence $\{x_{n,k}\}$ is Cauchy in \mathbb{F} .
- c. Prove that ℓ_1 with the norm $\|\cdot\|_1$ is complete.

Problem 1.3

Endow the upper halfplane $M = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ in \mathbb{R}^2 with a topological basis defined in the following way: we consider, for every point $(x, y) \in M$ with y > 0and every $0 < \epsilon < y$, the neighbourhood $\{(z_1, z_2) \in M : ||(x - z_1, y - z_2)|| < \epsilon\}$; furthermore, for every $(x, 0) \in M$ and every $\epsilon > 0$, we consider the neighbourhood $\{x\} \cup \{(z_1, z_2) \in M : ||(x - z_1, \epsilon - z_2)|| < \epsilon\}$. (In these definitions $|| \cdot ||$ denotes the usual, Euclidean norm on \mathbb{R}^2 .) We denote the resulting topological space by (M, \mathscr{T}) .

- a. Prove that M is separable in the topology \mathscr{T} .
- b. Prove that M is first-countable but *not* second-countable in the topology \mathscr{T} .
- c. Show that M has a subspace that is *not* separable.
- d. Argue that (M, \mathscr{T}) is not metrizable. Make the argument twice, showing that for a metric space: firstly a. contradicts b, and secondly a. contradicts c.

(Note: this space is also an example of a topological space that is *completely regular* but *not normal*. We do not prove this fact here.)

PROBLEM 1.4

Consider \mathbb{N} with the discrete topology as a factor in the definition of the space $\mathbb{N}^{\mathbb{N}}$ of all maps $\mathbb{N} \to \mathbb{N}$, endowed with the product topology. This topological space is called the *Baire space* and often denoted by \mathscr{N} .

a. Describe the usual, product-space basis \mathscr{B} for the topology of \mathscr{N} .

The elements of \mathscr{N} can be viewed as maps $f : \mathbb{N} \to \mathbb{N}$. With this in mind, consider the map $d : \mathscr{N} \times \mathscr{N} \to \mathbb{R}$ where d(f,g) = 1/k if f(i) = g(i) for all $1 \le i \le k-1$ and $f(k) \ne g(k)$.

- b. Show that d is a metric on \mathcal{N} .
- c. Show that every element of \mathscr{B} contains an open ball with respect to the metric d; vice versa, show that every open ball with respect to d contains an element from \mathscr{B} .

From c. we conclude that the product-space topology on \mathscr{N} equals the metric topology on \mathscr{N} associated with d. In other words, the topological space \mathscr{N} is *metrizable* with metric d.

- d. Show that $\mathcal N$ is separable.
- e. Show that (\mathcal{N}, d) is complete.

From c. and e. we conclude that \mathscr{N} satisfies the Baire category theorem. Topological spaces that are metrizable, complete and separable are called *Polish* spaces and play a central role in modern analysis.