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Preface

As a frequentist, I cannot think of a better statistical tool than the Bayesian pos-
terior. Whether in parameter or density estimation, hypothesis testing, uncertainty
quantification or decision theoretic questions, there are always examples of priors
with posteriors that satisfy frequentist criteria of optimality. A good example of an
optimal Bayesian answer to a frequentist question, arises in the (apparently straight-
forward) estimation of a multivariate normal mean of dimension three or higher,
based on an i.i.d. sample of observations: it was shown in the late 1950’s that there
exist so-called super-efficient estimators (e.g. the famous James-Stein estimator),
that outperform the sample mean and all other unbiased estimators when compared
in mean-squared error. It was shown in the 1970’s (as suggested by the so-called
complete class theorem) that there exist so-called empirical Bayes estimators that
display a James-Stein-type of super-efficiency [88].

Criteria for frequentist optimality are often formulated in terms of large-sample
behaviour, and most examples of posteriors with good frequentist properties concern
forms of asymptotic convergence. For example, in the fourth chapter, we consider
the Bernstein-von Mises theorem that establishes asymptotic normality of the pos-
terior in smooth, parametric models and shows that Bayesian credible sets approxi-
mate optimal frequentist confidence sets asymptotically. Indeed, such a correspon-
dence between credible sets and confidence sets is possible also with finite amounts
of data, if one is willing to enlarge credible sets in a suitable way: it is shown in the
second chapter that if the posterior concentrates a certain, lower-bounded amount
of mass around the true value of the parameter in expectation, then enlargements of
credible sets of a certain credible level are exact confidence sets of a chosen con-
fidence level, with finite amounts of data. This construction is used in the eleventh
chapter to find confidence sets for the community assignment in sparse versions of
the two-community stochastic block model.

But such finite-sample correspondences are rare: in part II, we consider vari-
ous forms of large-sample posterior convergence from the frequentist perspective in
non-parametric models, and again we find examples of priors that induce frequentist
optimality of procedures based on their posterior distributions. Invariably Bayesian
procedures can be shown to display suitable forms of asymptotic optimality in great
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generality and with relative ease, but only on a model subset of prior probability
one. Typically a prior null-set of possible exceptions is left, which spoils optimality
for the frequentist. To strengthen such Bayesian optimality properties to the corre-
sponding forms of frequentist optimality, the prior must induce a weak form of con-
tiguity (called remote contiguity) between the sequences of true data distributions
and of (local) prior predictive distributions. Remote contiguity and its applications
for the frequentist validity of Bayesian limits are analysed in generality in the sev-
enth chapter, and some pointers are given regarding the potential applications of
remote contiguity in other problems.

The aim of this book is two-fold: a first goal is to provide a mathematically
sound and complete general framework to analyse Bayesian procedures and their
conversion to frequentist methods. A second goal is to illustrate the frequentist opti-
mality of Bayesian methods; more specifically, to give suitable conditions for priors
that give rise to frequentist optimality of posterior-based procedures, with exam-
ples of priors that satisfy those conditions. In both these respects, this book aims to
be comprehensive, at the expense of other aspects that are covered in other works;
particularly, this book does not attempt to illustrate computational matters (the inter-
ested reader is referred, for example, to Neal (1993) [211] and Robert (2001) [230]),
nor does it approach Bayesian statistics from a decision-theoretic/classification-
oriented perspective (as provided by Ripley (1996) [231]), nor does it give a purely
Bayesian overview (see, particularly, Berger (1985) [19] and Bernardo and Smith
(1993) [25]), nor does it constitute a review of examples and applications with
an emphasis on translation of non-parametric posterior asymptotics to frequentism
(see, e.g., Ghosh and Ramamoorthi (2003) /[115], Ghosal and van der Vaart (2017)
[114]). Regarding other sources that illuminate related subjects, we mention in par-
ticular the entry-level discussion of frequentist asymptotic statistics (with non- and
semi-parametric elaborations) in van der Vaart (1998) [260]; a high-level Bourbaki-
inspired text is found in Le Cam (1986) [187], which develops a general mathemat-
ical framework for decision theory, dealing with Bayesian statistics as an impor-
tant area of its application. For a more down-to-earth version of this work, applied
mostly to efficient estimation in parametric models, the interested reader is referred
to Le Cam and Yang (1990) [191].

The present book has grown out of a set of lecture notes that were first writ-
ten for a lecture series in Bayesian statistics at the University of Amsterdam in the
spring of 2007 and updated in the years since. The lectures were aimed (initially)
at first-year MSc.-students in statistics, probability, mathematics and related fields
like economics, computer science and physics. Over the years, these lectures have
evolved into a one-semester course Bayesian statistics and frequentist optimality
for third-year BSc.-students in mathematical statistics and related disciplines, in the
form of lectures and exercise classes based on the material of part I. The course’s
goal is for students to understand the basic properties of Bayesian statistical meth-
ods; to know how analogous frequentist methods compare; to understand frequentist
efficient estimation and its relation to the Bernstein-von-Mises theorem; to be able
to apply this knowledge to statistical questions and to know the extent (and limita-
tions) of conclusions based thereon. More concretely, the course covers the material
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of the first four chapters of part I. All Bayesian methods are presented side-by-side
with analogous frequentist methods and their criteria for optimality. Also discussed
are the standard ways of choosing and constructing parametric prior distributions, by
objective, subjective and empirical standards. Of course, model misspecification is a
distinctly frequentist issue that is especially acute in parametric setting, so a serious
note of caution cannot be omitted; accordingly, part I concludes with a fifth chapter
that discusses posterior behaviour in misspecified parametric and semi-parametric
models.

Ideally the BSc.-course would be followed by an MSc.-level course on the mate-
rial covered in part II. Part II covers non-parametric Bayesian methods, again with a
special emphasis on frequentist convergence properties and asymptotic optimality.
The sixth chapter reviews asymptotic estimation, introduces convergence of poste-
rior distributions and explains Doob’s Bayesian consistency theorem. It then turns
to frequentist posterior consistency with Schwartz’s theorem and posterior rates of
convergence with the Ghosal-Ghosh-van der Vaart theorem. As such, the sixth chap-
ter provides an overview of the theory underpinning a large part of the existing fre-
quentist literature and most concrete examples in non-parametric Bayesian statistics.

The seventh chapter generalizes the frequentist theory of the sixth chapter: where
Schwartz’s theorem poses conditions of uniform testability and lower bounds for
prior mass in Kullback-Leibler neighbourhoods, chapter eight relaxes these to a less
demanding, Bayesian form of testability and the requirement of remote contiguity.
The central conclusion is that the existence of Bayesian tests is equivalent to Doob’s
form of Bayesian posterior consistency, and that remote contiguity promotes that
conclusion to frequentist forms of posterior consistency. The resulting theorems for
posterior convergence and uncertainty quantification are fully general (in that they
permit non-i.i.d. (e.g. Markov chains of) observations, sample-size dependent pa-
rameter spaces and priors, data in non-standard forms like random graphs, etcetera)
and make possible the asymptotic interpretation of (enlarged) credible sets as con-
sistent confidence sets, generalizing the most important inferential consequence of
the Bernstein-von Mises theorem to non-parametric setting.

The eighth chapter introduces the Dirichlet process and the family of Polya
tree processes, which describe so-called inverse systems of random histograms.
Inverse systems of random histograms provide an attractive way to specify distri-
butions on spaces of probability measures and represent the essence of Bayesian
non-parametric statistics: without referring to infinite-dimensional parametrizations,
inverse limit systems define random probability distributions directly, in a way that
is computationally accessible by construction. As such, inverse limit priors form
the backbone for a large part of the existing literature on Bayesian non-parametric
statistics and modern machine learning. In the eighth chapter, we discuss systems
of random histograms and their coherence, explore the above examples, point out
their conjugacy and tailfreeness and we prove that the corresponding posteriors are
consistent. All of that is done under the (initially unproven) assumption that the rel-
evant inverse systems correspond to well-defined limiting probability distributions
on the space of all probability distributions. However the matter of proving such
existence is a notoriously difficult mathematical problem that dominates the second
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half of the chapter. Chapter eight shows that inverse limits of systems of random
histograms fall in one of four distinct ‘phases’: if the limit is a Borel probability
distribution for the topology of total variation, then its support is dominated; if the
limit is a Borel probability distribution only for Prokhorov’s topology of weak con-
vergence, then the support is unrestricted (and typically not dominated); both these
possibilities can occur in inverse systems with completely random limits, leading to
almost-surely (fixed or random) discrete manifestations. The resulting four ‘phases’
of inverse limits of histogram systems are characterized precisely in corresponding
existence theorems for the inverse limits of random histograms in the second half of
chapter eight.

As becomes apparent in chapter six and is amplified in chapter seven, the exis-
tence of certain sequences of hypothesis testing procedures is of essential impor-
tance to determine whether posterior distributions converge and how fast this con-
vergence occurs. The ninth chapter analyses the existence of test sequences from
various perspectives: it is investigated under which conditions Schwartz’s uniform
tests exist, what changes for pointwise tests and how this relates to the existence
of Bayesian test sequences of chapter seven. The answers to these existence ques-
tions come in the form of fully general equivalences which characterize pairs of
hypotheses that are testable and pairs that are not, without posing conditions on the
model under consideration. Besides being of fundamental value for a better under-
standing of what statistics can be expected to achieve and what not, the fact that it
is often possible to calculate or approximate posteriors concretely enables a practi-
cal method to construct tests and model selection criteria. With a prior that induces
remote contiguity, such constructions are even interpretable along frequentist lines.

The tenth and eleventh chapters provide applications of the theory discussed in
preceding chapters: the tenth chapter applies the theory of the sixth chapter to the
errors-in-variables model for non-parametric regression, based on traditional con-
structions with function-space parametrizations of the model covered by controlled
numbers of Hellinger balls, leading to uniform test sequences and priors placing
mass in their centre points. In the eleventh chapter, we consider the more modern
question of community detection in networks: given a graph with two communities
of vertices known to be more highly connected within than between communities,
we analyse the precise way in which the posterior concentrates around the true com-
munity structure. The graph is assumed to be an inhomogeneous Erdős-Rényi graph,
with edges that occur with degrees of sparsity for which probabilists have shown
detection to be only just possible consistently in the large-graph limit. Moreover,
derived inequalities for posterior concentration enable the conversion of Bayesian
credible sets into exact frequentist confidence sets not just in the large-graph limit
(as in chapter six), but also for graphs with a finite number of vertices (as in chapter
two).

An attempt has been made to make part I of this book as self-contained as possi-
ble. Although some basic experience with standard statistical methods is assumed,
the mathematical aspects and optimality theory of frequentist statistical tools are
explained in detail, alongside their Bayesian analogues (although some proofs that
can be found elsewhere are omitted). For completeness, appendix B summarizes the
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necessary elements of measure theory, with an emphasis on conditional distributions
and some elaboration on Martingale convergence and Daniell-Kolmogorov exis-
tence of stochastic processes. Because asymptotic statistics revolves around conver-
gence, topology plays a central role (particularly) in the second part of this book.
All definitions, lemmas and theorems (even in part I) are made with this topological
foundation in mind. Appendix C collects basic topological definitions, properties
and theorems (without proofs) and looks in particular at topologies on spaces of
(probability) measures. Several specific topological subjects are discussed in some
more detail: uniform spaces, Polish spaces, inverse limit spaces, function spaces,
vector spaces and locally convex spaces receive extra attention and Radon mea-
sures are discussed in some detail. The most practical criteria and propositions for
stochastic convergence are summarized in appendix C.9. Extra attention also goes
to approximation of probability measures by means of contiguity, as discussed in
subsection C.10.

For corrections to early versions of this book and corrections to the exercises,
I thank Mike Derksen, Audrius Jukonis, Riko Kelter, Chris Muris, Harm de With
and Stefano Rizzelli. I also thank co-authors of the papers underpinning the text:
Aad van der Vaart for his supervision of the work in chapter 5, Jan van Waaij for
the collaboration that led to the results of chapter 11, Yanyun Zhao for the collabo-
ration summarized in section 6.5 and Bartek Knapik for his work on non-standard
Bernstein-von Mises theorems. I thank Jan van Mill for the discussions on zero-
dimensional Polish spaces. I thank Peter Bickel for sharing his insights into statis-
tics and reasoning under uncertainty, and the role of mathematics therein. And most
of all, I thank my wife for her unwavering support during the writing of this book.

Bas Kleijn
Amsterdam, August 2025
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Part I
Parametric Bayesian statistics





Chapter 1
Introduction

The goal of statistical inference is to understand, describe and estimate (aspects of)
the randomness of measured data. Quite naturally this invites the assumption that
the data represents a sample from an unknown fixed probability distribution. But it
is also possible to assume that the data forms a sample from an unknown random
probability distribution.

1.1 Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, a
model and an estimation procedure. The central assumption in frequentism is that
the data has a definite but unknown, underlying distribution to which all inference
pertains. The data is a measurement or observation which we denote by Y , taking
values in a corresponding sample space.

Definition 1.1.1. The sample space for an observation Y is a measurable space Y
with σ -algebra B (see definition B.1.5) containing all values that Y can take upon
measurement.

Measurements and data can take any form, ranging from categorical data (some-
times referred to as nominal data where the sample space is simply a (usually fi-
nite) set of points or labels with no further mathematical structure), ordinal data
(also known as ranked data, where the sample space is endowed with an total or-
dering), to interval data (where in addition to having an ordering, the sample space
allows one to compare differences or distances between points), to ratio data (where
we have all the structure of the real line). Moreover Y can collect the results of a
number of measurements, so that it takes its values in the form of a vector (think
of an experiment involving repeated, stochastically independent measurements of
the same quantity, leading to a so-called independent and identically distributed (or
i.i.d.) sample). The data Y can even be functional data which takes its values in a
space of functions or in other infinite-dimensional spaces, for example, in the statis-
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tical study of continuous-time time-series. Y may even be a random graph, as in the
stochastic block model of chapter 11.

The sample space Y is assumed to be a measurable space to enable the consider-
ation of probability measures on Y , formalizing the uncertainty in measurement of
Y . As was said in the opening words of this chapter, frequentist statistics hinges on
the assumption that there exists a probability measure P0 : B→ [0,1] on the sample
space Y representing the unknown “true distribution of the data”:

Y ∼ P0 (1.1)

Hence from the frequentist perspective, statistics revolves around the central ques-
tion: “What does the data make clear about P0?”, which may be considered in parts
by questions like, “From the data, what can we say about the mean of P0?”, “Based
on the data that we have, how sharp can we formulate hypotheses concerning the
value of the variance of P0?”, etcetera.

The second ingredient of a statistical procedure is a model, which contains all
explanations under consideration of the randomness in Y . (See proposition B.2.6.)

Definition 1.1.2. A (frequentist) statistical model P is a collection of probability
measures P : B→ [0,1] on the sample space (Y ,B). The distributions P are called
model distributions. For every sample space (Y ,B), the collection M 1(Y ,B) of
all probability distributions is called the full model (sometimes referred to as the full
non-parametric model).

The model P contains the candidate distributions for Y that the statistician finds
“reasonable” explanations of the uncertainty he observes (or expects to observe)
in Y . As such, it constitutes a choice of the statistician analyzing the data rather
than a given. From a more mathematical perspective we observe that a model P
on (Y ,B) is a subset of the space M (Y ,B) of all bounded, signed measures
µ : B → R (that is, all countably additive, real-valued set functions) that are of
finite total variation. Equipped with the total-variational norm (see appendix B, def-
inition B.2.5), µ 7→ ∥µ∥, M (Y ,B) is a Banach space [84], in which the full model
can be characterized by,

M 1(Y ,B) =
{

P ∈M (Y ,B) : P≥ 0, P(Y ) = 1
}
.

Often, we describe models as families of probability densities rather than distribu-
tions.

Definition 1.1.3. If there exists a σ -finite measure µ : B→ [0,∞] such that for all
P ∈P , P≪ µ , we say that the model is dominated (notation: P ≪ µ).

The Radon-Nikodym theorem (see theorem B.3.10) guarantees that we may repre-
sent a dominated probability measure P in terms of a probability density function
p = dP/dµ : Y → [0,∞) that satisfies

∫
A p(y)dµ(y) = P(A) for all A∈B. For dom-

inated models, it makes sense to adopt a slightly different mathematical perspective:
if µ dominates P , we map P to the space of all µ-integrable functions L1(µ) by
means of the Radon-Nikodym mapping.



1.1 Frequentist statistics 5

Example 1.1.4. Suppose that Y is countable (and let B be the powerset of Y ): then
the measure µ that puts mass one at every point in Y , also known as the counting
measure on Y , is σ -finite and dominates every other (bounded) measure on Y .
Consequently, any model on (Y ,B) can be represented in terms of elements p in
the Banach space L1(µ), more commonly denoted as ℓ1,

ℓ1 =
{
( f1, f2, . . .) ∈ [0,1]∞ : ∑

i≥1
| fi|< ∞

}
. (1.2)

where it is noted that pi ≥ 0 and ∥p∥= ∑i pi = 1 for all P in the set Λ of all proba-
bility measures on (Y ,B).

In case the sample space is not discrete, the full model is not dominated by a σ -
finite measure (see exercise 1.6.3). However, suppose that a σ -finite measure µ on
the sample space is given. The Radon-Nikodym mapping maps every µ-dominated
model P to a subset of,

M 1(µ) =
{

p ∈ L1(µ) : p≥ 0,
∫

Y
p(y)dµ(y) = 1

}
.

For the following proposition, the model is viewed as a metric space (see ap-
pendix C.4), endowed with the so-called total-variational metric (see appendix B.2).

Proposition 1.1.5. The mapping between a model P dominated by a σ -finite mea-
sure µ and its L1(µ)-representation is an isometry: for all p1, p2 ∈P ,

∥P1−P2∥= 1
2

∫
Y

∣∣p1(y)− p2(y)
∣∣dµ(y) =

∫
Y

(
p1(y)− p2(y)

)
+

dµ(y).

(The proof is given in exercises 1.6.2, 4.4.7.) Note that a dominating measure is
not unique, so there are many L1-representations of P . The most common way of
representing a statistical model is a description in terms of a parametrization.

Definition 1.1.6. A model P is parametrized with parameter space Θ , if there ex-
ists a surjective map Θ →P : θ 7→ Pθ , called the parametrization of P .

Parametrizations are motivated by the context of the statistical question and the
parameter θ usually has a clear interpretation when viewed in this context. The
formulation of parametric models constitutes the modelling step of statistics: to the
statistician, it transforms the data from a mere list of numbers to an informative (but
noisy) representation of an underlying truth.

Definition 1.1.7. A parametrization of a statistical model P is said to be identifi-
able, if the map Θ →P : θ 7→ Pθ is injective.

Injectivity of the parametrization means that for all θ1,θ2 ∈Θ , θ1 ̸= θ2 implies that
Pθ1 ̸= Pθ2 : no two different parameter values θ1 and θ2 give rise to the same distribu-
tion. Clearly, in order for θ ∈Θ to serve as a useful representation for the candidate
distributions Pθ , identifiability is a first requirement. Other common conditions on
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the map θ 7→ Pθ are continuity (for example, with respect to the total-variational
norm, or through requiring continuity of all maps θ 7→ Pθ g, with g any bounded
measurable function), differentiability (the definition of which may involve tech-
nical subtleties in case Θ is infinite-dimensional) and other smoothness conditions
(e.g. definition 4.1.12).

Remark 1.1.8. Although strictly speaking ambiguous, it is commonplace to refer to
both P and the parametrizing space Θ as “the model”. This practice is not unrea-
sonable in view of the fact that, in practice, almost all models are parametrized in
an identifiable way, so that there exists a bijective correspondence between Θ and
P . Here, reference to the model always concerns P while Θ is always called the
parameter space.

An assumption often made in frequentist statistics is that the true distribution of
the data is a model distribution.

Definition 1.1.9. A model P is said to be well-specified if it contains the true dis-
tribution of the data P0, i.e.

P0 ∈P. (1.3)

If (1.3) does not hold, the model is said to be misspecified.

Clearly if P is parametrized by Θ , (1.3) implies the existence of a point θ0 ∈Θ

such that Pθ0 = P0; if, in addition, the model is identifiable, the parameter value θ0
is unique.

If the full non-parametric model is used, (1.3) holds trivially. However, for
smaller models, (1.3) has the status of an assumption on the unknown quantity of
interest P0 and may as such be hard to justify. The reason for (the somewhat odd
and certainly very contentious) assumption (1.3) lies in the interpretation of statis-
tical conclusions: an estimate of a parameter is of value if that parameter can be
attributed to the “true” distribution of the data. If, on the other hand, one assumes
that the model is misspecified, parameter estimates may reflect aspects of the true
distribution but cannot be associated with the true distribution of the data directly
any more.

The model we use in a statistical procedure constitutes a choice rather than a
given: presented with a particular statistical problem, different statisticians may
choose to use different models. The only condition is that (1.3) is satisfied, which
is why we have to choose the model in a “reasonable way” given the nature of
Y . When choosing the model, two considerations compete: on the one hand, small
models are easy to handle mathematically and statistically and parameters usually
have clear interpretions, on the other hand, for large models, assumption (1.3) is
more realistic since they have a better chance of containing P0 (or at least approxi-
mate it more closely). The amount of data available plays a crucial role: if we have
a limited sample, simple models have a better chance of leading to sensible results,
while an abundance of data enables more sophisticated forms of statistical analysis.
In this respect the most important distinction is made in terms of the dimension of
the model.
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Definition 1.1.10. A model P is said to be parametric of dimension d, if there
exists an identifiable parametrization Θ →P : θ 7→ Pθ , where Θ ⊂ Rd with non-
empty interior, Θ̊ ̸=∅.

The requirement regarding the interior of Θ in definition 1.1.10 ensures that the
dimension d really concerns Θ and not just the dimension of the space Rd (in which
Θ could otherwise be a lower-dimensional subset).

Example 1.1.11. The normal model for a single, real measurement Y , is the collec-
tion of all normal distributions on R, i.e.

P =
{

N(µ,σ2) : (µ,σ) ∈Θ
}

where the parametrizing space Θ equals R× (0,∞). The map (µ,σ) 7→ N(µ,σ2)
is surjective and injective, i.e. the normal model is a two-dimensional, identifi-
able parametric model. Moreover, the normal model is dominated by the Lebesgue
measure on the sample space R and can hence be described in terms of Lebesgue-
densities:

pµ,σ (y) =
1

σ
√

2π
e−

(y−µ)2

2σ2 .

Note that for any fixed y ∈ Y , the dependence Θ → R : (µ,σ) 7→ pµ,σ (y) is con-
tinuous on all of Θ . So if (µn,σn) converges to (µ,σ) in Θ , then pn(y) := pµn,σn(y)
converges to p(y) := pµ,σ (y). Then total-variational distance between the distribu-
tions Pn and P (associated with the densities pn and p respectively) satisfies,

∥Pn−P∥= 1
2

∫
Y

∣∣pn(y)− p(y)|dµ(y)→ 0.

by proposition 1.1.5 and Scheffé’s lemma (see corollary C.9.9). Conclude that the
parametrization Θ →P : (µ,σ) 7→ Pµ,σ is continuous with respect to the total-
variational metric on P .

Definition 1.1.12. If there is no finite-dimensional Θ that parametrizes P , then P
is called a non-parametric model.

For instance, the full model M 1(Y ,B) is non-parametric unless the sample space
contains only a finite number of points.

Example 1.1.13. Let Y be a finite set containing n≥ 1 points y1,y2, . . . ,yn and let B
be the power-set 2Y of Y . Any probability measure P : B→ [0,1] on (Y ,B) is ab-
solutely continuous with respect to the counting measure on Y (see example B.2.8).
The density of P with respect to the counting measure is a map p : Y →R such that
p≥ 0 and

n

∑
i=1

p(yi) = 1.

As such, P can be identified with an element of the so-called simplex Sn in Rn,
defined as follows
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Sn =
{

p = (p1, . . . , pn) ∈ Rn : pi ≥ 0,
n

∑
i=1

pi = 1
}
. (1.4)

This leads to an identifiable parametrization Sn →P : p 7→ P of the full model
on (Y ,B), of dimension n− 1. Note that Sn has empty interior in Rn, but can be
brought in one-to-one correspondence with a compact set in Rn−1 with non-empty
interior by the embedding:

{
(p1, . . . , pn−1) ∈ Rn−1 : pi ≥ 0,

n−1

∑
i=1

pi ≤ 1
}
→ Sn :

(p1, . . . , pn−1) 7→
(

p1, . . . , pn−1,1−
n−1

∑
i=1

pi

)
.

1.2 Frequentist estimation

The third ingredient of a frequentist inferential procedure is an estimation method.
Clearly not all statistical problems involve an explicit estimation step and of those
that do, not all estimate the distribution P0 directly. Nevertheless, one may regard
the problem of point-estimation in the model P as prototypical.

Definition 1.2.1. A point-estimator (or estimator) for P0 (in P) is a map P̂ : Y →
P , representing our “best guess” P̂(Y ) in P for P0 based on the data Y (and other
known quantities).

Note that a point-estimator is a statistic: since a point-estimator must be calcula-
ble in practice, it may depend only on information that is known to the statistician
after he has performed the measurement realized as Y = y. Also note that a point-
estimator is a stochastic quantity: P̂ = P̂(Y ) depends on Y and is hence random.
Upon measurement of Y resulting in a realisation Y = y, the realisation of the es-
timator is an estimate P̂(y), a definite point in P . If the model is parametrized,
one may define a point-estimator θ̂ : Y →Θ for θ0, from which we obtain P̂ = P

θ̂

as an estimator for P0. In that case the continuity requirement we impose on the
map θ 7→ Pθ guarantees that θ → θ0 implies Pθ → Pθ0 . If the model is identifiable,
estimation of θ0 in Θ is equivalent to estimation of P0 in P .

Aside from estimates for the distribution P0, one is often interested in estimating
only certain aspects of P0.

Example 1.2.2. Suppose that a bank tries to assess market risk for an asset: they have
the asset on the books for price x but tomorrow’s market will say that it is worth a
price X , distributed according to an unknown P0. To assess the risk of holding the
position until tomorrow, the absolute return X − x is of importance. Of course, the
bank would prefer to have a reliable estimate for P0 (and thus for the distribution
of X − x) but that question is often too hard to answer and reliability cannot be
guaranteed. Instead, the bank will resort to a simplification by focussing on the
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aspect of the distribution P0 that they find most important for their risk assessment.
A popular notion in this context is a quantity called value-at-risk: given a time-
horizon (in this case, tomorrow) and a significance level α ∈ (0,1) (often chosen
equal to 0.05 or 0.01), value-at-risk q is defined as the maximal q < 0 at which,

P0(X− x < q)≤ α.

To interpret q, note that losses exceeding value-at-risk occur on only an expected
fraction α of all trading days. In statistical terms, q is a quantile of P0.

Another example occurs in parametric models: if the dimension d of a parametric
model is greater than one, we may choose to estimate only one component of θ

(called the parameter of interest) and disregard other components (called nuisance
parameters). More generally, we may choose to estimate certain properties of P0
(e.g. its expectation, variance) rather than P0 itself and in many cases, direct esti-
mation of the property of interest of P0 is more efficient than estimation through P̂.

Example 1.2.3. Consider a model P consisting of distributions on R with finite
expectation and define the functional e : P → R by the expectation e(P) = PX .
Suppose that we are interested in the expectation e0 = e(P0) of the true distribution.
Obviously, based on an estimator P̂ for P0 we may define an estimator,

ê =
∫
R

xdP̂(x) (1.5)

to estimate e0. For instance, assume that X is integrable under P0 and Y =(X1, . . . ,Xn)
collects the results of an i.i.d. experiment with Xi ∼ P0 marginally (for all 1≤ i≤ n),
then the empirical expectation of X , defined simply as the sample-average of X ,

PnX =
1
n

n

∑
i=1

Xi,

provides an estimator for e0. (Note that the sample-average is also of the form (1.5)
if we choose as our point-estimator for P0 the empirical distribution P̂ = Pn, see
example B.2.10.) The law of large numbers guarantees that PnX converges to e0
almost-surely as n→ ∞ (consistency, as in definition 6.1.1), and (if X is quadrati-
cally integrable) the central limit theorem asserts that this convergence proceeds at
rate n−1/2 (as in definition 4.1.3) and that the limit distribution (see definition 4.1.5)
is zero-mean normal with P0(X − P0X)2 as its variance. Many parametrizations
θ 7→ Pθ are such that (components of) θ coincide with expectations. Often, other
properties of P0 can also be related to expectations: for example, if X ∈R, the prob-
abilities F0(s) = P0(X ≤ s) = P01{X ≤ s} (s ∈ R) can be estimated by the so-called
empirical distribution function,

Fn(s) =
1
n

n

∑
i=1

1{Xi ≤ s},
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i.e. as the empirical expectation of the function x 7→ 1{x ≤ s}. This leads to a step-
function with n jumps of size 1/n at sample-points, which estimates the distribu-
tion function F0. Generalizing, any property of P0 that can be expressed in terms
of an expectation of a P0-integrable function of X , P0g, is estimable by the cor-
responding empirical expectation, Png. (With regard to the estimator Fn, the con-
vergence Fn(s)→ F0(s) does not only hold pointwise but even uniform in s, i.e.
sups∈R |Fn(s)−F0(s)| → 0 almost-surely, cf. the Glivenko-Cantelli theorem.)

To estimate a probability distribution (or any of its properties or parameters),
many different estimators may exist. Therefore, the use of any particular estimator
constitutes (another) choice made by the statistician analyzing the problem. Whether
such a choice is a good or a bad one depends on optimality criteria, which are either
dictated by the particular nature of the problem (see section 2.5 which extends the
purely inferential point of view), or based on more generically desirable properties
of the estimator. (This explains the use of the rather vague qualification “best guess”
in definition 1.2.1.)

Example 1.2.4. To illustrate what we mean by “desirable properties”, note the fol-
lowing. When estimating P0 one may decide to use an estimator P̂ because it has
the property that it is close to the true distribution of Y in total variation: there exist
small constants ε > 0 and α > 0 such that for all P ∈P ,

P
(
∥P̂(Y )−P∥< ε

)
> 1−α,

i.e. if Y ∼ P, then P̂ lies close to P with high P-probability. Note that we formulate
this property “for all P in the model”: since P0 ∈P is unknown, the only way to
guarantee that this property holds under P0, is to prove that it holds for all P ∈P
(provided that (1.3) holds). By contrast, for Bayesians any claim concerning points
P in the model is acceptable if it is true almost-everywhere in P with respect to the
prior measure.

A popular method of estimation that satisfies common optimality criteria in many
(but certainly not all, see [191]) problems is maximum-likelihood estimation.

Definition 1.2.5. Suppose that the model P is dominated by a σ -finite measure µ

and parametrized through µ-densities by θ 7→ pθ ∈ L1(µ). The likelihood princi-
ple (see [230] for an elaborate overview and spirited argument in favour) says that
all information implied by data Y concerning the parameter θ is contained in the
likelihood-function θ 7→ pθ (Y ) (note that this defines a random function θ→ [0,∞]).
Accordingly, one can define θ̂ ∈Θ as an estimator for the true parameter value θ0
by maximization,

p
θ̂
(Y ) = sup

θ∈Θ

pθ (Y ).

So θ̂ is the point in the parameter space for which the likelihood-function evaluated
in Y , Θ → [0,∞] : θ 7→ pθ (Y ) attains its maximum. This defines the maximum-
likelihood estimator (or MLE) θ̂ for θ0.
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Remark 1.2.6. The MLE P̂ = Pθ does not depend on the dominating measure µ

chosen to define the densities pθ = dPθ/dµ .

A word of caution is in order: mathematically, the above “definition” of the MLE
begs questions of existence and uniqueness: regarding θ 7→ pθ (Y ) as a (random)
map on the parameter space, there may not be any point in P where the likelihood
takes on its supremal value (with P0-probability one), nor is there any guarantee
that such a maximal point is unique (with P0-probability one). Additional model
properties are needed to alleviate these two issues. (For example, if the likelihood
depends continuously on an parameter from a compact parameter space, existence
is guaranteed.)

The above is only a very brief and rather abstract overview of the basic frame-
work of frequentist statistics, highlighting the central premise that a true underlying
distribution P0 for Y exists. It makes clear, however, that frequentist inference con-
cerns itself primarily with the stochastics of the random variable Y and not with
the context in which Y resides. Other than the fact that the model has to be cho-
sen “reasonably” based on the nature of Y , frequentist inference does not involve
any information regarding the background of the statistical problem in its proce-
dures unless one chooses to use such information explicitly (see, for example, re-
mark 2.2.21 on penalized maximum-likelihood estimation). In Bayesian statistics
the use of background information is an integral part of the procedure unless one
chooses to disregard it: by the definition of a prior measure, the statistician may ex-
press that he believes in certain points of the model more strongly than others. This
thought is elaborated on further in section 1.3 (e.g. example 1.3.1).

Similarly, results of estimation procedures are sensitive to the context in which
they are used: two statistical experiments may give rise to the same model formally,
but the estimator used in one experiment may be totally unfit for use in the other
experiment.

Example 1.2.7. For example, if we interested in a statistic that predicts the rise or
fall of a certain share-price on the stock market based on its value over the past
week, the estimator we use does not have to be a very conservative one: we are
interested primarily in its long-term performance and not in the occasional mistaken
prediction. However, if we wish to predict the rise or fall of white-bloodcell counts
in an HIV-patient based on last week’s counts, overly optimistic predictions lead to
tragic consequences, and far more conservative statistical methods are called for.

Although in the above example, data and models are very similar, the estimator used
in the medical application should be much more conservative than the estimator used
in the stock-market problem. The purely statistical aspects of both questions are the
same, but the context in which inference is expressed calls for different approaches.
Such considerations form the motivation for statistical decision theory, as explained
further in section 2.5.
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1.3 Bayesian statistics

Bayesian statistics provides an alternative approach to statistical questions, named
after Thomas Bayes, the author of “An essay towards solving a problem in the doc-
trine of chances” published posthumously in 1763 [14]. Bayes considered a number
of probabilistic questions in which data and parameters are treated on equal footing.
The Bayesian procedure itself is explained in detail in chapter 2 and further chapters
explore its properties. In this section we have the more modest goal of illustrating
the conceptual differences with frequentist statistical analysis.

In Bayesian statistics, data and model form two factors of the same space, i.e.
no formal distinction is made between measured quantities Y and parameters θ .
One may envisage the process of generating a realized observation Y = y as two
draws, one draw from Θ to select a value of θ , and a subsequent draw from the
model distribution Pθ to arrive at the realization Y = y. This perspective may seem
rather strange in view of the definitions made in section 1.1, but in [14], Bayes gives
examples in which this perspective is perfectly reasonable (see subsection 2.1.2).
An element Pθ of the model is interpreted simply as the distribution of Y given the
parameter value θ , i.e. as the conditional distribution of Y |θ . The joint distribu-
tion of (Y,θ) then follows upon specification of the marginal distribution of θ on
Θ , which is called the prior. Based on the joint distribution for the data Y and the
parameter θ , straightforward conditioning on Y gives rise to a conditional distribu-
tion Π(·|Y ) for the parameter θ |Y called the posterior distribution on the model Θ .
Hence, given the model, the data and a prior distribution, the Bayesian procedure
leads to a posterior distribution that incorporates the information provided by the
data. All statistical questions are then answered using the posterior. For example,
what a frequentist would call point-estimation of the underlying distribution with
the posterior expectation,

PΠ |Y (A) =
∫

Θ

Pθ (A)dΠ(θ |Y ),

(for all measurable A), is called prediction by Bayesians, who refer to PΠ |Y as the
posterior predictive distribution.

Often in applications, the nature of the data and the background of the problem
suggest that certain values of θ are more “likely” than others, even before any mea-
surements are done. The model P describes possible probabilistic explanations of
the data and, in a sense, the statistician believes more strongly in certain explana-
tions than in others. This is illustrated by the following example, which is due to
L. Savage (1961) [234].

Example 1.3.1. Consider the following three statistical experiments:

1. A lady who drinks milk in her tea claims to be able to tell which was poured
first, the tea or the milk. In ten trials, she determines correctly whether it was
tea or milk that entered the cups first.
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2. A music expert claims to be able to tell whether a page of music was written
by Haydn or by Mozart. In ten trials conducted, he correctly determines the
composer every time.

3. A drunken friend says that he can predict the outcome of a fair coin-flip. In ten
trials, he is right every time.

Let us analyze these three experiments in a frequentist fashion, e.g. we assume that
the trials are independent and possess a definite Bernoulli distribution, cf. (1.1).
In all three experiments, θ0 ∈Θ = [0,1] is the per-trial probability that the person
gives the right answer. We test their respective claims posing the hypotheses (see
exercise 1.6.5):

H0 : θ0 =
1
2 , H1 : θ0 >

1
2 .

The total number of successes out of ten trials is a sufficient statistic for θ and we
use it as our test-statistic, noting that its distribution is binomial with n = 10, θ = θ0
under H0. Given the data Y with realization y of ten correct answers, applicable in
all three examples, we reject H0 at p-value 2−10 ≈ 0.1%. So there is strong evidence
to support the claims made in all three cases. Note that there is no difference in the
frequentist analyses: formally, all three cases are treated exactly the same.

Yet intuitively (and also in every-day practice), one would be inclined to treat
the three claims on different footing: in the second experiment, we have no reason
to doubt the expert’s claim, whereas in the third case, the friend’s condition makes
his claim less than plausible. In the first experiment, the validity of the lady’s claim
is hard to guess beforehand. The outcome of the experiments would be as expected
in the second case and remarkable in the first. In the third case, one would either
consider the friend extremely lucky, or begin to doubt the fairness of the coin being
flipped.

The above example convincingly makes the point that in our intuitive approach to
statistical issues, we include all knowledge we have, even resorting to strongly bi-
ased estimators if the model does not permit a non-biased way to incorporate it. The
Bayesian approach to statistics allows us to choose priors that reflect this subjectiv-
ity: from the outset, we attach more prior mass to parameter-values that we deem
more likely, or that we believe in more strongly. In the above example, we would
choose a prior that concentrates more mass at high values of θ in the second case
and at low values in the third case. In the first case, the absence of prior knowledge
would lead us to remain objective, attaching equal prior weights to high and low
values of θ . Although the frequentist’s testing procedure can be adapted to reflect
subjectivity, the Bayesian procedure incorporates it rather more naturally through
the choice of a prior.

Subjectivist Bayesians view the above as an advantage; objectivist Bayesians and
frequentists view it as a disadvantage. Subjectivist Bayesians argue that personal be-
liefs are an essential part of statistical reasoning, deserving of a explicit role in the
formalism and interpretation of results. Objectivist Bayesians and frequentists reject
this thought because scientific reasoning should be devoid of any personal beliefs
or interpretation (see section 3.2). So the above freedom in the choice of the prior
is also the Achilles heel of Bayesian statistics: fervent frequentists and objectivist
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Bayesians take the point of view that the choice of prior is an undesirable source
of ambiguity, rather than a welcome way to incorporate “expert knowledge” as in
example 1.3.1. After all, if the subjectivist Bayesian does not like the outcome of
his analysis, he can just go back and change the prior to obtain a different out-
come. Similarly, if two subjectivist Bayesians analyze the same data they may reach
completely different conclusions, depending on the extent to which their respective
priors differ.

To a certain extent such ambiguity is also present in frequentist statistics, since
frequentists have the freedom to choose biased point-estimators. For example, the
use of either a maximum-likelihood or penalized maximum-likelihood estimator
leads to differences, the size of which depends on the relative sizes of likelihood
and penalty. Indeed, through the maximum-a-posteriori Bayesian point-estimator
(see definition 2.2.20), one can demonstrate that the log-prior-density can be viewed
as a penalty term in a penalized maximum-likelihood procedure, cf. remark 2.2.21.
But the way in which subjectivity is expressed in the Bayesian setting is integral to
the approach and completely natural.

A second difference in philosophy between frequentist and Bayesian statisticians
arises as a result of the fact that the Bayesian procedure does not require that we pre-
sume the existence of a “true, underlying distribution” P0 of Y (compare with (1.1)).
The subjectivist Bayesian views the model with (prior or posterior) distribution as
his own, subjective explanation of the uncertainty in the data. For that reason, sub-
jectivists prefer to talk about their (prior or posterior) “belief” concerning parameter
values rather than implying objective validity of their assertions. On the one hand,
such a point of view makes intrinsic ambiguities surrounding statistical procedures
explicit; on the other hand, one may wonder about the relevance of strictly personal
belief in a scientific tradition that emphasizes universality of reported results.

The philosophical debate between Bayesians and frequentist has raged with vary-
ing intensity for decades, but remains undecided to this date. In practice, the choice
for a Bayesian or frequentist estimation procedure is usually not motivated by philo-
sophical considerations, but by far more practical issues, such as ease of computa-
tion and implementation, common custom in the relevant field of application, spe-
cific expertise of the researcher or other forms of simple convenience. More recent
developments [13] suggest that the philosophical debate will be put to rest in favour
of more practical considerations as well. In later chapters it is demonstrated how
Bayesian and frequentist statistical limits are related in the large-sample asymptotic
regime.

1.4 The frequentist analysis of Bayesian methods

Since this point has the potential to cause great confusion, we emphasize the follow-
ing: this text presents Bayesian statistics from a hybrid perspective, i.e. we consider
Bayesian techniques but analyze them in frequentist setting and with frequentist
methods.
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We take the frequentist point of view with regard to the data, e.g. assumption
(1.1); we distinguish between sample space and model and we do not adhere to
subjectivist interpretations of results (although their perspective is discussed in the
main text). On the other hand, we endow the model with a prior probability measure
and calculate the posterior distribution, i.e. we use concepts and definitions from
Bayesian statistics. This enables us to assess Bayesian methods on equal footing
with frequentist statistical methods and extends the range of interesting questions.
Note, however, that the derivation of expression (2.13) for the posterior, for example,
is the result of subjectivist Bayesian assumptions on data and model. Since these
assumptions are at odds with the frequentist perspective, we shall take (2.13) as a
definition rather than a derived form (see subsection 2.1.4).

Much of the material covered in this book does not depend on any particular
philosophical point of view, especially when the subject matter is purely mathemati-
cal. Nevertheless, it is important to realize when philosophical issues may come into
play and there will be points where this is the case. In particular when discussing
asymptotic properties of Bayesian procedures, adoption of assumption (1.1) is in-
strumental (lacking a limit point representing the (frequentist) true distribution of
the data, any form of asymptotic convergence would be much less meaningful).

1.5 Markov-chain Monte-Carlo simulation [EMPTY]

1.6 Exercises

1.6.1. Let Y ∈ Y be a random variable with unknown distribution P0. Let P be a
model for Y , dominated by a σ -finite measure µ and parametrized by Θ →P : θ 7→
Pθ . Assume that the maximum-likelihood estimator θ̂ (see definition 1.2.5) is well-
defined, P0-almost-surely. Show that if ν is another σ -finite measure dominating P
and we calculate the likelihood using ν-densities, then the associated MLE is equal
to θ̂ . Conclude that the MLE does not depend on the dominating measure used, cf.
remark 1.2.6.

1.6.2. Prove proposition 1.1.5.

1.6.3. Let Y = R with σ -algebra B. Show that if B is the usual Borel σ -algebra,
then M 1(Y ,B) is not dominated. Also show, that if B is generated by the col-
lection of all half-open intervals (x,y], where x,y ∈ Z, x < y, then M 1(Y ,B) is
dominated.

1.6.4. Although customarily the model is defined first and estimators follow, it is
possible to reverse the order: suppose that we have a certain fixed estimator in mind,
how should we choose the model in order for the fixed estimator to perform?

More explicitly, consider a data vector Y =(X1, . . . ,Xn) that forms an i.i.d. sample
from a unknown distribution P0 on R. We are interested in estimation of the quantity
ψ = P0g(X), assumed to be finite, where g : R→ R is a given measurable function
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defined on the sample space for X . Examples: if g is the identity map, then ψ is the
expectation of X ; if g = (X −P0X)2, then ψ is the variance of X ; if g = 1{X ≤ x}
for some x ∈ R, then ψ = F0(x), the value of the distribution function associated
with P0 at x. In such cases, estimation of ψ by the sample mean ψ̂n := Png appears
sensible for large n.

a. A minimal requirement for ψ̂n to make sense as an estimator for ψ , is consis-
tency (see also definition 6.1.1): we say that the estimators ψ̂n are consistent
if we are able to estimate ψ with arbitrarily high precision when we raise the
amount of data used (that is, the number n) high enough. Based on consistency,
characterize the largest model P in which estimation of ψ by ψ̂n makes sense.
What can be said of P if g is a bounded function?

To analyze the behaviour of ψ̂n in some more detail, consider the following.

b. Restrict the model P further based on a more detailed criterion for conver-
gence: ψ̂n is said to converge to ψ at rate n−1/2 (see also definition 4.1.3), if for
any ε > 0 there is an M > 0, such that,

sup
n≥1

Pn
0
(

n1/2|ψ̂n−ψ|> M
)
< ε,

as n→ ∞. Hint: consider the central limit theorem, which says that (under a
certain integrability condition), the n1/2-rescaled differences converge weakly
to a normal distribution. Next note that any weakly convergent sequence is uni-
formly tight (see definition C.7.14) and use the Heine-Borel characterization of
compactness in R to finish the argument.

c. Compare the property under b. above with example 1.2.4 and state in words
how the quality of ψ̂n as an estimator for ψ improves as n→ ∞.

1.6.5. In the three experiments of example 1.3.1, describe a test for hypotheses H0
and H1 at level α ∈ (0,1), for example the likelihood ratio test. Calculate the p-value
of the realization of 10 successes and 0 failures (in 10 Bernoulli trials according to
H0).



Chapter 2
Bayesian basics

In this chapter, we consider the basic definitions and properties of Bayesian statisti-
cal and decision-theoretic methods. We derive the posterior distribution from data,
model and prior and we discuss how the posterior should be viewed if one assumes
the frequentist point of view of section 1.1. In section 2.2 we consider point es-
timators derived from the posterior and in section 2.3 we discuss confidence sets
and credible sets. Section 2.4 discusses the Neyman-Pearson theory of hypothesis
testing, as well as a brief introduction to the Le Cam’s theory of asymptotically op-
timal test sequences and, of course, posterior odds and Bayes factors. Section 2.5
concludes the chapter with a discussion of minimax risk and Bayes risk, with their
respective versions of decision theory. Throughout the chapter the explicit goal is to
consider frequentist methods side-by-side with the Bayesian procedures, for com-
parison and reference. In chapter 7 we consider the condition that enable frequentist
interpretation of Bayesian methods in the large-sample limit.

2.1 Bayes’s rule, prior and posterior distributions

In this section, we introduce the basic definitions and procedures in Bayesian statis-
tics. Formalizing the Bayesian procedure can be done in several ways. We start this
section with considerations that are traditionally qualified as being of a “subjec-
tivist” nature: in subsection 2.1.1 we derive the relation between data, model and
prior on the one hand and the posterior on the other, based on Bayes’s Rule without
reference to the frequentist’s “true distribution of the data”. To stay clear on what a
Bayesian means when we speaks of a model, we consider the support of a prior (see
subsection 2.1.3) and consider a prototypical example usually referred to as Bayes’s
Billiard in subsection 2.1.2. In subsection 2.1.4 we revert to the “frequentist” point
of view through an assumption relating the “true distribution of the data” to the prior
predictive distribution (see definition 2.1.4).

17
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2.1.1 Bayes’s rule

The Bayesian framework does not just view the data Y as a random variable but
casts the parameter in that form as well. The parameter space Θ is assumed to be a
measurable space, with σ -algebra G and, rather than just taking on fixed values θ as
in the frequentist case, the parameter is represented by a random variable ϑ taking
values in Θ . We assume that on the product-space Y ×Θ (with product σ -algebra
σ(B×G )) we have a probability measure,

Π
∗ : σ(B×G )→ [0,1]. (2.1)

The probability measure Π ∗ provides a joint probability distribution for (Y,ϑ),
where Y is the observation and ϑ (the random variable associated with) the pa-
rameter of the model.

Implicitly the choice for the measure Π ∗ defines the model in Bayesian context,
by the possibility to condition the distribution of Y on fixed values ϑ = θ in Θ . The
conditional distribution for Y |ϑ (see appendix B.4) describes the distribution of the
observation Y given the parameter ϑ . As such, the distributions for Y |ϑ = θ can
be identified with the elements Pθ of what was referred to as a parametrized model
P = {Pθ : θ ∈Θ} in chapter 1.

Definition 2.1.1. The distribution of the data Y conditional on the parameter ϑ (cf.
definition B.4.4) is a regular conditional distribution,

ΠY |ϑ : B×Θ → [0,1], (2.2)

which describes the model distributions.

(see definition B.4.5). Since conditional probabilities are defined almost-surely with
respect to the marginal (see definition B.4.4), the Bayesian notion of a model is
represented only up to null-sets of the marginal distribution of ϑ : we may add to or
remove from the model at will, as long as we make sure that the changes have prior
measure equal to zero: in the Bayesian perspective, the model itself is a Π -almost-
sure concept.

Definition 2.1.2. The marginal distribution Π : G → [0,1] for ϑ is called the prior.

The prior is interpreted in the subjectivist’s philosophy as the “degree of belief”
attached to subsets of the model a priori, that is, before any observation has been
made or incorporated in the calculation. It is important to note that Π ∗ is usually
constructed by choice of a prior measure Π for ϑ and model distributions θ 7→ Pθ ,

Π
∗(B×G) =

∫
G

Π(B|ϑ = θ)dΠ(θ) =
∫

G
Pθ (B)dΠ(θ),

for all B ∈ B and G ∈ G (where θ → Pθ (B) is assumed to be G -measurable for
all B ∈ B). Central to the Bayesian framework is the conditional distribution for
ϑ given Y , called the posterior. The transition from prior to posterior represents
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the way in which “prior belief” is turned into “posterior belief” (concerning the
parameter) based on the data. The posterior is interpreted as a data-amended version
of the prior, that is to say, the subjectivist’s original “degree of belief” corrected by
observation of Y through conditioning. Below we define the posterior in conjunction
with the marginal distribution for the data, the so-called prior predictive distribution.

Definition 2.1.3. The conditional distribution Πϑ |Y : G ×Y → [0,1] for ϑ |Y is
called the posterior distribution.

The definition of the posterior is almost-sure with respect to the marginal data dis-
tribution PΠ (see definition B.4.3 and the concluding remarks of subsection B.4).

Definition 2.1.4. The marginal distribution PΠ : B→ [0,1] for Y is called the prior
predictive distribution. If, in the above, one replaces the prior by the posterior, the
resulting distribution for Y is referred to as the posterior predictive distribution.

In the subjectivist philosophy, the prior predictive distribution describes a subjec-
tivist’s expectations concerning the observation Y based only on model and prior,
i.e. before involving the data or realizations thereof. Given model and prior, the prior
predictive distribution is of mixture form.

Lemma 2.1.5. The prior predictive PΠ can be expressed in terms of the prior and
the model distributions as follows,

PΠ (Y ∈ B) =
∫

Θ

Pθ (B)dΠ(θ), (2.3)

for all B ∈B.

The probability measure PΠ is called “predictive” because given the model distri-
butions and the prior weights we assign them, their weighted average represents
our belief regarding the distribution of the observation Y . Such belief, held prior to
observation, forms a prediction for the distribution of Y .

The Bayesian symmetry between observation and parameter invites an identity
expressing its essence. Bayes’s Rule relates model distributions, prior, posterior and
prior predictive distribution through Π(θ ∈ G|Y ∈ B)Π(Y ∈ B) = Π(Y ∈ B|θ ∈
G)Π(θ ∈ G), for all B ∈ B and G ∈ G (see proposition B.4.2). The following
theorem restates this fact in terms of the concepts we have introduced above, in
a property which is sometimes referred to as a disintegration of the joint measure
on model times sample space: (2.4) should be viewed as a double-sided version of
definition B.4.4.

Theorem 2.1.6. Posterior, prior predictive, model distributions and prior are re-
lated through Bayes’s Rule,∫

B
Π(G|Y = y)dPΠ (y) =

∫
G

Pθ (B)dΠ(θ), (2.4)

for all B ∈B and G ∈ G .
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Proof. Equality (2.4) follows since both sides are equal to Π ∗(B×G), cf. defini-
tion B.4.4.

Note that, given model and prior, property (2.4) characterizes the posterior, up to
re-definition on null-sets of the prior predictive distribution PΠ . Consequently, we
may turn this theorem around and use property (2.4) as the defining property of the
posterior.

Definition 2.1.7. Given model and prior, any map π : G ×Y → [0,1] such that y 7→
π(G,y) is measurable for all G ∈ G and such that π satisfies,∫

B
π(G,y)dPΠ (y) =

∫
G

Pθ (B)dΠ(θ), (2.5)

for all B ∈B and G ∈ G , is called a version of the posterior.

Unfortunately property (2.5) does not imply that π is a regular conditional prob-
ability, so we are left with an equivalence in which property 2 of definition B.4.5
remains as a condition.

Proposition 2.1.8. A map π : G ×Y → [0,1] is a regular version of the posterior iff
π : y 7→ π(G,y) is B-measurable for all G ∈ G , satisfies (2.5), and G 7→ π(G,y) is
a (probability) measure on G for PΠ -almost-all y ∈ Y .

Remark 2.1.9. For statistical questions that only involve a finite number of poste-
rior probabilities, regularity of the posterior is not a requirement: if we test for hy-
potheses Θ0 ⊂ Θ versus Θ1 = Θ \Θ0 with posterior odds or Bayes factors (see
section 2.4), countable additivity or other measure-like properties are not required,
only the posterior probabilities Π(Θ0|Y ) and Π(Θ1|Y ) play a role. Similarly, for
the definition of a credible set D(Y ) (of level α) only the posterior probability
Π(ϑ ∈ D(Y )|Y ) matters (in that it has to be greater than or equal to 1−α , see
section 2.3), without using measure-like properties of the posterior. By contrast, the
definition of the posterior predictive distribution (see definition 2.2.2) or the condi-
tional Bayes solution to a decision-theoretic question (as in definition 2.5.15), for
example, do refer to the posterior as an almost-surely defined measure and require
a regular posterior distribution.

The following expression for the posterior in a dominated model implies regularity:
assuming that the model P is dominated, the posterior can be expressed in terms
of model densities. Since most statistical models are defined as families of densities
(e.g. Lebesgue-densities on R or Rn) this accessible form of the posterior is used
very often in practice and examples.

Theorem 2.1.10. Assume that the model P = {Pθ : θ ∈Θ} is dominated by a σ -
finite measure µ on (Y ,B) with densities pθ = dPθ/dµ . Then the posterior can be
expressed as,

Π(ϑ ∈ G |Y ) =
∫

G
pθ (Y )dΠ(θ)

/ ∫
Θ

pθ (Y )dΠ(θ), (2.6)

for all G ∈ G . This version of the posterior is regular.
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Proof. Since the model is dominated, the prior predictive distribution has a density
with respect to µ , because for every B ∈B,

PΠ (B) =
∫

Θ

Pθ (B)dΠ(θ) =
∫

Θ

∫
B

pθ (y)dµ(y)dΠ(θ)

=
∫

B

(∫
Θ

pθ (y)dΠ(θ)
)

dµ(y).

in accordance with the Fubini and Radon-Nikodym theorems. The prior predictive
density pΠ : Y → R is therefore equal to the denominator on the r.h.s. of (2.6). Let
B ∈B and G ∈ G be given. Substituting (2.6) into the l.h.s. of (2.5), we obtain,∫

B
Π(G|Y = y)dPΠ (y) =

∫
B

(∫
G

pθ (Y )dΠ(θ)

/ ∫
Θ

pθ (Y )dΠ(θ)
)

dPΠ (y)

=
∫

B

∫
G

pθ (y)dΠ(θ)dµ(y) =
∫

G
Pθ (B)dΠ(θ).

According to theorem 2.1.6, (2.6) is a version of the posterior and property 3 of
definition B.4.5 is satisfied. Property 1 of definition B.4.5 follows from Fubini’s
theorem (which guarantees measurability of the r.h.s. of (2.6)). Since PΠ (pΠ >
0) = 1, the denominator in (2.6) is non-zero PΠ -almost-surely and the posterior is
well-defined (as a map G → [0,1]), PΠ -almost-surely. In addition, for all y such that
pΠ (y)> 0 and any sequence (Gn) of disjoint, G -measurable sets,

Π

(
ϑ ∈

⋃
n≥1

Gn

∣∣∣ Y = y
)
= (pΠ (y))−1

∫
∪nGn

pθ (y)dΠ(θ)

= (pΠ (y))−1
∫

∑
n≥1

1{θ∈Gn} pθ (y)dΠ(θ)

= ∑
n≥1

(pΠ (y))−1
∫

Gn

pθ (y)dΠ(θ) = ∑
n≥1

Π(ϑ ∈ Gn |Y = y),

by monotone convergence. We have established that on an event of PΠ -measure
one, this version of the posterior is well-defined and countably additive, so that also
property 2 of definition B.4.5 holds. Conclude that (2.6) is a regular version of the
posterior.

In the rest of part I and most of part II, we shall hardly concern ourselves with reg-
ularity of posteriors: in all parametric and most non-parametric settings explored
here and in the literature, the model is dominated or it is a Polish space (see the-
orem B.4.7), either of which implies existence of regular posteriors. But in part II
we shall also encounter topological circumstances (from rather compelling theoret-
ical arguments based on certain weak model topologies) and questions regarding
regularity will resurface there.

To demonstrate that it is easy to define a model (with prior) that theorem B.4.7
does not cover, consider the following example.
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Example 2.1.11. Suppose that the sample space is R and the model P consists of
all discrete probability measures, of the form (see also example B.2.9):

P =
m

∑
j=1

p jδx j , (2.7)

for some m ≥ 1, with (p1, . . . , pm) in the simplex Sm (see example 1.1.13) and
x1, . . . ,xm ∈ R. A suitable prior for this model exists (if one is willing to allow
m = ∞): distributions drawn from a so-called Dirichlet process prior (see sec-
tion 8.2) are of the form (2.7) with probability one. There is no σ -finite dominating
measure for this model (not even if we restrict to measures of the form (2.7) with
m = 1, see exercise 1.6.3) and the model can not be represented by a family of
densities, cf. definition 1.1.3. Definition (2.6) cannot be used in this case. We have
to resort to definition 2.1.3 in order to make sense of the posterior distribution and
existence of a version of the posterior that displays regularity is a concern in this
case.

This model P can also be used as a parametrizing space for a so-called mixture
model P ′ of distributions on R. For a fixed probability distribution F with Lebesgue
density f : R→ R and any probability distribution P on R, define the convolution
fP as follows,

fP(x) =
∫

f (x− y)dP(y),

for (Lebesgue-almost-all) x ∈ R. Note that fP is a Lebesgue probability density
on R (due to Fubini’s theorem), describing the distribution of the random variable
Z = X +Y , for some (X ,Y ) that are independent and marginally, X ∼ P and Y ∼ F .
If we let P be from the model P above, convolution defines a map from P to a
new model P ′ of densities, P →P ′ : P 7→ fP, of the form,

fP(x) =
m

∑
j=1

p j f (x j− x),

where P is as in (2.7), a convex combination of m clusters in which the intra-cluster
variability is described by the density f : the model describes observation of a ran-
domly selected cluster location X = x j with random (e.g. noisy) displacement Y ∼F .

2.1.2 Bayes’s billiard

To many who have been introduced to statistics from the frequentist point of view,
treating the parameter θ for the model as a random variable ϑ seems somewhat
unnatural because the frequentist role for the parameter is entirely different from
that of the data. The following example demonstrates that in certain situations the
Bayesian point of view is not unnatural at all.
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Example 2.1.12. In the posthumous publication of “An essay towards solving a
problem in the doctrine of chances” in 1763 [14], Thomas Bayes included an exam-
ple of a situation in which the above, subjectivist perspective arises quite naturally. It
involves a number of red balls and one white ball placed on a table and has become
known in the literature as Bayes’s billiard.

We consider the following experiment: unseen by the statistician, someone places
n red balls and one white ball on a billiard table of length 1. The statistician will be
reported the number K of red balls that is closer to the cushion than the white ball
(K plays the role of the data in this example) and is asked to give a distribution
reflecting his beliefs concerning the position of the white ball X (X plays the role
of the parameter) based on K. Calling the distance between the white ball and the
bottom cushion of the table X and the distances between the red balls and the bottom
cushion Yi, (i = 1, . . . ,n), it is known to the statistician that their joint distribution is:

(X ;Y1, . . . ,Yn)∼U [0,1]n+1, (2.8)

i.e. all balls are placed independently and uniformly. This distribution gives rise
both to the model (for K) and to the prior (for X). Prior knowledge concerning X
(i.e. without knowing the observed value K = k) offers little information: the best
that can be said is that X ∼U [0,1], i.e. the prior is uniform. The question is how
this distribution for X changes when we incorporate the observation K = k, that is,
when we use the observation to arrive at posterior beliefs.

Since for every i, Yi and X are independent cf. (2.8), we have model distributions
that give rise to,

P(Yi ≤ X |X = x) = P(Yi ≤ x) = x,

for any x ∈ [0,1]. So for each of the red balls, determining whether it lies closer to
the cushion than the white ball amounts to a Bernoulli experiment with parameter
x. Since in addition the positions Y1, . . . ,Yn are independent, counting the number
K of red balls closer to the cushion than the white ball amounts to counting “suc-
cesses” in a sequence of independent Bernoulli experiments. We conclude that K
has a binomial distribution Bin(n;x), i.e.,

P(K = k|X = x) =
n!

k!(n− k)!
xk(1− x)n−k.

It is possible to obtain the density for the distribution of X conditional on K = k
from the above display using Bayes’s Rule:

p(x|K = k) = P(K = k|X = x)
p(x)

P(K = k)
, (2.9)

but in order to use it, we need the two marginal densities p(x) (the prior density)
and P(K = k) (the prior predictive density) in the fraction. From (2.8) it is known
that p(x) = 1 and P(K = k) can be obtained by integrating,
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Fig. 2.1 Posterior densities for the position X of the white ball, given the number k of
red balls closer to the cushion of the billiard (out of a total of n = 6 red balls). For the
lower values of k, the white ball is close to the cushion with high probability, since
otherwise more red balls would probably lie closer to the cushion. This is reflected
by the posterior density for X |K = 1, for example, by the fact that it concentrates
much of its mass close to x = 0.

P(K = k) =
∫ 1

0
P(K = k|X = x) p(x)dx.

Substituting in (2.9), we find:

p(x|K = k) =
P(K = k|X = x) p(x)∫ 1

0 P(K = k|X = x) p(x)dx
= B(n,k)xk(1− x)n−k,

where B(n,k) is a normalization factor. The x-dependence of the density in the above
display reveals that X |K = k is distributed according to a Beta-distribution, B(k+
1,n− k + 1), so that the normalization factor B(n,k) must equal B(n,k) = Γ (n+
2)/Γ (k+1)Γ (n− k+1).

This provides the statistician with distributions reflecting his beliefs concerning
the position of the white ball for all possible values k for the observation K. Through
conditioning on K = k, the prior distribution of X is changed into the posterior for
X : if a relatively small number of red balls is closer to the cushion than the white
ball (i.e. in case k is small compared to n), then the white ball is probably close to
the cushion; if k is relatively large, the white ball is probably far from the cushion
(see figure 2.1). The illustration on the cover of this book appears in [14] and is
Bayes’s own version of his Billiard, complete with Beta-density drawn along the
bottom edge.
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2.1.3 The Bayesian view of the model

Based on the definitions of subsection 2.1.1 a remark is in order with regard to the
notion of the model in Bayesian statistics: if, for a subset P1 ⊂P , the prior assigns
mass zero, then for all practical purposes P1 does not play a role since omission of
P1 from P does not influence the posterior. As long as the model is parametric, i.e.
Θ ⊂ Rd , we can always use priors that dominate the Lebesgue measure, ensuring
that any P1 of prior measure zero has Lebesgue measure zero in Θ and can therefore
be thought of as negligibly small. However, in non-parametric models null-sets of
the prior and posterior may be much larger than expected intuitively.

Example 2.1.13. Taking the above argument to the extreme, consider a normal loca-
tion model P = {N(θ ,1) : θ ∈ R} with a prior Π = δθ1 (see example B.2.9), for
some θ1 ∈ R, defined on the Borel σ -algebra B. Then the model is dominated by
the Lebesgue measure and the posterior takes the form:

Π(ϑ ∈ B|Y ) =
∫

B
pθ (Y )dΠ(θ)

/ ∫
Θ

pθ (Y )dΠ(θ) =
pθ1(Y )
pθ1(Y )

Π(B) = Π(B).

for any B ∈B. In other words, the posterior equals the prior, concentrating all its
mass in the point θ1. Even though we started out with a model that suggests es-
timation of location, effectively the model consists of only one point due to the
degeneracy of the prior. In subjectivist terms, the prior belief is fully biased towards
θ1, leaving no room for amendment by the data when we condition to obtain the
posterior.

This example raises the question which part of the model proper P plays a role
in the Bayesian approach. From a topological perspective it is helpful to make the
following definition.

Definition 2.1.14. In addition to (Θ ,G ,Π) being a probability space, let (Θ ,T )
be a topological space and assume that G contains the Borel σ -algebra B corre-
sponding to the topology T . The support supp(Π) of the prior Π is defined as the
smallest closed set S such that Π(Θ \S) = 0.

It is tempting to equate the support of a prior to the set described by the following
intersection.

S =
⋂{

G ∈ G : G closed, Π(Θ \G) = 0
}
. (2.10)

Perhaps somewhat surprisingly, the validity of this identification is hard to establish:
for any (Θ ,G ) as in definition C.1.18, S is measurable, in fact, S is (an intersection
of closed sets so S is) closed. Since the Borel σ -algebra is generated by the open
sets, S ∈B ⊂ G . To show that Π(Θ \ S) = 0, poses extra conditions on the space
Θ ; the following lemma covers a large (but not exhaustive) class of models.

Proposition 2.1.15. In addition to (Θ ,G ,Π) being a probability space, let (Θ ,T )
be a topological space and assume that G contains the Borel σ -algebra B corre-
sponding to the topology T . If T is second countable, then S = supp(Π).
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Proof. Consider the complement V =Θ \S. We can write,

V =
⋃{

U ∈ G : U open, Π(U) = 0
}
. (2.11)

The set V is open and contains every open subset of Π -measure zero. Because the
topology is second countable, V can be written as a countable union of open sets
{Uk : k≥ 1} of Π -measure zero. Therefore, Π(V ) = Π(∪k≥1Uk)≤∑k≥1 Π(Uk) = 0
and we conclude that Π(S) = 1.

This implies, for example, that the support of Π is of the form (2.10) if (Θ ,T ) is
a separable metrizable space. However not all parameter spaces have Polish com-
plements and a suitable generalization exists [239]: the Radon property of a Borel
measure (see definition C.8.1) is enough to fix the support problem in a very direct
way, for parameter spaces that only have to be Hausdorff.

Proposition 2.1.16. In addition to (Θ ,G ,Π) being a probability space, let (Θ ,T )
be a Hausdorff topological space and assume that G is the Borel σ -algebra B
corresponding to the topology T . If Π is a Radon measure, then S = supp(Π).

Proof. Let V denote the collection of all open U in Θ with Π(U) = 0 and label
with a set I: V = {Uα : α ∈ I}. Then the set V defined in (2.11) can be written as
V = ∪{Uα : α ∈ I}. For every compact K ⊂ V , there exists a finite subset J ⊂ I
such that K ⊂∪{Uβ : β ∈ J}. It follows that Π(K)≤∑β∈J Π(Uβ ) = 0 and by inner
regularity,

Π(V ) = sup{Π(K) : K compact, K ⊂V}= 0.

Example 2.1.17. In example 2.1.13, the model P consists of all normal distributions
of the form N(θ ,1), θ ∈R, but the support of the prior supp(Π) equals the singleton
{N(θ1,1)} ⊂P .

A well-defined support gives a topological answer to the question where in the pa-
rameter space prior mass is concentrated. This suggests that we can distribute mass
throughout the parameter space in an equitable fashion: for every θ ∈ supp(Π) and
every open neighbourhood U of θ , Π(θ) > 0. The suggestion extends to the hope
that, if we choose a prior Π of full support, supp(Π) =Θ , somehow every point in
the model is involved in the subsequent Bayesian analysis.

But of course, we know that the model may be redefined up to null-sets of Π ,
without influencing the posterior, that is, with equivalence of subsequent Bayesian
analyses (cf. the Π -almost-sure nature of the identification (2.2)). When we think of
this issue in a model with a countable, discrete parameter space, it does not lead to
any ambiguity: the only null-set of a prior with full support is the empty set, in that
case. In the setting of a parametric Θ ⊂Rd with a prior that is absolutely continuous
with respect to Lebesgue measure, full support implies ambiguity only on Lebesgue
null-sets, which we can still think of as negligible in an intuitively acceptable way.
In both cases, the support of the prior is a reasonable substitute for the vague, prior-
almost-sure notion of a Bayesian model introduced after definition 2.1.1.

When the model is non-parametric, the support of the prior can become a very
misleading intuition regarding the model subset on which the prior is concentrated:
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in the following example, a prior Π of full support is constructed on the space of
all probability measures on a countably infinite sample space X . Π has null-sets,
however, that are very large (e.g. containing all p that assign mass to more than a
finite number of points in X ).

Example 2.1.18. Consider again the full model on a countable sample space X =
{i : i≥ 1}, as in example 1.1.4, and represent it as the ℓ1-subset (see definition 1.2),

S∞ = {p ∈ ℓ1 : pi ≥ 0,Σi≥1 pi = 1}.

Also define the subsets S∞,k ⊂ S∞, (k ≥ 1), S∞,k = {p ∈ S∞ : pi = 0, i ≥ k}, S∞,0 =
∪{S∞,k : k ≥ 1} (all p with finite support) and N = {p ∈ S∞ : pi > 0, i ≥ 1} (all
p with full support). Note that N can be thought of as describing a generic point
in S∞ (and this is made rigorous when one remarks that N is residual in S∞ in the
Baire sense, see after definition C.4.4). For all k≥ 1, place priors Πk of full support
on the finite-dimensional simplices (see (1.4)) that the S∞,k describe (and embed in
S∞). Define a prior Π on S∞ based on a sequence (λk) such that λk > 0 for all k ≥ 1
and ∑k λk = 1,

Π(A) = ∑
k≥1

λkΠk(A).

It is noted that the normed space ℓ1 is separable, so the support S of Π is well-
defined and coincides with (2.10). To find S, let ε > 0 and p ∈ S∞ be given. There
exists a k ≥ 1 such that ∑i>k pi <

1
2 ε . Therefore, there exists a q ∈ S∞,k and an ℓ1-

neighbourhood U of q in S∞,k such that for all q′ ∈U , ∥p−q′∥< ε . Therefore,

Π
(
{q ∈ S∞ : ∥p−q∥< ε}

)
≥ λkΠk(U)> 0.

Conclude that S = S∞, that is, Π is of full support. Nevertheless, N ∩ S∞,k = ∅
for all k ≥ 1, so Π(N ) = 0. The set N is a null-set of Π : any Bayesian analysis
with this prior involves support S∞ but S∞ \N is equally deserving to be called ‘the
model’ from the Bayesian perspective.

The prior-almost-sure nature of the Bayesian perspective on statistical models is
problematic from a frequentist point of view: if a frequentist makes room for all
of S∞ as a model for the observation Y (example 2.1.18), then the assumption Y ∼
P0 ∈ S∞ is meant to include more than just the the p with finite support, the p ∈
N are part of the assumption too. Because the posterior is ultimately a measure-
theoretic rather than a topological definition, the conceptual confusion about where
a prior places its mass, lies at the heart of many (all?) examples of inconsistency of
Bayesian methods in non-parametric models (see e.g. [102]).

2.1.4 The frequentist view of the posterior

So far, we have not discussed the details of the data Y , we have treated Y completely
abstractly. In this section we consider, firstly, the relation between the frequentist
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distribution of Y (the “true” P0) and the Bayesian distribution of Y (the marginal
PΠ ). Secondly, we consider samples of independent, repeated measurements of a
random variable X . We shall see that the Bayesian way to describe data and statisti-
cal experiments is in contradiction with the frequentist assumption.

The derivation of the posterior in subsection 2.1.1 does not refer to any “true,
underlying distribution of the data” but it does involve a marginal distribution for
Y , the prior predictive distribution of definition 2.1.4. If one adopts the frequentist
framework to analyze Bayesian tools like the posterior, a discrepancy arises since
P0 and PΠ are two distributions for the data Y that are not equal (for a striking
instance of the discrepancy, see remark 2.1.19 below). To the frequentist, PΠ is a
side-product of the Bayesian construction that has no realistic interpretation. There
is, however, a clear technical issue: all definitions and derivations in subsection 2.1.1
are almost-sure with respect to the prior predictive distribution. To ensure that all of
this continues to make sense after we adopt assumption (1.1) we require that PΠ

dominates P0 [160]:
P0≪ PΠ . (2.12)

In that case, null-sets of PΠ are also null-sets of P0, so that all PΠ -almost-sure
statements and definitions are also P0-almost-sure. In particular, expression (2.6)
for the posterior in a dominated model satisfies the regularity condition not only
PΠ - but also P0-almost-surely, if we assume (2.12). We shall adopt the frequentist
philosophy to analyse Bayesian tools, i.e. we assume (1.1) and (2.12).

In many experiments or observations, the data consists of a sample of n repeated,
stochastically independent measurements of the same quantity (an i.i.d. sample). To
accommodate this and other situations where the data is gathered sequentially, we
assume that we observe data Xn taking values in measurable spaces (Xn,Bn) for all
n≥ 1, and we consider parametrized models Θ→Pn : θ 7→Pθ ,n. The frequentist as-
sumes that there is some sequence of probability measures (P0,n) such that Xn ∼ P0,n
for all n≥ 1, and often, that there exists a θ0 ∈Θ , such that, P0,n =Pθ0,n for all n≥ 1.
In the case of i.i.d. data from a measurable space (X ,B), Xn = (X1, . . . ,Xn) ∈X n

with Θ some collection P of probability measures P on (X ,B) and parametriza-
tion P→Pn : P 7→ Pn. Assuming a well-specified model P implies the existence
of some P0 ∈P such that P0,n = Pn

0 for all n≥ 1.
For Bayesians (Θ ,G ,Π) is a measurable space and Θ →Pn : θ 7→ Pθ ,n(B) must

be measurable for all B ∈Bn. But because Bayesians do not entertain the concept
of a ‘true’ distribution of the data, they express assumptions concerning the data
only through model distributions. Particularly for the i.i.d. assumption, the Bayesian
assumes conditional independence of the observations, given ϑ = θ :

ΠXn|ϑ (X1 ∈ A1, . . . ,Xn ∈ An |ϑ = θ ) =
n

∏
i=1

ΠY |ϑ (Xi ∈ Ai |ϑ = θ ) =
n

∏
i=1

Pθ (Ai),

for all (A1, . . . ,An)∈A n and Π -almost all θ . Similarly we see that the prior predic-
tive distribution for i.i.d. data takes the form:
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PΠ
n (X1 ∈ A1, . . . ,Xn ∈ An) =

∫
Θ

n

∏
i=1

Pθ (Ai)dΠ(θ).

The posterior is now a solution for Bayes’s Rule in the following form,∫
A

Π(B|X1 = x1, . . . ,Xn = xn)dPΠ
n (x1, . . . ,xn) =

∫
B

n

∏
i=1

Pθ (Ai)dΠ(θ),

where A = A1× . . .×An, B ∈ G . Assuming that the model P = {Pθ : θ ∈Θ} for
the marginal distributions is dominated by a σ -finite measure µ on X , the above
can also be expressed in terms of µ-densities pθ = dPθ/dµ . Using theorem 2.1.10
we obtain the following expression for the posterior distribution:

Π(ϑ ∈ B|X1,X2, . . . ,Xn) =
∫

B

n

∏
i=1

pθ (Xi)dΠ(θ)

/ ∫
Θ

n

∏
i=1

pθ (Xi)dΠ(θ), (2.13)

for any B ∈ G . Since P0(p0(X) > 0) = 1, the assumption that (X1, . . . ,Xn) ∼ Pn
0

allows us to rewrite this expression with likelihood ratios,

Π(ϑ ∈ B|X1,X2, . . . ,Xn) =
∫

B

n

∏
i=1

pθ

p0
(Xi)dΠ(θ)

/ ∫
Θ

n

∏
i=1

pθ

p0
(Xi)dΠ(θ), (2.14)

Pn
0 -almost-surely. In a dominated model, the Radon-Nikodym derivative (see the-

orem B.3.10) of the posterior with respect to the prior is the likelihood function,
normalized to be a probability density function:

dΠ(·|X1, . . . ,Xn)

dΠ
(θ) =

n

∏
i=1

pθ (Xi)

/ ∫
Θ

n

∏
i=1

pθ (Xi)dΠ(θ), (2.15)

PΠ
n -almost-surely, and under (2.12), also Pn

0 -almost-surely. The latter fact explains
why such strong relations exist between Bayesian and maximum-likelihood meth-
ods. Indeed, the proportionality of the posterior density and the likelihood provides a
useful qualitative picture of the posterior as a measure that concentrates on regions
in the model where the likelihood is relatively high. This may serve as a direct,
Fisherian motivation for the use of Bayesian methods in a frequentist context, cf.
section 1.4.

Remark 2.1.19. Note that the prior predictive distribution for i.i.d. data is itself not
a product distribution but a mixture of product distributions! This illustrates the dis-
crepancy between P0 and PΠ quite clearly: while the true distribution of the data
describes an i.i.d. random vector, the prior predictive distribution describes a ran-
dom vector that is just exchangeable (in accordance with De Finetti’s theorem (see
theorem B.2.16)).

Remark 2.1.20. For the frequentist to use Bayesian tools, e.g. a posterior calculated
using (2.13), he has to assume condition (2.12). In the context of i.i.d. samples, that
requirement takes the form,
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Pn
0 ≪ PΠ

n , (for all n≥ 1).

2.1.5 From prior to posterior

To conclude the section, consider the following recipe for the Bayesian analysis of
a data set, illustrated with a very simple parametric example.

(i) Based on the background of the data Y , the statistician chooses a model
P of “reasonable” candidate distributions for the data (usually with some
parametrization Θ →P : θ 7→ Pθ ).

(ii) A prior measure Π on P is chosen, reflecting “belief” concerning these candi-
dates, see chapter 3, (usually as a probability measure on Θ ).

(iii) Based on definition 2.1.3, on expression (2.6) or in the case of an i.i.d. sample,
on (2.13), we calculate the posterior as a function of the data Y .

(iv) We observe a realization of the data Y = y and use it to calculate a realisation
of the posterior.

The statistician may then infer properties of the parameter θ from the posterior
Π(·|Y = y). One important point: when reporting the results of any statistical pro-
cedure, one is obliged to reveal all relevant details concerning the methods followed
and the data. So when making inference on θ , the statistician should report on the
nature of the sample used and his choice of model, and in the Bayesian case, should
always report his choice of prior as well, with a clear motivation.

Example 2.1.21. To illustrate the above “recipe” with a concrete example, consider
the one-dimensional parametric model P consisting of exponential distributions:

P = {Exp(θ) : θ ∈Θ = (0,∞)}.

Lebesgue measure dominates the model and densities take the form pθ (x) =
θ exp(−θ x), for x ≥ 0. Assume that the data consists of n observations, (condi-
tionally) independent and identically distributed. As a prior on the model, we take
another exponential distribution with density π(θ) = exp(−θ) (for θ ∈ Θ ). The
posterior density relative to Lebesgue measure on Θ takes the form,

dΠ(θ |X1, . . . ,Xn) =C(X1, . . . ,Xn)
( n

∏
i=1

θ e−θ Xi 1{Xi≥0}

)
e−θ dθ

where C(X1, . . . ,Xn) denotes the (data-dependent) normalization factor that makes
the posterior a probability measure. We calculate,

dΠ(θ |X1, . . . ,Xn) =C(X1, . . . ,Xn)θ
n e−θ(1+∑i Xi) 1{X(1)≥0} dθ

(where X(1) = mini Xi). Since,
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∞

0
θ

n e−α θ dθ =
n!

αn+1 ,

we see that C(X1, . . . ,Xn) must be equal to (1+∑i Xi)
n+1/n!. So for any measurable

A⊂Θ , the posterior probability is given by:

Π(ϑ ∈ A|X1, . . . ,Xn) =
1
n!

(
1+

n

∑
i=1

Xi

)n+1
1{X(1)≥0}

∫
A

θ
n e−θ(1+∑

n
i=1 Xi) dθ .

Note that the posterior density collapses to zero (and no longer describes a probabil-
ity distribution!) if Xi < 0 for some 1≤ i≤ n. As Bayesians, we insist that the data
must be compatible with the model, we require that Π ∗(Xi ≥ 0) = PΠ

n (Xi ≥ 0) = 1.
As frequentists we involve the underlying distribution P0, requiring that P0(X ≥ 0)=
1 so that the posterior is well-defined Pn

0 -almost-surely. More generally, PΠ dom-
inates Lebesgue measure, so P0 ≪ PΠ as long as P0 has a density with respect to
Lebesgue measure.

2.2 Bayesian point estimators

When considering questions of statistical estimation, the outcome of a frequentist
procedure is of a different nature than the outcome of a Bayesian procedure: a point-
estimator (the frequentist outcome) gives a point in the model whereas the posterior
(the Bayesian outcome) is a distribution on the model. A first question, then, con-
cerns the manner in which to compare the two. We assume the frequentist philoso-
phy to analyse Bayesian methodology (cf. subsection 2.1.4) and, in this section, we
derive point-estimators from the posterior distribution in various ways: we consider
the posterior predictive distribution, as well as the parametric posterior mean and the
maximum-a-posteriori estimator. In later sections we approach the matter from the
opposite perspective: every point-estimator has a sampling distribution, which can
be compared with the posterior because both are distributions on the model or the
parameter space. This is the view that gives rise to the Bernstein-von Mises theorem
of chapter 4.

2.2.1 Posterior predictive distribution

We think of a Bayesian point-estimator as a point in the model around which pos-
terior mass is accumulated most, a point around which the posterior distribution is
concentrated in some way. As such, any reasonable Bayesian point-estimator should
represent the “location” of the posterior distribution. However there is no unique
definition for the “location” of a distribution and, accordingly, there are many dif-
ferent ways to define Bayesian point-estimators.
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Remark 2.2.1. Arguably, there are distributions for which even the existence of a
“location” is questionable. For instance, consider the convex combination of point-
masses P = 1

2 δ−1 +
1
2 δ+1 on (R,B). Reasonable definitions of location, like the

mean and the median of P, all assign as the location of P the point 0 ∈ R. Yet small
neighbourhoods of 0 do not receive any P-mass, so 0 can hardly be viewed as a point
around which P concentrates its mass. The problem is not of a mathematical nature,
it is conceptual: when we think of the “location” of a distribution we normally think
of unimodal distributions which have unambiguous “locations”. However, it is com-
mon practice to formulate the notion for all distributions by the same definitions.

One quantity that is often used to represent a distribution’s location is its expec-
tation. This motivates the first and most Bayesian definition of a posterior-based
point-estimator: the posterior predictive distribution.

Definition 2.2.2. Consider a statistical problem involving data Y taking values in
a sample space (Y ,B) and a model (P,G ) with prior Π . Assume that all the
maps P → [0,1] : P 7→ P(B), (B ∈B) are measurable with respect to G and that
the posterior Π( · |Y ) is a regular conditional distribution. The posterior predictive
distribution) is a data-dependent set-function P̂ : B×Y → [0,1], defined by,

P̂(B,y) =
∫

P
P(B)dΠ(P |Y = y), (2.16)

for every event B ∈B, almost surely. (Notation: usually we suppress y-dependence
and write P̂ : B→ [0,1] : B 7→ P̂(B).)

Remark 2.2.3. The qualification “almost surely” in the formulation of proposi-
tion 2.2.2 has distinct explanations for Bayesians and for frequentists: for the
Bayesian, the data Y is marginally distributed according to the prior predictive distri-
bution, so it is with respect to null-sets of PΠ that “almost surely” is to be interpreted
in that case. By contrast, the frequentist assumes that Y ∼ P0, so he is forced to adopt
assumption (2.12) and the interpretation of “almost surely” refers to null-sets of P0
in that case. This dual use of the phrase “almost surely” re-occurs in many places
below.

This probability measure P̂ is called “predictive” because of the following, Bayesian
interpretation: with a prior Π on a model P and an observation Y = y of the data, we
calculate a posterior Π(·|Y = y). If we were to conduct the same experiment again
with new (independent) observation Y ′, we would use the posterior Π(·|Y = y) as
our new prior and we would predict the distribution of Y ′ to be P̂. This is clearly
different from the frequentist interpretation, in which P̂ is an estimator for P0.

Proposition 2.2.4. The posterior predictive distribution P̂ : B→ [0,1] is a proba-
bility measure, almost surely.

Proof. Since we are assuming that the posterior is a regular conditional distribution,
P̂ is defined almost-surely as a map B → [0,1]. Let F ∈B denote the event that
P̂ is well-defined and let y ∈ F be given. Clearly, for all B ∈ B, 0 ≤ P̂(B) ≤ 1.
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Let (Bi)i≥1 ⊂ B be any sequence of disjoint events. Since (P, i) 7→ P(Bi) is non-
negative and measurable, Fubini’s theorem (or monotone convergence) applies in
the third equality below:

P̂
(⋃

i≥1

Bi

)
=
∫

P
P
(⋃

i≥1

Bi

)
dΠ(P |Y = y) =

∫
P

∑
i≥1

P(Bi)dΠ(P |Y = y)

= ∑
i≥1

∫
P

P(Bi)dΠ(P |Y = y) = ∑
i≥1

P̂(Bi),

which proves countable additivity of P̂ for all y ∈ F , that is, almost-surely.

Although we refer to P̂ as a point-estimator (see definition 1.2.1), generically P̂ does
not lie in P as the following theorem shows.

Theorem 2.2.5. On M (Y ,B) with a locally convex topology, let the posterior be a
Radon probability measure with support P that is a bounded subset of M 1(Y ,B),
almost-surely. Then P̂ lies in the closed convex hull of P , almost-surely.

Proof. By assumption, there is an event F ∈B of PΠ -(or P0-)probability one, such
that the posterior Π(·|Y = y) is a well-defined Radon measure for every y ∈ F . Fix
some y ∈ F : the map P̂ of (2.16) is then a probability measure in M+

1 (Y ,B). Let
pα : M (Y ,B)→ R, (α ∈ A ) denote a family of semi-norms generating the uni-
formity for the locally convex space M (Y ,B) (cf. [50], Ch. II, § 4, No. 1, Corol-
lary to prop. 1). For any neighbourhood U of P̂, there exists an α ∈ A and an
ε > 0 such that the pα -neighbourhood V = {P ∈P : pα(P− P̂)< ε} is contained
in U . By assumption P is bounded, so there exists a constant sα > 0 such that
sα = supP∈P pα(P)<∞. Choose some 0< δ < 1

6 s−1
α ε . Since the posterior for Y = y

is a Radon measure, there is a compact K ⊂P such that Π(K|Y = y))> 1−δ . Con-
dition the posterior for Y = y on K and write, for every B ∈B,

P̂K(B) =
∫

P(B)dΠ(P |K,Y = y) =
1

Π(K |Y = y)

∫
K

P(B)dΠ(P |Y = y).

A proof following that of proposition 2.2.4 shows that the map P̂K : B→ [0,1] is a
probability measure in M 1(Y ,B). By the triangle inequality,

pα(P̂− P̂K)≤ pα

(∫
P\K

PdΠ(P |Y = y)
)
+

δ

1−δ
pα

(∫
K

PdΠ(P |Y = y)
)

≤
∫

P\K
pα(P)dΠ(P |Y = y)+

δ

1−δ

∫
K

pα(P)dΠ(P |Y = y)

≤ 3sα δ < 1
2 ε.

(Note that the restriction of pα to P is bounded and continuous, so approximat-
ing measures with finite support exist (cf. [48], Ch. III, § 4, No. 4, Theorem 1) and
the triangle inequality for pα gives rise to the second inequality in the above dis-
play.) Since K is compact, there exists an N ≥ 1 and P1, . . . ,PN in K such that their
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open pα -neighbourhoods Vi = {P ∈ K : pα(P−Pi)<
1
2 ε} form a finite cover of K.

Through definition of Ci+1 = Vi+1 \Vi (for all 1 ≤ i ≤ N, with C1 = V1) this cover
generates a finite measurable partition {C1, . . . ,CN} of K. For 1 ≤ i ≤ N, define
λi = Π(Ci |K,Y = y) and note that,

pα

(
P̂K−

N

∑
i=1

λi Pi

)
= pα

( N

∑
i=1

∫
Ci

(P−Pi)dΠ(P |K,Y = y)
)

≤
N

∑
i=1

pα

(∫
Ci

(P−Pi)dΠ(P |K,Y = y)
)

≤
N

∑
i=1

∫
Ci

pα(P−Pi)dΠ(P |K,Y = y)≤ 1
2 ε.

Consequently,

pα

(
P̂−

N

∑
i=1

λi Pi

)
≤ pα

(
P̂− P̂K

)
+ pα

(
P̂K−

N

∑
i=1

λi Pi

)
< ε,

We have shown that any neighbourhood U of P̂ has non-empty intersection with the
convex hull of P , almost surely. Conclude that P̂ lies in the closed convex hull of
P , almost surely.

Consider this theorem with four locally convex topologies: TC, T1, T∞ and TTV .
In all four cases, the boundedness condition for P is satisfied trivially (because all
(semi-)norms for these locally convex spaces are bounded by total-variation, which
is bounded by one on M+

1 (Y ,B)).

Corollary 2.2.6. If Y is a Polish space with B its Borel σ -algebra, and we consider
M (Y ,B) in the TC topology, P̂ lies in the closed convex hull of the posterior
support, almost surely.

Proof. The space M (Y ,B) with the TC topology is Polish (see proposition C.9.4).
Thinking of M (Y ,B) as a parameter space, conditioning on Y = y gives rise to a
posterior that is a Borel measure with a regular version, according to theorem B.4.7.
Based on the fact that any Borel measure on a Polish space is Radon, theorem 2.2.5
applies.

In the case of the total-variational topology, the Radon property is more difficult to
establish. A general condition is domination of the support of the posterior.

Corollary 2.2.7. If we consider M (Y ,B) in the TTV topology and the support P
of the posterior is dominated, almost surely, then P̂ lies in the closed convex hull of
the posterior support, almost surely.

Proof. For an event F ∈B of PΠ -(or P0-)probability one and any y ∈ F , the poste-
rior Π(·|Y = y) is a well-defined Borel probability measure supported on P , with
corresponding P̂ in M+

1 (Y ,B). The dominated subset P is separable in the (met-
ric) TTV topology and so is the completion L of its linear span (viewed as a subspace
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of M (Y ,B)). So L is Polish and Π(·|Y = y) can also be viewed as a Radon mea-
sure on L, supported on P ⊂ L. The proof of theorem 2.2.5 continues with L in the
role of M (Y ,B).

In the topologies T1 and T∞, the Radon property is even harder to establish, because
metrizability is no longer guaranteed.

Corollary 2.2.8. If we consider M (Y ,B) in the T1, or in the T∞ topology and the
support P of the posterior is dominated and metrizable, almost surely, then P̂ lies
in the closed convex hull of the posterior support, almost surely.

Proof. The proof is almost identical to that of corollary 2.2.7: here, the subset P is
separable because it is dominated and metrizable by assumption, so the completion
L of its linear span is Polish.

The extra metrizability condition is by-passed in the case of the inverse limit distri-
butions of chapter 8, which have the Radon property by construction, and examples
of Pólya tree distributions that are T1-Radon are given there.

2.2.2 Posterior mean

In many practical situations the model P is parametric and a different form of
“averaging over the model” applies.

Definition 2.2.9. Let the model P have a parametrization Θ →P : θ 7→ Pθ , where
Θ is a closed, convex subset of Rd . Let Π be a Borel prior on Θ with posterior
Π( · |Y ). If ϑ is integrable with respect to the posterior almost-surely, then the pos-
terior mean is defined

θ̂1(Y ) =
∫

Θ

θ dΠ(θ |Y ) ∈Θ , (2.17)

almost-surely.

In definition 2.2.9 closed-convexity of Θ is a condition, otherwise there is no guar-
antee that θ̂1(Y ) ∈Θ (meaningless because it would leave P

θ̂1
undefined).

Example 2.2.10. In example 2.1.21 the posterior takes the form:

Π(ϑ ∈ A|X1, . . . ,Xn) =
1
n!

(
1+

n

∑
i=1

Xi

)n+1
1{X(1)≥0}

∫
A

θ
n e−θ(1+∑

n
i=1 Xi) dθ .

Assuming that P0(X ≥ 0) = 1, we omit the indicator for X(1) ≥ 0 and write the
posterior mean of definition 2.2.9 as follows:

θ̂1(Y ) =
∫

Θ

θ dΠ(θ |Y ) =
1
n!

(
1+

n

∑
i=1

Xi

)n+1 ∫ ∞

0
θ

n+1e−θ(1+∑
n
i=1 Xi) dθ

=
1
n!

(
1+

n

∑
i=1

Xi

)−1 ∫ ∞

0
ζ

n+1e−ζ dζ = (n+1)
(

1+
n

∑
i=1

Xi

)−1
,

(2.18)
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where we have used that
∫

∞

0 ζ n+1e−ζ dζ = Γ (n+2) = (n+1)!.

From a frequentist perspective, it is worth noting the import of the factoriza-
tion theorem, which says that the parameter-dependent factor in the likelihood is a
function of the data only through a so-called sufficient statistic T (Y ) (a statistic is
sufficient if the conditional distribution Y |T does not depend on the parameter).

Theorem 2.2.11. Let P be a dominated parametric model with parametrization
Θ →P : θ 7→ Pθ and densities pθ : Y → [0,∞). Then the parameter-dependence of
the likelihood Θ → [0,∞) : θ 7→ pθ (Y ) is expressed in terms of a sufficient statistic:
there exist functions g : Θ ×Rk → [0,∞), h : Y → [0,∞) and a sufficient statistic
T : Y → Rk such that for all θ ∈Θ ,

pθ (Y ) = g
(
θ ,T (Y )

)
h(Y ),

almost-surely.

First note that, based on the factorization theorem, the most practical way to ob-
tain a sufficient statistic (in a dominated model) is a close look at the parameter-
dependence of the likelihood function. Second note that, based on theorem 2.1.10,
the posterior is a function of the data only through the likelihood, and h(Y ) cancels
as a factor in both numerator and denominator. Therefore the posterior is a function
of the data Y only through a sufficient statistic T (Y ). Sufficient statistics often (but
not always) also satisfies the following property.

Definition 2.2.12. A statistic T (Y ) is complete for the model P , if, for all mea-
surable real-valued f , the assertion that, for all θ ∈ Θ , Pθ f (T (Y )) = 0 implies
Pθ ( f (T (Y )) = 0) = 1.

Sufficiency and completeness are important for unbiased estimation of parameters
with respect to mean-squared error, due to the optimality theorem of Lehmann-
Scheffé (For a proof, see Lehmann and Casella (1998) [177].)

Theorem 2.2.13. (Lehmann-Scheffé)
Let P = {Pθ : θ ∈ Θ} be a parametrized model for data Y with sufficient and
complete statistic T (Y ). Any unbiased, quadratically integrable estimator θ̂(Y ) is a
function of Y only through T (Y ), if and only if, for any other unbiased, quadratically
integrable estimator η̂(Y ),

Pθ

(
θ̂(Y )−θ

)2 ≤ Pθ

(
η̂(Y )−θ

)2
,

for all θ ∈Θ .

Conclude that unbiased quadratically integrable estimators are optimal in mean
square error, if and only if, they depend on the data only through a sufficient and
complete statistic. This has the following immediate consequence for estimators de-
rived from a posterior.

Corollary 2.2.14. If T (Y ) is sufficient and complete for P , then any point-estimator
θ̂ based on the posterior that is unbiased and quadratically integrable, is optimal
in the sense of theorem 2.2.13.
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The direct usefulness of corollary 2.2.14 is limited, because the presence of the prior
tends to cause a bias for point-estimators based on posteriors. However, such bias
can be controlled or even eliminated if one chooses the prior by methods from what
is called empirical Bayes (see, e.g., subsection 3.4.2). In that case corollary 2.2.14
applies and directly proves optimality in the sense of theorem 2.2.13. Frequentist
performance of Bayesian methods in (smooth) parametric estimation problems is
considered again in chapter 4 and reaches the conclusion (theorem 4.2.1) that the
posterior generally gives rise to optimal point estimators also in an asymptotic sense
(within the much wider class of all regular estimators, see definition 4.1.10).

2.2.3 Small-ball and formal Bayes estimators

Since there are multiple ways of defining the location of a distribution, there are mul-
tiple ways of obtaining point-estimators from the posterior distribution. A straight-
forward alternative for the posterior averages of the previous subsection, is given in
the following definition which requires that the model is one-dimensional.

Definition 2.2.15. Let Θ be a closed, non-empty subset of R and let P = {Pθ :
θ ∈Θ} be a parametric model with Borel prior Π on Θ and posterior Π( . |Y ). The
posterior median is defined by,

θ̃(Y ) = inf
{

s ∈Θ : Π(ϑ ≤ s|Y )≥ 1/2
}
,

almost-surely.

Thus the posterior median represents the smallest value for θ such that the posterior
mass to its left is greater than or equal to 1/2. This definition simplifies drastically
in case the posterior has a continuous, (strictly) monotone distribution function: in
that case the above definition reduces to the perhaps more familiar definition as the
(unique) point θ̃ ∈Θ where Π(ϑ ≤ θ̃ |Y ) = 1/2. In some situations, the posterior
median offers an advantage over the posterior mean since its definition does not
depend on integrability requirements and because of robustness against perturbation
of the tails of the posterior.

Another alternative is decision-theoretic in essence (see section 2.5), that is, one
takes the perspective in which an assessment of loss is inherent. Suppose that we
consider estimation in a metric model (P,d) and we quantify errors in estimation
as follows: if the true distribution of the data is P0 and we estimate that it is P,
then we incur a loss (to be specified further by the context of the problem) that is
a monotone increasing function ℓ : [0,∞) 7→ [0,∞) of the distance d(P0,P). If we
assume that the posterior concentrates its mass around P0 (as well as possible) then
the estimator that minimizes the expected loss relative to the posterior optimizes the
so-called Bayesian risk function,

r(Π ,θ ′) =
∫

Θ

Pθ ℓ(d(θ ,θ ′))dΠ(θ),
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for given prior Π and estimator θ ′.

Definition 2.2.16. Let P be a model with metric d : P ×P → R and a Borel
prior Π on G . Any monotone increasing function ℓ : [0,∞) 7→ [0,∞) is called a
loss-function if it is such that ℓ(0) = 0. (Often ℓ is assumed to be convex or (semi-
)continuous.) Provided it exists, the formal Bayes estimator is a minimizer P̃ of the
function,

P → R : P 7→
∫

P
ℓ(d(Q,P))dΠ(Q |Y ),

over the model P , defined almost-surely.

Note that definition 2.2.16 retains its form when expressed in terms of a formal
Bayes estmator θ̃ for a parameter θ ∈Θ .

Theorem 2.2.17. Let the model P be dominated and parametrized by a metric
space (Θ ,d). If the formal Bayes estimator θ̃ is well-defined, it minimizes the
Bayesian risk function:

r(Π , θ̃) = inf
θ ′∈Θ

r(Π ,θ ′).

Proof. Rewrite the Bayesian risk function for the formal Bayes estimator:

r(Π , θ̃) =
∫

Θ

Pθ ℓ(d(θ , θ̃))dΠ(θ) =
∫

Θ

∫
Y
ℓ(d(θ , θ̃(y)))dPθ (y)dΠ(θ)

=
∫

Y

∫
Θ

ℓ(d(θ , θ̃(y))) pθ (y)dΠ(θ)dµ(y)

=
∫

Y

(∫
Θ

pθ (y)dΠ(θ)
)∫

Θ

ℓ(d(θ , θ̃(y)))dΠ(θ |Y = y)dµ(y).

where we use the Radon-Nikodym theorem (see theorem B.3.10), Fubini’s theorem
(see theorem B.3.9) and the definition of the posterior, cf. (2.13). Using the prior
predictive distribution (2.3), we rewrite the Bayesian risk function further:

r(Π , θ̃) =
∫

Y

∫
Θ

ℓ(d(θ , θ̃(y)))dΠ(θ |Y = y)dPΠ (y). (2.19)

By assumption, the formal Bayes estimator θ̃ exists. Since θ̃ satisfies∫
Θ

ℓ(d(θ , θ̃(y)))dΠ(θ |Y = y) = inf
θ ′∈Θ

∫
Θ

ℓ(d(θ ,θ ′))dΠ(θ |Y = y)

for PΠ -almost all y ∈ Y , we obtain

r(Π , θ̃) =
∫

Y
inf

θ ′∈Θ

∫
Θ

ℓ(d(θ ,θ ′))dΠ(θ |Y = y)dPΠ (y)

≤ inf
θ∈Θ

∫
Y

∫
Θ

ℓ(d(θ ,θ ′))dΠ(θ |Y = y)dPΠ (y) = inf
θ ′∈Θ

r(Π ,θ ′).

One estimator of this type is defined in the following intuitively reasonable way.
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Definition 2.2.18. Let the data Y with model P , metric d and prior Π be given.
Suppose that the σ -algebra on which Π is defined contains the Borel σ -algebra.
For given ε > 0, the small-ball estimator is defined to be the maximizer P̃ of the
function

P 7→Π(Bd(P,ε) |Y ), (2.20)

over the model, where Bd(P,ε) is the d-ball in P of radius ε centred on P. Provided
that such a maximizer exists and is unique, it is defined almost-surely.

Note that this is simply the formal Bayes estimator for the loss function ℓ(d) =
1{d ≥ ε}. Existence of a small-ball estimator P̃ therefore implies optimality in the
sense that,

Π(d(P, P̃)≥ ε |Y ) = inf
Q∈P

Π(d(P,Q)≥ ε |Y ).

Remark 2.2.19. Similarly to definition 2.2.18, for a fixed value p such that 1/2 <
p < 1, we may define a Bayesian point estimator as the centre point of the smallest
d-ball with posterior mass greater than or equal to p (if it exists and is unique).

Suitable conditions for the existence of small-ball estimators form the subject of
exercise 2.6.13.

2.2.4 The maximum-a-posteriori estimator

If the posterior is dominated by a σ -finite measure ν , the posterior density with
respect to ν can be used as a basis for defining Bayesian point estimators.

Definition 2.2.20. Let P be a model with parametrization Θ →P : θ 7→ Pθ and a
prior Π on Θ . Assume that the posterior is almost-surely absolutely continuous with
respect to a σ -finite measure ν on Θ , with ν-density Θ → [0,∞) : θ 7→ π(θ |Y ). The
maximum-a-posteriori estimator (or MAP-estimator, or posterior mode) θ̂2(Y ) for
θ is defined as a point in the model where the posterior density takes on its maximal
value:

π(θ̂2|Y ) = sup
θ∈Θ

π(θ |Y ). (2.21)

Provided that such a point exists and is unique almost-surely, the MAP-estimator is
defined almost-surely.

The MAP-estimator has a serious weak point: a different choice of dominating mea-
sure ν leads to a different MAP estimator! In fact, a change of ν is equivalent to a
change of prior distribution (which does not correspond to an explicit, formal change
of Bayesian ‘belief’ because the prior remains unchanged). A MAP-estimator is
therefore not fully specified unless we indicate which dominating measure was used
to define the posterior density. Often the Lebesgue measure is used without further
comment, or objective measures (see section 3.2) are used. Another option is to
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use the prior measure as the dominating measure, in which case the MAP estimator
equals the maximum-likelihood estimator.

Remark 2.2.21. There is an interesting connection between (Bayesian) MAP-estimation
and (frequentist) maximum-likelihood estimation. Referring to formula (2.13) we
see that in an i.i.d. experiment with parametric model, the MAP-estimator maxi-
mizes:

Θ → R : θ 7→
n

∏
i=1

pθ (Xi)π(θ),

where it is assumed that the model is dominated and that the prior has a den-
sity π with respect to the Lebesgue measure ν . If the prior had been uniform,
the last factor would have dropped out and maximization of the posterior density
is maximization of the likelihood. Therefore, differences between ML and MAP
estimators are entirely due to non-uniformity of the prior. Subjectivist interpreta-
tion aside, prior non-uniformity has an interpretation in the frequentist setting as
well, through what is called penalized maximum likelihood estimation (see, for ex-
ample, van de Geer (2000) [107]): Bayes’s rule applied to the posterior density
πn(θ |X1, . . . ,Xn) gives:

logπn(θ |X1, . . . ,Xn) = log
n

∏
i=1

pθ (Xi)+ logπ(θ)+D(X1, . . . ,Xn),

where D is a (θ -independent) normalization constant. The first term equals the log-
likelihood and the logarithm of the prior plays the role of a penalty term when
maximizing over θ . Hence, maximizing the posterior density over the model Θ

can be identified with maximization of a penalized likelihood over Θ . So defining
a penalized MLE θ̂n with the logarithm of the prior density θ 7→ logπ(θ) in the
role of the penalty, the MAP-estimator coincides with θ̂n. The above offers a direct
connection between Bayesian and frequentist methods of point-estimation. As such,
it provides a frequentist interpretation of the prior as a penalty in the ML procedure.

All Bayesian point estimators defined above as maximizers or minimizers over the
model suffer from the usual existence and uniqueness issues associated with ex-
trema. However, there are straightforward methods to overcome such issues. We
illustrate using the MAP-estimator. Questions concerning the existence and unique-
ness of MAP-estimators should be compared to those of the existence and unique-
ness of M-estimators in frequentist statistics. Although it is hard to formulate con-
ditions of a general nature to guarantee that the MAP-estimator exists, often one can
use the following lemma to guarantee existence.

Lemma 2.2.22. Consider a parametrized model Θ →P : θ 7→ Pθ ; If the param-
eter space Θ is compact and the posterior density θ 7→ π(θ |Y ) is upper-semi-
continuous, then the MAP-estimator exists almost surely.

To prove uniqueness one has to be aware of various possible problems among
which, for instance, identifiability of the model (see section 1.1, in particular defini-
tion 1.1.7).
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Example 2.2.23. Assuming that P0(X ≥ 0) = 1, the posterior density in exam-
ple 2.1.21 has the form:

π(θ |X1, . . . ,Xn) =
1
n!

(
1+

n

∑
i=1

Xi

)n+1
θ

n e−θ(1+∑
n
i=1 Xi),

Pn
0 -almost-surely, where θ > 0. Setting the θ -derivative to zero, we find that the

MAP-estimator is given by:

θ̂2(Y ) = n
(

1+
n

∑
i=1

Xi

)−1
.

The MAP-estimator is similar to the maximum likelihood estimator (equal to
n(ΣiXi)

−1) and the posterior mean (equal to (n+ 1)(1+ΣiXi)
−1), see (2.18)). Al-

though it is possible technically that these three estimators differ substantially, in
many (e.g. unimodal) cases the maximum of the posterior density lies in the bulk
that determines the posterior mean as well, and MAP and posterior mean are close.
If, in addition, the influence of the prior is relatively small because the likelihood
function peaks very sharply at its maximum, the maximum-likelihood estimator is
expected to be close too. Note that differences between these three estimators be-
come negligible in the limit n→ ∞.

2.3 Confidence sets and credible sets

Besides point-estimation, frequentist statistics has several other inferential tech-
niques at its disposal. The two most prominent are the analysis of confidence in-
tervals and the testing of statistical hypotheses. In the next section, we consider
frequentist testing of hypotheses, in this section, we discuss frequentist confidence
sets and their Bayesian counterparts, called credible sets.

2.3.1 Frequentist confidence sets

Assume that we have a model P parametrized by an identifiable parameter θ in a
parameter set Θ , assuming that the true distribution of the data Y ∼ P0 belongs to
the model, that is, P0 = Pθ0 for some θ0 ∈Θ . The inferential goal is to use the data Y
to define an model subset C(Y ) that contains θ0 with “high” probability. The word
“high” requires quantification in terms of a level α , called the confidence level. Let
C denote a class of subsets of Θ (for example, with Θ =R we often choose C equal
to the class of all closed intervals in Θ , or if Θ = Rd we could take the class of all
ellipsoids in Θ ).
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Definition 2.3.1. Let Θ →P : θ 7→ Pθ be an identifiable parametrization. Choose a
confidence level α ∈ (0,1). Let Cα : Y →C describe a data-dependent subset of Θ .
Then Cα is a confidence set for θ of confidence level 1−α , if {y ∈ Y : θ ∈Cα(y)}
is B-measurable for every θ ∈Θ and Cα solves the equation,

Pθ

(
θ ∈Cα(Y )

)
≥ 1−α, (2.22)

for all θ ∈Θ .

Measurability of the events {θ ∈Cα(Y )} is rarely problematic, a technical matter to
be addressed at the model-specific level. The data-dependence of Cα(Y ) is meant to
express the requirement that Cα(Y ) is a statistic (as defined below definition 1.2.1).
Conceptually a confidence set can be compared to a point estimator P̂ : Y →P:
however, rather than focussing on a data-dependent point in Θ , a data-dependent
subset in Θ is to inform us about the parameter.

Clearly confidence sets are not unique and small confidence sets are more in-
formative than large ones. For example, the constant assignment Cα(y) =Θ for all
y ∈ Y is a confidence set for any level α ∈ (0,1), but it does not have any infor-
mative value. If, for some confidence level α , we have two different procedures of
finding confidence sets, leading to sets Cα and Dα of confidence level α respec-
tively, and Cα ⊂ Dα , Pθ -almost-surely for all θ , then Cα is preferred over Dα .

Example 2.3.2. Let Xn = (X1, . . . ,Xn) be an i.i.d. sample from a normal distribution
P0 = N(µ,σ2) with known variance σ2 > 0 and unknown µ ∈R. As is well-known,
the sample average is normally distributed,

1
n

n

∑
i=1

Xi ∼ N(µ0,σ
2
n ), (2.23)

with a variance σ2
n = σ2/n. If we adopt the sample average as an estimator µ̂(Xn)

for µ , we can rephrase as follows:

Pn
0

(
µ̂n(Xn)−µ0

σn
≤ x
)
= Φ(x),

for all x ∈ R, where Φ denotes the distribution function of the standard normal
distribution. Consequently,

Pn
0

(
µ̂n−

σ x√
n
< µ0 ≤ µ̂n +

σ x√
n

)
= Φ(x)−Φ(−x).

Fixing some confidence level α > 0, we solve for xα/2 in the equation Φ(xα/2)−
Φ(−xα/2) = 1−α to arrive at the conclusion that the interval,

Cα =

[
µ̂n−

σ xα/2√
n

, µ̂n +
σ xα/2√

n

]
is a level-α confidence set for the parameter µ .
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As in example 2.3.2, confidence intervals for a parameter θ are often derived from
estimators for θ : in the case of example 2.3.2 the sample average estimates µ and
it is the distribution of the sample average around µ that determines the confidence
interval.

Definition 2.3.3. Let Θ →P : θ 7→ Pθ be an identifiable model with measurable
parameter space (Θ ,G ). Let θ̂ : Y →Θ be a measurable estimator for the parameter
θ and assume that Y ∼ P0. Then the distribution of θ̂(Y ) over Θ , characterised by
probabilities,

G → [0,1] : G 7→ P0
(

θ̂(Y ) ∈ G
)
,

is called the sampling distribution of the estimator (under P0).

If we assume that P0 = Pθ0 for some θ0 ∈Θ , and we realise that the randomness in
θ̂(Y ) occurs due to Y ∼ Pθ0 , we expect the sampling distribution of θ̂(Y ) to depend
on θ0; in fact, it is exactly this dependence that allows us to draw statistical con-
clusions. Moreover, the sampling distribution gives concrete meaning to the amount
of uncertainty surrounding estimation with θ̂ . In example 2.3.2, the location of the
sampling distribution for µ̂ is µ and σn determines the probabilities that differences
|µ̂ − µ| exceed x for all x > 0. To summarize this estimator-based perspective: a
confidence set expresses how much uncertainty remains concerning the true value
of a parameter after estimation.

Generally, sampling distributions are not available except for the simplest es-
timators in the simplest models so in most cases, confidence sets have to be ap-
proximated in some way. The most popular approximation applies with very large
samples, based on the central limit. To accommodate this approximation, we define
sequences of confidence sets that reach the required confidence level in the limit
n→ ∞.

Definition 2.3.4. For every n ≥ 1, let Xn ∼ P0,n be data taking values in sample
spaces (Xn,Bn), with models Pn and identifiable parametrizations Θ →Pn : θ 7→
Pθ ,n. Choose a confidence level α ∈ [0,1). Random subsets Cα,n : Xn→C of Θ such
that {xn ∈Xn : θ ∈Cα,n(xn)} is Bn-measurable for every θ ∈Θ and,

liminf
n→∞

Pθ ,n
(
θ ∈Cα,n(Xn)

)
≥ 1−α, (2.24)

for all θ ∈Θ , are called asymptotic confidence sets of asymptotic confidence level
(or coverage) α .

Desirable properties of sequences of confidence sets are expressed by limits, for
example, coverage with high probability (where we take α = 0 in (2.24)). However,
the constant choice Cn(Xn) = Θ shows that coverage alone expresses only part of
what a confidence set is to supply: in addition to coverage we want confidence sets
to be as small as possible in order to be informative. To re-phrase, another desirable
property is non-coverage of values of the parameter other than the true one.

Definition 2.3.5. In the setting of definition 2.3.4, asymptotic confidence sets Cn(Xn),
n≥ 1, that satisfy,
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lim
n→∞

Pθ ,n
(
θ ̸∈Cn(Xn)

)
= 0, (2.25)

for all θ ∈Θ , are said to be (asymptotically) consistent. If the sets Cn(Xn) satisfy,

lim
n→∞

Pθ ,n
(
θ
′ ∈Cn(Xn)

)
= 0, (2.26)

for all θ ,θ ′ ∈Θ such that θ ′ ̸= θ , they are said to be (asymptotically) informative.

Confidence levels can be re-introduced in both limits (2.25) and (2.26) by the re-
finements, (for θ ,θ ′ ∈Θ , θ ′ ̸= θ ),

Pθ ,n
(
θ ̸∈Cn(Xn)

)
= o(an), Pθ ′,n

(
θ ∈Cn(Xn)

)
= o(an),

depending on a level sequence (an), an ↓ 0. As it turns out, example 2.3.2 applies in
an approximate form in all asymptotic cases where the central limit theorem applies,
as the following example demonstrates.

Example 2.3.6. Let Θ →P : θ 7→ Pθ be an identifiable, parametric model for mea-
surements X and assume that Xn = (X1, . . . ,Xn) is an i.i.d. sample from a distribution
Pθ0 for some θ0 ∈Θ . Suppose that there exists a measurable function f : R→ R,
such that Pθ f (X) = θ and Pθ f (X)2 < ∞ for all θ ∈Θ . Moreover, we assume that
for some known constant S > 0, σ2(θ) = Pθ ( f (X)−θ)2 ≤ S2, for all θ ∈Θ . Con-
sider the sample-average θ̂n(Xn) = n−1

∑
n
i−=1 f (Xi). According to the central limit

theorem, estimators that are sample averages for such f have sampling distributions
that converge weakly to normal distributions. Choose a confidence level α ∈ (0,1)
and note that,

Pn
θ0

(
−

σ(θ0)xα/2√
n

< θ̂n−θ0 ≤
σ(θ0)xα/2√

n

)
→ 1−α, (2.27)

as n→ ∞. Define Cα,n by

Cα,n =

[
θ̂n−

Sxα/2√
n

, θ̂n +
Sxα/2√

n

]
.

Then Pn
θ0
(θ0 ∈ Cα,n)→ 1−α , so for any α ′ > α , Pn

θ0
(θ0 ∈ Cα,n) ≥ 1−α ′ if n is

large enough. Note that if we had not used S but σ(θ0) instead, the θ0-dependence
of σ(θ0) would violate the requirement that Cα,n be a statistic: since the true value
θ0 of θ is unknown, so is σ(θ0). Substituting the (known) upper-bound S for
σ(θ0) enlarges the σ(θ0)-interval that follows from (2.27), while eliminating the
θ0-dependence. In a practical situation one would not assume that there is some up-
per bound S > 0, but substitute σ(θ0) by an estimator σ̂n(Xn) (a practice known as
studentization, after the Student t-distribution one obtains upon plugging in σ̂n(Xn)
for finite n≥ 1 with Xi that are marginally normal; refer to the case of example 2.3.2
if σ2 had not been known.) Since the asymptotics of the studentized version are
equal to those of the version based on σ(θ0), studentization does not change the
conclusions we based on (2.27), that is,
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C′α,n =

[
θ̂n(Xn)−

σ̂n(Xn)xα/2√
n

, θ̂n(Xn)+
σ̂n(Xn)xα/2√

n

]
.

are asymptotic confidence intervals of any level α ′ >α . If we only wish to stress the
asymptotic behaviour of the width of confidence sets, a third asymptotic alternative
is to define intervals of width Mnn−1/2 around θ̂n, for any Mn that diverge to infinity
very slowly, which are asymptotically consistent and asymptotically informative.

The derivation of asymptotic confidence sets in the above example can be gener-
alized quite far: firstly the central limit theorem generalizes to a multivariate cen-
tral limit theorem, and secondly, the delta method (see Chapter 3 in [260] for an
overview) permits generalization to estimators for differentiable functions of expec-
tations. Combined with results for asymptotic optimality of estimators for smooth
parameters (see chapter 4), this leads to so-called Wald-type confidence ellipsoids of
(4.4), which are viewed as optimal, in that they are based on the sampling distribu-
tion of so-called best-regular estimators (see the definition below theorem 4.1.17).

2.3.2 Bayesian credible sets

The Bayesian analogs of confidence sets are called credible sets and are derived
from the posterior distribution. The rationale behind the definition of credible sets
is exactly the same one that motivated confidence sets: we look for a subset D of
the model that is as small as possible while receiving a certain minimal probability.
However, here the notion of “probability” is not based on the sampling distribution
of an estimator, but on the posterior distribution.

Definition 2.3.7. Let (Θ ,G ) be a measurable space parametrizing an identifiable
model Θ →P : θ 7→ Pθ for data Y ∈ Y , with prior Π . Choose an α ∈ (0,1). Let
Dα : Y → G describe a data-dependent, measurable subset of Θ . Then Dα is a
credible set of credible level α for ϑ if it solves the equation,

Π
(

ϑ ∈ Dα(Y )
∣∣ Y)≥ 1−α, (2.28)

almost-surely.

Note that the posterior does not have to be a regular conditional probability in this
definition, since it does not rely on countable additivity of the posterior. To find
credible sets in examples one starts by calculating the posterior distribution from
the prior and the data and, based on that, derives a subset Dα(Y ) such that (2.28)
is satisfied. From a frequentist perspective, credible sets are statistics since they are
defined based entirely on the posterior (which is a statistic itself). A credible set is
sometimes referred to as a credible region, or, if D is an interval in a one-dimensional
parameter space, a credible interval. Like with confidence sets, we can extend this
definition to the asymptotic regime.
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Definition 2.3.8. For every n ≥ 1, let Xn be data taking values in sample spaces
(Xn,Bn), with models Pn and identifiable parametrizations Θ →Pn : θ 7→ Pθ ,n.
Choose a sequence of credible levels (αn), αn ∈ (0,1), αn ↓ 0. A sequence of data-
dependent subsets Dα,n(Xn) ∈ G that solves,

Π
(

ϑ ∈ Dα,n(Xn)
∣∣ Xn)= o(αn), (2.29)

almost-surely, is called a sequence of asymptotic credible sets of levels (αn).

Definition 2.3.7 suffices to capture the concept of a credible set, but offers too
much freedom in the choice of D: given a level α > 0, many sets will satisfy (2.28),
just like confidence sets can be chosen in many different ways. Note that, also here,
we prefer smaller sets over large ones: if, for some level α , two different level-α
credible sets Fα and Gα are given, both satisfying (2.28) and Fα ⊂ Gα then Fα is
preferred over Gα . If the posterior is dominated with density θ 7→ π(θ |Y ), we can
be more specific. We define, for every k ≥ 0, the data-dependent level-sets,

D(Y,k) =
{

θ ∈Θ : π(θ |Y )≥ k
}
, (2.30)

and consider so-called HPD-sets (for highest posterior density).

Definition 2.3.9. Let (Θ ,G ) a measurable space parametrizing a model Θ →P :
θ 7→ Pθ for data Y ∈ Y , with prior Π . Assume that the posterior is almost-surely
dominated by a σ -finite measure µ on (Θ ,G ), with density π( · |Y ) : Θ → [0,∞).
Choose α ∈ (0,1). A level-α HPD credible set for ϑ is the subset Dα(Y ) =
D(Y,kα(Y )), where,

kα(Y ) = sup
{

k ≥ 0 : Π(ϑ ∈ D(Y,k)|Y )≥ 1−α
}
.

Note that HPD credible sets depend on the choice of dominating measure: if we
had chosen to use a different measure µ , HPD credible sets would have changed. In
fact, among all credible sets of level α , the HPD credible set Dα(Y ) has minimal
µ-measure, almost-surely. (See exercise 2.6.17.)

2.3.3 Enlarged credible sets are confidence sets

Consider a statistical experiment in which we observe data Xn of some fixed size
n (e.g. an n-point i.i.d. or Markov-chain sample) and assume, for the moment, that
the parameter space Θn for the model Pn = {Pθn,n : θn ∈Θn} is finite. (An example
of such a situation is found in chapter 11, where we study a random graph Xn with
n vertices in two disjoint communities, and the parameter θn assigns all vertices to
one or the other community.) We assume also a prior Πn on Θn, such that, with
growing n, an arbitrarily large fraction of the posterior mass ends up in the single-
ton {θn} with high Pθn,n-probability. Then it is clear that any sequence of credible
sets Dn(Xn) of credible levels 1− γn with liminfn γn > 0, will contain θn with high
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Pθn,n-probability as n→ ∞. So, asymptotically, the credible sets Dn(Xn) are also
consistent confidence sets.

This asymptotic argument can be made precise also for fixed values of n: if a
credible set Dn(Xn) receives posterior mass 1− γ and the probability of finding the
posterior weight of the singleton {θn} above γ is high, then the probability that
θn ∈ Dn(Xn), is equally high. In fact, the argument also holds in case the parameter
space is not finite or discrete: suppose that, for any θn ∈ Θn, there exists a mea-
surable B(θn) ⊂ Θn such that θn ∈ B(θn), with posterior mass above γ with high
Pθn,n-probability. Then B(θn) intersects credible sets Dn(Xn) of credible levels 1−γ

with high Pθn,n-probability. Consequently, the unknown θn lies in the union of all
B(θn)’s that intersect Dn(Xn), with high Pθn,n-probability. So if we know that the
posterior tends to concentrate mass in neighbourhoods B(θn) of the truth θn in Θn,
then we may enlarge credible sets to obtain confidence sets (see [165]).

Lemma 2.3.10. Fix n ≥ 1 and some prior Πn on Θn, let θn ∈ Θn and Xn ∼ Pθn,n
be given. Let B(θn) ⊂ Θn be a subset with expected posterior probability that is
lower-bounded,

Pθn,nΠ
(

B(θn)
∣∣ Xn)≥ 1−β , (2.31)

for some 0 < β < 1. For any 0 < γ < 1 and any credible set D(Xn) ⊂Θn of level
1− γ ,

Pθn

(
B(θn)∩D(Xn) ̸=∅

)
≥ 1− β

1− γ
.

Proof. We first prove that for every 0 < r < 1,

Pθn,n
(
Π(B(θn)|Xn)≥ r

)
≥ 1− β

1− r
,

by contradiction: let δ > 0 be given and define the event,

E =
{

xn ∈Xn : Π
(
B(θn)

∣∣ Xn = xn)≥ r
}
.

Suppose that Pθn,n(E)≤ 1−β/(1− r)−δ . Then,

Pθn,nΠ(B(θn)|Xn)≤ Pθn,n(E)+r(1−Pθn,n(E))≤ 1−β−δ (1−r)< 1−β , (2.32)

which contradicts the assumption that Pθn,nΠ(B(θn)|Xn) ≥ 1−β . Since this holds
for every δ > 0, we have Pθn,n(E) ≥ 1− β/(1− r). Choose r > γ . As D(Xn) has
posterior mass at least 1− γ , B(θn) and D(xn) cannot be disjoint for xn ∈ E. So,

Pθn,n
(
B(θn)∩D(Xn) ̸=∅

)
≥ Pθn,n(E)≥ 1− β

1− γ
,

which proves the assertion.

We formulate the more practical versions of the above lemma in the form of the
following two corollaries.
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Corollary 2.3.11. Fix n≥ 1 and some prior Πn on a (discrete) parameter space Θn,
let θn ∈Θn and Xn ∼ Pθn,n be given. Suppose that for some 0 < β < 1,

Pθn,nΠ
(
{θn}

∣∣ Xn)≥ 1−β , (2.33)

Then for any 0 < γ < 1 and any credible set D(Xn)⊂Θn of level 1− γ ,

Pθn,n
(
θn ∈ D(Xn)

)
≥ 1− β

1− γ
.

Proof. The assertion follows directly from lemma 2.3.10 upon the choice B(θn) =
{θn}, for all θn ∈Θn.

The lower bound on posterior mass in any point of the parameter space is reasonable
only in the context of discrete parameter spaces. In non-discrete parameter spaces,
a different version of the argument is needed. For that, consider a metric parameter
space (Θn,dn). Then B(θn) is defined as a dn-ball around θn of some radius, large
enough to guarantee that (2.31) holds.

Definition 2.3.12. Fix n≥ 1. For any credible set D(Xn) and radius rn > 0, we define
the (dn-)enlargement C(Xn) of D(Xn) of radius rn, to be,

C(Xn) =
{

θn ∈Θn : ∃ηn∈Dn(Xn),dn(θn,ηn)≤ rn
}
,

i.e. the union of all radius-rn dn-balls centred on points in D(Xn).

Corollary 2.3.13. Fix n≥ 1 and some prior Πn on a parameter space Θn, let θn ∈Θn
and Xn ∼ Pθn,n be given. Suppose that for some 0 < β < 1,

Pθn,nΠ
(
{ηn : dn(θn,ηn)≤ rn}

∣∣ Xn)≥ 1−β , (2.34)

Then for any 0 < γ < 1 and any credible set D(Xn) ⊂ Θn of level 1− γ , the dn-
enlargement C(Xn) satisfies,

Pθn,n
(
θn ∈C(Xn)

)
≥ 1− β

1− γ
,

i.e. C(Xn) is a confidence set of said level.

Proof. The assertion follows directly from lemma 2.3.10 upon the choice B(θn) =
{ηn ∈Θn : dn(ηn,θn)≤ rn}, for all θn ∈Θn.

One might expect the relation between Bayesian and frequentist uncertainty quan-
tification to involve some type of proportionality between credible and confidence
levels, not just asymptotically but also at finite sample sizes. Somewhat surprisingly,
it emerges that the finite-sample confidence level of a credible set depends mostly
on the expected amount of mis-placed posterior probability and less on the credible
level. Note that it is important that the lower bound (2.34) is sharp: unnecessarily



2.3 Confidence sets and credible sets 49

large values of β or rn cause unnecessarily high credible levels and lead to unnec-
essarily conservative enlargement radii.

Note that the credible sets D(Xn) or their enlargements C(Xn) are exact con-
fidence regions at finite sample sizes. Compare this with, for example, the Wald-
type confidence ellipsoids of (4.4) which are approximate confidence sets motivated
by the large-sample limit behaviour of likelihood functions in smooth parametric
models. In the latter category of models, posterior asymptotic behaviour and the
relationship between credible sets and Wald-type sets is studied in chapter 4. The
above corollaries require only finite amounts of data, and leave the parameter space
largely unrestricted, e.g. non-parametric and n-dependent. In section 7.7 we con-
sider asymptotic enlargement of credible sets again, leaving room for non-metric
neighbourhoods B(θn) and θn-dependent radii rn and foregoing the requirement on
concentration of posterior mass. In chapter 11 we use corollaries 2.3.11 and 2.3.13
to derive confidence sets for community assignment vectors in a two-community
stochastic block model.

2.3.4 Asymptotic confidence balls from converging posteriors

The argument of the previous subsection can also be analysed in the large-sample
limit n→ ∞. Using the notation of the previous subsection, if we can show that
posteriors satisfy (see definition 6.4.1),

Pθn,nΠ
(

Θn \B(θn)
∣∣ Xn)= O(βn),

for βn→ 0, and we consider credible sets D(Xn) of levels 1− γn, that do not go to
zero (too fast). Then the enlargements C(Xn) satisfy,

Pθn,n
(
θn ∈C(Xn)

)
≥ 1− βn

1− γn
→ 1.

Moreover in metric parameter spaces, the radii of the enlargements can be con-
trolled. Again, we assume that (Θn,dn) are metric spaces. Denote balls in Θn as
follows,

B(θn,rn) = {ηn ∈Θn : dn(η ,θn)≤ rn},

In case we define credible (or confidence) balls, centre point θn and radius rn are
data-dependent, chosen such as to satisfy definition (2.28) (or 2.3.1). Given a cer-
tain credible level 1− γ and a posterior distribution Π(·|Xn), there exists a data-
dependent minimal radius,

r̂n(γ) = inf{r > 0 : ∃θn∈Θn Π(B(θn,r)|Xn)≥ 1− γ },

the infimum of radii for which credible balls of said level exist. Below, we formulate
a theorem (see [161]) that assumes posterior convergence at a rate rn and asserts that
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corresponding enlargements of credible balls of (near-)minimal radii are asymptot-
ically consistent confidence balls.

Theorem 2.3.14. Suppose that 0 < γ ≤ 1 and for some radii rn > 0,

Π
(

B(θn,rn)
∣∣ Xn ) Pθn ,n−−−→1. (2.35)

Let B(θ̂n, r̂n) be level-1−γ credible balls of near-minimal radii r̂n =(1+o(1))r̂n(γ).
Then with high Pθn,n-probability, r̂n ≤ (1+o(1))rn, and the enlargements Cn(Xn) =

B(θ̂n, r̂n + rn)⊂ B(θ̂n,2(1+o(1))rn) of the credible balls B(θ̂n, r̂n) satisfy,

Pθn,n
(

θn ∈Cn(Xn)
)
→ 1,

i.e. the Cn(Xn) are asymptotically consistent confidence balls of radii (arbitrarily
close to) 2rn.

Proof. Let n≥ 1 be given. For every θn ∈Θ , let rn(θn,Xn) denote the infimal radius
of balls in Θn centred on θn of posterior mass at least 1− γ . Define θ̂n(Xn) as the
centre point of a credible ball B(θ̂n, r̂n) of level 1− γ , with near-minimal radius r̂n,

r̂n ≤ (1+o(1)) inf{rn(θn,xn) : θn ∈Θn}.

Note that by definition of B(θ̂n, r̂n) as a credible set (and by the frequentist interpre-
tation of almost-sureness, cf. remark 2.2.3),

Pθn,n
(

Π(B(θ̂n, r̂n)|Xn)≥ 1− γ
)
= 1,

for all n ≥ 1. Posterior convergence implies that, for large enough n, the ball
B(θn,rn) is a credible ball of level 1− γ , with high Pθn,n-probability. Therefore,

r̂n ≤ (1+o(1))rn(θ0,n,Xn)≤ (1+o(1))rn,

with high Pθn,n-probability. Again based on posterior convergence, the balls B(θn,rn)
satisfy,

Pθn,n
(

Π(B(θn,rn)|Xn)> γ
)
→ 1.

Conclude that, with high Pθn,n-probability,

B(θn,rn)∩B(θ̂n, r̂n) ̸=∅,

implying asymptotic coverage of θn for the enlargements Cn(Xn), with high Pθn,n-
probability.

It is noted that this construction does not enable rate-adaptivity of the confidence
balls C(Xn) (see [130, 54, 251]): for the construction of the enlarged sets C(Xn),
a known rate rn is required. If such a rate is dependent on the underlying data-
distribution, estimation of rn is problematic [251].
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2.4 Testing hypotheses, posterior odds and Bayes factors

Having discussed confidence sets and credible sets in the previous section, we now
turn to the related subject of hypothesis testing. We start with a discussion of the
Neyman-Pearson framework and the famous lemma concerning the optimal test for
testing one distribution versus another. Next we consider tests of uniform testing
power and minimax optimality, as well as asymptotic testing. In the last subsection
we consider posterior odds and Bayes factors, as well as Bayesian test functions.

2.4.1 Neyman-Pearson tests

Assume that we have data Y ∈Y and a parametrized model P = {Pθ : θ ∈Θ} such
that Y ∼ Pθ0 for some θ0 ∈Θ . For simplicity, we assume that Θ ⊂ R whenever the
dimension of Θ is of importance. In statistical testing the hypotheses are mutually
exclusive speculations concerning the distribution of the data. The model contains
all distributions the frequentist takes into account as candidates for P0, so hypotheses
are formulated in terms of a partition of the model (or its parametrization space) into
two disjoint subsets.

Definition 2.4.1. Testing of hypotheses proceeds through choice of a model subset
Θ0 corresponding to the so-called null hypothesis H0 and it’s complement Θ1 =Θ \
Θ0, called the alternative hypothesis H1. We distinguish between so-called simple
hypotheses which consist of a single point in Θ and composite hypotheses which
consist of bigger subsets in Θ .

Based on the frequentist assumption that there is a true value θ0 of the parameter,
the simplest, most intuitive question one can ask regarding H0 and H1, is which
of the two is deemed most likely to contain P0 given the data Y . But that is not
the most popular frequentist testing tool: in the Neyman-Pearson testing procedure,
H0 and H1 do not have symmetric roles. The goal of Neyman-Pearson hypothesis
testing is not to choose one or the other, but to find out whether or not the data
contains “enough” evidence to reject H0 as a likely explanation when compared to
explanations offered by the alternative. To paraphrase: the outcome of the procedure
is acceptance of H1 or not, and never leads to the conclusion that we accept H0. So
Neyman-Pearson testing differs from symmetric testing, in which H0 and H1 play
interchangeable roles and we make a choice for one or the other based on the data,
as in subsections 2.4.3 and 2.4.4.

In the Neyman-Pearson paradigm, one usually departs from a test statistic T (Y )∈
Rd , displaying different behaviour depending on whether the data Y is distributed
according to a distribution in H0 or a distribution in H1. To make the distinction,
one defines a critical set K ⊂ Rd such that Pθ (T ∈ K) is “small” for all θ ∈Θ0 and
Pθ (T ̸∈ K) is “small” for all θ ∈Θ1. What “small” probabilities are in this context
is quantified by the so-called significance level α ∈ (0,1).
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Definition 2.4.2. Let Θ →P : θ → Pθ be an identifiable, parametrized model for a
sample Y . Formulate two hypotheses H0 and H1 by introducing a two-set partition
{Θ0,Θ1} of the model Θ :

H0 : θ0 ∈Θ0, H1 : θ0 ∈Θ1.

We say that a test for these hypotheses based on a test-statistic T : Y → Rd with
critical set K ⊂ Rd is of significance level α ∈ (0,1) if the power function π : Θ →
[0,1], defined by

π(θ) = Pθ

(
T (Y ) ∈ K

)
,

is uniformly small over Θ0:
sup

θ∈Θ0

π(θ)≤ α. (2.36)

From the above definition we arrive at the conclusion that if Y = y and T (y) ∈ K,
hypothesis H0 is improbable enough to be rejected, since H0 forms an “unlikely” ex-
planation of observed data (at said significance level). The degree of “unlikeliness”
can be quantified in terms of the so-called p-value, which is the lowest significance
level at which the realised value of the test statistic T (y) would have led us to reject
H0.

Of course there is the possibility that our decision is wrong and H0 is actually
true but T (y) ∈ K nevertheless, so that our rejection of the null hypothesis is un-
warranted. This is called a type-I error; a type-II error is made when we do not
reject H0 while H0 is not true. The significance level α represents a fixed upper
bound for the probability of a type-I error, cf. (2.36). Clearly, there is a test that
never makes a type-I error (any T with K =∅, which never leads to rejection of H0,
a valid Neyman-Pearson test for any significance level α ∈ (0,1)), but the type-II
error probability equals one. If, for some significance level α ∈ (0,1), we have two
different test that satisfy the Type-I error bound (2.36), we prefer the test with mini-
mal Type-II error probability. Ideally we look for a pair (T,K) satisfying (2.36), that
minimizes Pθ (T (Y ) ̸∈K) for all θ ∈Θ1. However, generically such uniformly most-
powerful tests do not exist, because of the possibility that some pair (T,K) is most
powerful over some subset of Θ1, while some other pair (T ′,K′) is most powerful
over some other subset of Θ1. We consider the Neyman-Pearson approach to testing
in some more detail in the following example in the context of normally distributed
data.

Example 2.4.3. Consider a model P of normal distributions N(µ,σ2) with un-
known location µ ∈ R and known variance σ2 > 0. Let Xn = (X1, . . . ,Xn) be an
i.i.d. sample from a normal distribution P0 = N(µ,σ2) for some µ ∈ R. By choos-
ing some location µ0 ∈ R, we formulate null- and alternative hypotheses,

H0 : µ = µ0, H1 : µ ̸= µ0,

We also choose a significance level α ∈ (0,1). As we have seen in example 2.3.2 and
exercise 2.6.14, the sample average is normally distributed, µ̂n(Xn) = n−1

∑i Xi ∼
N(µ,σ2/n). Note that,
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Pn
µ

(√
n
(
µ̂n(Xn)−µ

)
≤ σ x

)
= Φ(x),

for all x ∈ R, where Φ denotes the distribution function of the standard normal
distribution. Re-write to obtain,

Pn
µ

(
−σ x√

n
< µ̂n(Xn)−µ ≤ σ x√

n

)
= Φ(x)−Φ(−x),

for x > 0. So under the null-hypothesis,

Pn
µ0

(
µ0−

xα/2 σ
√

n
< µ̂n(Xn)≤ µ0 +

xα/2 σ
√

n

)
= 1−α,

if we choose the quantiles xα/2 like in example 2.3.2. Hence the null-hypothesis
makes it improbable to observe |µ̂n(Xn)− µ0| > n−1/2σ xα/2, which gives rise to
the following definition of the critical set Kα,n,

Kα,n = R\
[
µ0−

xα/2 σ
√

n
,µ0−

xα/2 σ
√

n

]
,

enabling us to formulate our decision on rejection of the null hypothesis,

(i) if µ̂n(Xn) ∈ Kα,n, we reject H0,
(ii) if µ̂n(Xn) ̸∈ Kα , we do not reject H0,

at significance level α . We re-iterate the warning regarding interpretation: under
case (ii), we do not draw the conclusion that H0 is accepted: the data does not pro-
vide enough evidence to reject the null hypothesis but that does not imply that we
accept it.

Note the behaviour of the procedure with varying sample-size: keeping the signif-
icance level fixed, the width of the critical sets Kα,n is of order O(n−1/2), so smaller
and smaller critical sets can be used as more information concerning the distribu-
tion P0 (read, data) comes available. Conversely, if we keep the critical set fixed,
the probability for a Type-I error decreases (exponentially) with growing sample-
size. Analogous to example 2.3.6, it is common practice to use asymptotic Neyman-
Pearson tests (usually based on the central limit theorem), because sampling distri-
butions are rarely available in closed form.

2.4.2 Randomized tests and the Neyman-Pearson lemma

According to the Neyman-Pearson approach, tests are only considered if they sat-
isfy (2.36) and are optimal if, in addition, they maximize testing power over the
alternative uniformly. Optimality in this sense is sometimes not achievable, so one
wonders if, mathematically, anything can be said at all. The Neyman-Pearson lemma



54 2 Bayesian basics

answers this question in the affirmative for problems where the null- and alternative
hypotheses each contain a single distribution.

To formulate the Neyman-Pearson lemma, however, we have to generalize the
testing procedure slightly: as it turns out the existence of an optimal test can only be
guaranteed if we allow for a randomization of our decision.

Definition 2.4.4. Let P = {Pθ : θ ∈Θ} be a parametrized model for data Y taking
values in a measurable sample space (Y ,B), distributed according to Pθ for some
θ ∈ Θ . Formulate two hypotheses H0 and H1 for θ based on a two-set partition
{Θ0,Θ1} of the model P:

H0 : θ ∈Θ0, H1 : θ ∈Θ1.

A test function φ is a measurable map φ : Y → [0,1] used in the following procedure
called a randomized test: given Y , we reject H0 with probability φ(Y ), and otherwise
we do not reject H0. The power function associated with the test function φ is given
by π : Θ → [0,1] : θ 7→ Pθ φ(Y ).

To explain the randomized test procedure differently, view it as follows: after we
observe Y = y, we determine φ(y) and draw an (independent) V ∼U [0,1]: if V ≤
φ(y), we reject H0, if V > φ(y), we do not. Note that if we use the test function
φ(Y ) = 1{T (Y ) ∈ K}, the randomized test reduces to the original (non-random)
procedure of rejecting H0 if T (Y )∈K. Clearly the probability for Type-I error when
using the randomized procedure equals π(θ) (for θ ∈Θ0) and the probability for
Type-II error equals 1−π(θ) (for θ ∈Θ1). When we fix a significance level α , we
require that φ gives rise to a Type-I error probability that is bounded by α , uniformly
over Θ0, cf. (2.36). Among test functions φ that satisfy (2.36), we look for a test that
minimizes the Type-II error probability 1−π(θ) for values of θ in Θ1.

Existence of uniformly most powerful randomized tests of a fixed significance
level cannot be guaranteed (again, some φ may be optimal for certain values of θ

in Θ1, while some other φ ′ is optimal for other values). However, if both null and
alternative hypothesis are simple, a (randomized) optimal test exists by the famed
Neyman-Pearson lemma [178].

Lemma 2.4.5. Suppose the model is P = {Pθ0 ,Pθ1} and write pθ0 : Y 7→ R and
pθ1 : Y 7→ R for the densities of Pθ0 and Pθ1 relative to some σ -finite measure µ .
Choose a significance level α ∈ (0,1) and consider a test of the form,

φ(y) =

1 if pθ1(y)> cpθ0(y)
γ(y) if pθ1(y) = cpθ0(y)
0 if pθ1(y)< cpθ0(y)

, (2.37)

where the measurable function γ : Y → [0,1] and the constant c ∈ [0,∞] form a
solution to the equation:

Pθ0φ(Y ) = α,

The following two assertions concern the hypotheses,

H0 : θ = θ0, H1 : θ = θ1.



2.4 Testing hypotheses, posterior odds and Bayes factors 55

(i.) If a test of the form (2.37) has significance level α then it is most powerful
among all tests of level α .

(ii.) If a test φ ′ is most powerful, then φ ′ is of the form (2.37) for some γ(x) and
some c, almost-surely with respect to both Pθ0 and Pθ1 .

Proof. See Lehmann and Cassela (2005) [178].

The lemma is often used in conjunction with some condition on the model (or its
likelihood function) to extend this point-vs-point version to composite hypotheses
which are more interesting from a practical point of view.

Example 2.4.6. Suppose that we consider a random variable X drawn from a normal
distribution N(θ ,1) where θ ∈Θ = {−1,1}. Fixing a significance level α ∈ (0,1),
we consider a test of the form (2.37) for the hypotheses,

H0 : θ =−1, H1 : θ =+1. (2.38)

A simple calculation shows that p+1(X)/p−1(X) = e2X , so, with Φ denoting the
distribution function for the standard normal distribution,

P−1φ(X) = P−1
(

p+1(X)> c p−1(X)
)
= P−1

(
e2X > c

)
= P−1(X > 1

2 logc) = 1−Φ( 1
2 logc+1),

where we have used that X is distributed continuously (so that the middle term in
(2.37) does not play a role and any γ will do), and that P−1(X ≤ x) = Φ(x+1). So
to find c, we solve 1−Φ( 1

2 logc+ 1) = α , so that the Neyman-Pearson procedure
for testing the hypotheses (2.38) has the form,

(i) if X > x1−α −1, we reject H0, and,
(ii) if X ≤ x1−α −1, we do not see enough evidence in the data to reject H0,

at significance level α .

2.4.3 Symmetric and asymptotic testing

Two points remain, the first being an asymptotic perspective on testing: just like we
often study limits of sequences of estimators and conditions for their optimality, we
are interested also in sequences of tests.

Definition 2.4.7. For every n ≥ 1, let Xn ∼ P0,n be data taking values in sample
spaces (Xn,Bn), with models Pn and identifiable parametrizations Θ →Pn : θ 7→
Pθ ,n. Choose a significance level α ∈ [0,1). Test functions φn : Xn→ [0,1] such that,

limsup
n→∞

Pθ ,nφn(Xn)≤ α, (2.39)
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for all θ ∈Θ0, are called asymptotic tests of asymptotic significance level α . The
power sequence of the test sequence (φn), πn : Θ → [0,1] is defined by:

πn(θ) = Pθ ,nφn,

representing the Pθ ,n-probability of rejecting H0.

The quality of the test sequence depends on the behaviour of the power sequence
on Θ0 and Θ1: we could follow the Neyman-Pearson paradigm again, choose an α ,
restrict to those φn that satisfy (2.39) and prefer test sequences that have high power
on the alternative in the limit n→ ∞. But here, we re-formulate to accommodate
symmetric roles for null- and alternative hypotheses and we change the procedure
accordingly: we reject H0 and accept H1 (resp. accept H0 and reject H1) randomly
with probability φn(Xn) (resp. 1− φn(Xn)). We also discard the significance level
and simply require convergence to the ideal power function (e.g. π(θ) = 0 for θ ∈
Θ0 and π(θ) = 1 for θ ∈Θ1) in the limit n→ ∞.

Definition 2.4.8. In the setting of definition 2.4.7, a test sequence (φn) that satisfies,

lim
n→∞

Pθ ,nφn(Xn) = 0, (2.40)

for all θ ∈Θ0, and
lim
n→∞

Pθ ,n
(
1−φn(Xn)

)
= 0, (2.41)

for all θ ∈Θ1, are said to be (asymptotically) consistent.

With this new definition, let us consider a sequential version of the likelihood ratio
test of the Neyman-Pearson lemma, lemma 2.4.5.

Example 2.4.9. Suppose that we are given two sequences (Pn) and (Qn) of distribu-
tions for data Xn taking values in measurable spaces (Xn,Bn) for all n≥ 1. We hy-
pothesise that either Xn ∼ Pn or Xn ∼Qn and wish to determine statistically which is
true. This is the setting of the Neyman-Pearson lemma, so a test based on likelihood
ratios dPn/dQn seems reasonable (define µn = Pn+Qn and write pn = dPn/dµn and
qn = dQn/dµn for the Radon-Nikodym derivatives):

φn(Xn) = 1{pn(Xn)< qn(Xn)}.

Then,

Pnφn +Qn(1−φn)

=
∫

Xn

(
pn(xn)1{pn(xn)< qn(xn)}+qn(xn)1{pn(xn)≥ qn(xn)}

)
dµn(xn)

≤
∫

Xn

√
pn(xn)qn(xn)dµn(xn)

= 1− 1
2

∫
Xn

(√
pn(xn)−

√
qn(xn)

)2 dµn(xn)≤ 1−H2(Pn,Qn).
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Moreover, for any other choice of test function ψn, Pnφn +Qn(1− φn) ≤ Pnψn +
Qn(1−ψn). So if the Hellinger distances H(Pn,Qn)→ 1, a consistent test for (Pn)
versus (Qn) exists (namely the likelihood ratio test). This conclusion is very general
and emphasizes the fundamental role that the Hellinger metric plays in mathematical
statistics.

In case Xn = (X1, . . . ,Xn) ∈ X n represents an i.i.d. sample, Pn and Qn are n-
fold product measures of distributions P1,n and Q1,n on X : Pn = Pn

1,n, Qn = Qn
1,n.

According to exercise 4.4.1, H2(Pn,Qn) ≤ nH2(P1,n,Q1,n) for all n ≥ 1. The above
upper bound suggests that, for the existence of a test that consistently distinguishes
between P1,n and Q1,n, it is necessary that H2(P1,n,Q1,n) ≥ hn−1/2 for some h > 0,
and this is indeed the case (see [248], or note that H2(P1,n,Q1,n) = O(n−1/2) implies
contiguity, cf. definition 7.2.1 and the remark that follows it).

Depending on the subsets Θ0 and Θ1, there is a question whether a consistent test
sequence for the pair exists or not. The answer in the case of i.i.d. sampling, which is
given in chapter 9, characterizes those Θ0,Θ1 that can be tested consistently, as pre-
cisely those subsets that can be written as countable unions of ‘closed’ sets (where
the relevant model topology requires further discussion).

Given two test sequences, we may compare them through the limits of their type-
I and type-II errors.

Definition 2.4.10. Let (φn) and (ψn) be two test sequences for Θ0 versus Θ1. Let
θ ∈Θ0 (resp. η ∈Θ1) be given. We say that (φn) is asymptotically more powerful
than (ψn) at θ ∈Θ0 (resp. η ∈Θ1), if,

lim
n→∞

Pη ,nφn ≤ lim
n→∞

Pθ ,nψn,
(
resp. lim

n→∞
Pη ,nφn ≥ lim

n→∞
Pθ ,nψn

)
. (2.42)

If (2.42) holds for all points in Θ , the test sequence (φn) is said to be uniformly
asymptotically more powerful than (ψn). If one can show that this holds for all test
sequences (ψn), then (φn) is said to be uniformly asymptotically most powerful.

This ordering of test sequences is not complete: it is quite possible that (φn) is
asymptotically more powerful than (ψn) on a subset of Θ , whereas on its com-
plement in Θ , (ψn) is asymptotically more powerful. As a result, the existence of
uniformly asymptotically most powerful test sequences is problematic and no gen-
eralization of the Neyman-Pearson lemma exists for composite hypotheses, not even
when required only asymptotically.

To counter such problems we can choose to evaluate testing power for a test
sequence (φn) uniformly over Θ0 and Θ1, adding maximal type-I and -II error prob-
abilities.

Definition 2.4.11. Given two disjoint model subsets Θ0,Θ1, the uniform testing
power (πn) for Θ0 versus Θ1 of a test sequence (φn) is given by,

πn = sup
θ∈Θ0

Pθ ,nφn + sup
η∈Θ1

Pη ,n(1−φn), (2.43)
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Clearly there is a stronger, uniform version of consistency too, which incorporates
a testing rate quite naturally.

Definition 2.4.12. Given a sequence (an), an > 0, an → 0, we say that a test se-
quence for hypotheses Θ0,Θ1 is uniformly consistent at uniform testing rate an, if

sup
θ∈Θ0

Pθ ,nφn + sup
η∈Θ1

Pη ,n(1−φn) = o(an).

A test sequence is simply uniformly consistent if it is uniformly consistent at some
rate.

Again, depending on the subsets Θ0 and Θ1, there arises the question whether a
uniformly consistent test sequence for the pair exists or not. The answer in the case
of i.i.d. sampling, which is given in part II, characterizes those Θ0,Θ1 that can be
tested consistently, as precisely those subsets that can be separated uniformly (where
the relevant model uniformity requires further discussion).

For fixed n ≥ 1, one wonders about the existence of a test of optimal uniform
testing power, i.e. a test function φn : Xn→ [0,1] such that,

sup
θ∈Θ0

Pθ ,nφn + sup
η∈Θ1

Pη ,n(1−φn) = inf
ψ

(
sup

θ∈Θ0

Pθ ,nψ + sup
η∈Θ1

Pη ,n(1−ψ)
)
, (2.44)

where the infimum runs over all measurable ψ : Xn → [0,1]. In that case, the test
(φn) is said to be minimax optimal (and the test sequence is said to be minimax opti-
mal if this holds for every n≥ 1). The existence of such tests under certain convexity,
continuity and compactness conditions is a consequence of the so-called minimax
theorem (see theorem 2.5.6 in the next section). (The following construction is due
to Le Cam and is discussed in more detail in [187], section 16.4.)

Lemma 2.4.13. (Minimax Hellinger tests)
Let P be a model for data Y ∈ Y and let P ′,P ′′ ⊂P be model subsets with
convex hulls C′ and C′′ in M 1(Y ,B), separated by non-zero Hellinger distance:

H(C′,C′′) = inf
P∈C′,Q∈C′′

H(P,Q)> 0. (2.45)

Then there exists a test function φ : Y → [0,1] such that,

sup
P∈P′

Pφ + sup
Q∈P′′

Q(1−φ)≤ 1−H2(C′,C′′),

called the minimax Hellinger tests for P0 versus P1.

Proof. For this proof, we refer to theorem 2.5.6. Define Θ = C′×C′′ and let ∆ be
the set of all measurable ψ : Y → [0,1], which form a convex subset of the space
F of all measurable f : Y → R. Let E denote the vector space of all finite, signed
measures on (Y ,B) and note that Θ is a convex subset of the vector space G of all
finite, signed measures on Y ×Y . The bi-linear form B(P,ψ) = Pψ places E and
F in dual correspondence (see definition C.7.4). Note that ∆ is weakly bounded and
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closed (due to the bi-polar theorem, theorem C.7.7), in the weakly complete space F ,
so according to proposition C.7.5, ∆ is compact (compare with the Banach-Alaoglu
theorem of Banach space theory). Consider the risk function,

R((P,Q),ψ) = Pψ +Q(1−ψ),

defined for all (P,Q) ∈C′×C′′ and test functions ψ ∈ ∆ , which is concave in (P,Q)
and convex in ψ . The risk function depends on ψ ∈ ∆ in a σ(F,E)-continuous way.
According to the minimax theorem, there exists a test function φ such that,

sup
P∈C′

Pφ + sup
Q∈C′′

Q(1−φ)

= inf
ψ∈∆

(
sup
P∈C′

Pψ + sup
Q∈C′′

Q(1−ψ)
)
= sup

P∈C′,Q∈C′′
inf

ψ∈∆

(
Pψ +Q(1−ψ)

)
.

The right-hand side permits (P,Q)-dependent choices for the test functions ψ , en-
abling the (sharp) Neyman-Pearson-type bound of example 2.4.9:

sup
P∈C′

Pφ + sup
Q∈C′′

Q(1−φ)≤ sup
P∈C′,Q∈C′′

(1−H2(P,Q)).

Minimax tests separating two disjoint Hellinger balls will play a prominent role in
the posterior estimation theorems of chapter 6. For that reason we develop the above
bound a bit further in the special case of i.i.d. data.

Corollary 2.4.14. Let Xn = (X1, . . . ,Xn) be an i.i.d. sample, Xn ∼ Pn for some
single-observation distribution P in a model P . Let P ′,P ′′ be two subsets of P ,
with convex hulls C′ and C′′ in M 1(Y ,B) that are separated in Hellinger distance.
Then there exists a test function φn : Xn→ [0,1] such that,

sup
P∈P′

Pn
φn + sup

Q∈P′′
Qn(1−φn)≤

(
1−H2(C′,C′′)

)n
.

Proof. The proof revolves around an argument that shows that the convexity restric-
tions for the product space in which Pn and Qn live, lead to a suitable factorization
of the Hellinger bound. The details can be found in [187], section 16.4, particularly
Lemma 2.

Note that any Hellinger ball in M 1(X ,B) is convex, so with i.i.d. data and hy-
potheses P0 and P1 that fit inside two disjoint Hellinger balls at non-zero Hellinger
distance from each other, a uniformly consistent test sequence of exponential uni-
form testing rate (note that (1− h2)n ≤ e−nh2

for all h > 0). Indeed, since corol-
lary 2.4.14 is formulated for each fixed value of n ≥ 1, we may use the same con-
struction for n-dependent hypotheses P0,n and P1,n: as long as the Hellinger dis-
tances between the corresponding convex hulls H(C′n,C

′′
n ) decreases to zero more

slowly than n−1/2, there exists a uniformly consistent test sequence.
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2.4.4 Posterior odds and Bayes factors

Bayesian hypothesis testing treats null and alternative hypotheses symmetrically.
This poses an immediate conceptual difference with the most common frequentist
methods (e.g. the Neyman-Pearson procedure) of hypothesis testing. It also leaves a
lot of room for great philosophical disagreement between frequentist and Bayesian
views, in which neither side leaves room for the conceptual starting points of the
other. Therefore any direct comparison between Bayesian and frequentist testing is
difficult (see, however, [13]). In a frequentist analysis of Bayesian testing methods,
true comparison is only possible with symmetric forms of frequentist testing.

In the Bayesian perspective, the subsets Θ0 and Θ1 of the parameter space have
posterior and prior probabilities which are used directly to formulate the test: based
on the proportions between those probabilities, we shall decide which hypothesis is
the preferred one, based on the following definitions.

Definition 2.4.15. Let (Θ ,G ) a measurable space parametrizing a model Θ →P :
θ 7→Pθ for data Y ∈Y , with prior Π : G → [0,1]. Let {Θ0,Θ1} be a measurable par-
tition of Θ such that Π(Θ0)> 0 and Π(Θ1)> 0. The prior and posterior odds ratios
in favour of Θ0 are defined by Π(Θ0)/Π(Θ1) and Π(Θ0|Y )/Π(Θ1|Y ) respectively.
The Bayes factor in favour of Θ0 is defined to be

B =
Π(Θ0|Y )
Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
.

When doing Bayesian hypothesis testing, we have a choice of which ratio to use
and that choice will correspond directly with a choice for subjectivist or objectivist
philosophies. In the subjectivist’s view, the posterior odds ratio has a clear interpre-
tation: if

Π(Θ0|Y )
Π(Θ1|Y )

> 1,

then the probability of ϑ ∈Θ0 is greater than the probability of ϑ ∈Θ1. Hence, if the
posterior odds ratio exceeds one the subjectivist adopts H0 rather than H1; if, on the
other hand, the posterior odds ratio lies below one, then the subjectivist accepts H1
and rejects H0. The objectivist would object to this practice, saying that the relative
prior weights of Θ0 and Θ1 can introduce a heavy bias in favour of one or the other
in this approach (upon which the subjectivist would answer that that is exactly what
he had in mind). The objectivist would prefer to use a criterion that is less dependent
on the prior weights of Θ0 and Θ1. We look at a very simple example to illustrate
the point.

Example 2.4.16. Let Θ be a parameter space that consists of only two points, θ0
and θ1 and let Θ0 = {θ0}, Θ1 = {θ1}, corresponding to simple null and alternative
hypotheses H0, H1. Denote the prior by Π and assume that both Π({θ0}) > 0 and
Π({θ1})> 0. By Bayes’s rule, the posterior weights of Θ0 and Θ1 are

Π(ϑ ∈Θi|Y ) =
pθi(Y )Π(Θi)

pθ0(Y )Π(Θ0)+ pθ1(Y )Π(Θ1)
,
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for i = 0,1. Therefore, the posterior odds ratio takes the form:

Π(ϑ ∈Θ0|Y )
Π(ϑ ∈Θ1|Y )

=
pθ0(Y )Π(Θ0)

pθ1(Y )Π(Θ1)
,

and the Bayes factor equals the likelihood ratio:

B =
pθ0(Y )
pθ1(Y )

.

The objectivist prefers the Bayes factor to make a choice between two hypotheses:
if B > 1 the objectivist adopts H0 rather than H1; if, on the other hand, B < 1, then
the objectivist adopts H1 rather than H0. Note that the choice that results from this
objective Bayesian testing procedure is identical to choice one makes based on the
symmetric likelihood-ratio procedure of example 2.4.9.

We see that the Bayes factor does not depend on the prior weights of Θ0 and Θ1
but the posterior odds ratio does. Indeed, suppose we stack the prior odds heavily in
favour of Θ0, by choosing Π(Θ0) = 1− ε and Π(Θ1) = ε (for some small ε > 0).
Even if the likelihood ratio pθ0(Y )/pθ1(Y ) is much smaller than one (but greater
than ε/1− ε), the subjectivist’s criterion favours H0. In that case, the data clearly
advocates hypothesis H1 but the prior odds force adoption of H0.

In example 2.4.16 the Bayes factor is independent of the choice of the prior. In
general, the Bayes factor is not completely independent of the prior, but it does not
depend on the relative prior weights of Θ0 and Θ1.

Lemma 2.4.17. Let (Θ ,G ) a measurable space parametrizing a model Θ →P :
θ 7→ Pθ for data Y ∈Y , with prior Π : G → [0,1]. Let {Θ0,Θ1} be a partition of Θ

such that Π(Θ0)> 0 and Π(Θ1)> 0. Then the Bayes factor B in favour of Θ0 does
not depend on the prior odds ratio.

Proof. For any prior such that Π(Θ0)> 0 and Π(Θ1)> 0,

Π(A) = Π(A|Θ0)Π(Θ0)+Π(A|Θ1)Π(Θ1), (2.46)

for all A ∈ G . In other words, Π is decomposed as a convex combination of two
probability measures on Θ0 and Θ1 respectively. The Bayes factor is then rewritten
(see (2.4)):

B =
Π(Θ0|Y )
Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
=

Π(Y |Θ0)

Π(Y |Θ1)
,

where, in a dominated model,

Π(Y |Θi) =
∫

Θi

pθ (Y )dΠ(θ |Θi),

for i = 0,1. In terms of the decomposition (2.46), B depends on Π( · |Θ0) and
Π( · |Θ1), but not on Π(Θ0) and Π(Θ1).
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So the difference between Bayes factors and posterior odds is exactly the bias intro-
duced by non-zero prior odds; as such, it represents directly the difference between
objectivist and subjectivist Bayesian philosophies.

Example 2.4.18. Consider data Xn = (X1, . . . ,Xn) that form an i.i.d. sample from a
uniform distribution U [θ ,θ +1], with θ ∈Θ = [−1,1]. We formulate hypotheses,

H0 : θ ≥ 0, H1 : θ < 0.

and, to show how prior odds influence posterior odds but not Bayes factors, we use
a prior with a Lebesgue density of the form,

π(θ) = λ 1{θ < 0}+(1−λ )1{θ ≥ 0},

for some 0 < λ < 1 (where it is noted that λ = 0 or λ = 1 would not be valid
choices). Consequently, the prior odds in favour of Θ0 are 1−1/λ . The likelihood
is given by,

pθ (X1, . . . ,Xn) =
n

∏
i=1

1{θ ≤ Xi ≤ θ +1},

and the posterior density (relative to the Lebesgue measure on Θ = [−1,1]) is pro-
portional to,

π(θ |X1, . . . ,Xn) ∝ λ 1{θ < 0}1{θ ≤ X(1)}1{X(n) ≤ θ +1}
+(1−λ )1{θ ≥ 0}1{θ ≤ X(1)}1{X(n) ≤ θ +1},

where X(1) and X(n) denote first and last order statistics of the sample respectively. To
calculate the posterior odds we do not need the normalization factor in the posterior
and we see immediately that,

Π
(
θ ≥ 0

∣∣ X1, . . . ,Xn
)

Π
(
θ < 0

∣∣ X1, . . . ,Xn
) = 1−λ

λ

∫ 1
0 1{X(n)−1≤ θ ≤ X(1)}dθ∫ 0
−1 1{X(n)−1≤ θ ≤ X(1)}dθ

Note the proportionality to the prior odds: the Bayes factor B is equal to only the
latter fraction in the expression on the right-hand side of the above display and is
insensitive to the subjective choice for λ .

To conclude this section we make the following important remark.

Remark 2.4.19. The condition that both Θ0 and Θ1 receive prior mass strictly above
zero is important since Bayes factors and odds ratios are based on conditioning of
ϑ . Bayesian hypothesis testing is sensible only if both Θ0 and Θ1 receive non-zero
prior mass. This remark plays a role particularly when comparing a simple null
hypothesis to an alternative, as illustrated in exercise 2.6.19.
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2.5 Decision theory and classification

Many practical problems require that we make an observation and based on the
outcome, make a decision of some kind: when treating patients, diagnostic variables
lead to diagnoses; in financial markets, analysis of data leads to decisions that aim
to optimize positioning; etcetera. In this section, we look at problems of this nature,
first from a frequentist perspective and then with the Bayesian approach.

Practical problems like those described above involve optimality criteria pre-
scribed by the context of the problem. For example, any statistical procedure meant
to assist in medical diagnosis, should reflect that the misdiagnosis of a serious illness
has far more serious consequences than that of a case of the cold. The methods of
statistical inference that we have discussed thus far concentrate only on the stochas-
tic description of the observations: the accuracy of an estimation procedure, cov-
erage probabilities for confidence intervals or the probability of Type-I and type-II
errors in testing procedures. By contrast, statistical decision theory formalizes opti-
mality of decision-taking in terms of the contextual consequences.

In statistical decision theory the nomenclature is slightly different from that in-
troduced earlier. We consider a system that is in an unknown state θ ∈Θ , where Θ

is called the state space. The observation Y still takes its values in a measurable sam-
ple space (Y ,B) and is still considered stochastic. Its distribution Pθ : B→ [0,1]
is a function of the state θ of the system. The observation does not reveal the state
of the system completely or with certainty. Based on the observation Y , we take a
decision a ∈ A (or perform an action a, as some prefer to say), where A is the
called the decision space. For each state θ of the system there may be an optimal
decision but since observation of Y does not give us the state θ of the system with
certainty, the decision is stochastic and may be suboptimal. The goal of statistical
decision theory is to arrive at a rule that decides in the best possible way given only
the data Y .

If a ∈A is defined as a function of the state θ , the above does not add anything
new to the approach we were already following: aside from the names, the concepts
introduced here are those used in the usual problem of statistically estimating a(θ)
based on data Y ∼ Pθ . What sets decision theory apart is the formal introduction of
the decision a and the associated notion of optimality, the loss-function.

Definition 2.5.1. Any bounded function L : Θ ×A → R is a loss-function.

(Technical note: the assumption that losses are bounded is mathematically conve-
nient and hardly poses limitations in applications. Although unbounded loss func-
tions are also of interest, here, we include boundedness in the definition. Additional
properties like measurability, continuity, convexity, etcetera are assumed later.) The
loss-function has the following interpretation: if a decision a is taken while the state
of the system is θ , then a loss L(θ ,a) is incurred. To illustrate, in systems where ob-
servation of the state is direct (i.e. Y = θ ) and non-stochastic, the optimal decision
a(θ) given the state θ is any value of a that minimizes the loss L(θ ,a). The current
problem is more difficult because the state θ is unknown and can not be observed
directly; all we have is the Pθ -distributed observation Y .
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Definition 2.5.2. Let A be a measurable space with σ -algebra H . A measurable
δ : Y →A is called a decision rule.

A decision-rule is a prescribed procedure to arrive at a decision δ (y), for any pos-
sible realisation of the observation Y = y. We denote the collection of all decision
rules under consideration by ∆ . Clearly our goal will be to find decision rules in ∆

that “minimize the loss” in an appropriate sense.

Definition 2.5.3. The risk-function R : Θ ×∆ → R is defined as the expected loss
under Y ∼ Pθ when using δ ,

R(θ ,δ ) =
∫

L(θ ,δ (Y ))dPθ . (2.47)

For any given decision problem, the risk family R is the collection of all risk func-
tions,

R =
{

θ 7→ R(θ ,δ ) : δ ∈ ∆
}
.

The above basic ingredients of decision-theoretic problems play a role in both the
frequentist and Bayesian analysis. We consider the frequentist approach first and
then look at decision theory from a Bayesian perspective.

2.5.1 Frequentist decision theory

Assuming the perspective of the frequentist, we suppose that Y ∼ Pθ0 for some state
θ0 ∈Θ and would like to assess any decision rule δ according to the risk Pθ0L(θ0,δ )
at θ0. But θ0 is unknown, so we are forced to consider all values of θ and look at
the risk-function.

Definition 2.5.4. Let the state-space Θ , states Pθ , (θ ∈Θ ), decision space A and
loss L be given. Choose δ1,δ2 ∈ ∆ . The decision rule δ1 is risk-better than δ2, if

∀θ∈Θ : R(θ ,δ1)≤ R(θ ,δ2), (2.48)

and there exists some θ ∈Θ for which this inequality is strict. A decision rule δ ∈ ∆

is inadmissible if there exists a δ ′ ∈∆ that is risk-better than δ ; a decision rule δ ∈∆

is admissible, if it is not inadmissible.

It is clear that the definition of risk-better decision-rules is intended to order de-
cision rules: if the risk-function associated with a decision-rule is relatively small,
then that decision rule is preferable. Note, however, that the ordering we impose by
definition 2.5.4 is partial rather than complete: pairs δ1,δ2 of decision rules may
exist such that neither δ1 nor δ2 is risk-better than the other. This is due to the fact
that δ1 may perform better for values of θ in some Θ1 ⊂Θ , while δ2 performs better
in Θ2 =Θ \Θ1, resulting in a situation where neither is risk-better.

Note that admissibility of a decision rule δ does not imply any sort of uniform
optimality among rules in ∆ . By straightforward logical negation, a decision rule δ
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is admissible, if for all δ ′ ∈ ∆ , there exists a θ0 ∈Θ such that R(θ0,δ )< R(θ0,δ
′),

or R(θ ,δ )≤ R(θ ,δ ′) for all θ ∈Θ . That means that, in comparison with any other
rule, an admissible rule matches risk everywhere or risk-outperforms in at least one
value of the parameter (while it may risk-underperform elsewhere in Θ ). This leaves
room, for example, for families of risk functions that do not contain any pair for
which one is risk-better than the other, implying that all associated decision rules are
admissible. We come back to admissibility in relation to Bayesian decision theory
in subsection 2.5.3.

It is important to find a way to compare risk functions (and thereby decision rules)
in a θ -independent way and thus arrive at a complete ordering among decision rules.
This motivates the following definition.

Definition 2.5.5. (Minimax decision principle) Let the state-space Θ , states Pθ , (θ ∈
Θ ), decision space A and loss L be given. The function

∆ → R : δ 7→ sup
θ∈Θ

R(θ ,δ )

is called the minimax risk. Let δ1,δ2 ∈ ∆ be given. The decision rule δ1 is minimax-
preferred to δ2, if

sup
θ∈Θ

R(θ ,δ1)≤ sup
θ∈Θ

R(θ ,δ2).

If δ M ∈ ∆ minimizes δ 7→ supθ R(θ ,δ ) then δ M is called a minimax decision-rule.

One of the corner stones of decision theory is the so-called minimax theorem which
guarantees the existence of minimax decision rules under very general conditions.

Theorem 2.5.6. Let Θ be a convex subset of a vector space and let ∆ be a convex
compact subset of a locally convex space. Assume that δ 7→ R(θ ,δ ) is concave
continuous as a map on ∆ , for every θ ∈Θ ; and that θ 7→ R(θ ,δ ) is convex as a
map on Θ , for every δ . Then there exists a minimax decision rule δ M ∈ ∆ ,

sup
θ∈Θ

R(θ ,δ M) = inf
δ∈∆

sup
θ∈Θ

R(θ ,δ ) = sup
θ∈Θ

inf
δ∈∆

R(θ ,δ ). (2.49)

Proof. See Sion (1958) [245] and Strasser (1985) [248], p. 239.

Since many loss-functions used in practice satisfy the convexity requirements, the
minimax theorem has broad applicability in statistical decision theory and many
other fields, particularly econometrics. Note, however, that the minimax theorem
holds only for convex ∆ . In other words, if we want to guarantee the existence of
an minimax-optimal decision rule, we are forced to consider convex combinations
of decision rules. Unless A is a convex set, convex combinations of decision rules
have no interpretation, so we adjust the definition of δ slightly.

Definition 2.5.7. Let (A ,H ) be a measurable space. A map δ that associates a
random variable δ |Y = y taking values in A with every possible realisation of the
data Y = y, is called a randomised decision rule.
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(Technical note: such maps (A,y) 7→ P(δ ∈ A|Y = y) have to be Markov kernels, that
is, satisfy requirements 1 and 2 of definition B.4.5. See also the notion of a transi-
tion, as used in [183, 187].) The decision procedure is adapted by randomization:
having seen Y = y realised, we draw a random point in A from the distribution of
δ |Y = y, and accordingly, the risk function for a randomized decision rule is defined
as,

R(θ ,δ ) =
∫

Y

∫
A

L(θ ,δ )dP(δ |Y = y)dPθ (y) (2.50)

We define the maximal risk family for a given decision problem as the collection
of risk functions associated with all randomized decision rules. Since spaces of
Markov kernels are convex (verify that definition B.4.5 defines a convex set), the
maximal risk family is a convex set of risk functions defined on Θ . In the maximal
family of risk functions (or, in any convex family) the minimax theorem formulates
conditions that imply the existence of minimax-optimal randomized decision rules.

Example 2.5.8. To be able to use the minimax theorem, we assume that Θ is con-
vex in a locally convex space (for example, Θ could be (a convex subset of) the
convex set of all probability density functions p in the normed space of all (signed)
Lebesgue densities on [0,1]) and we assume that the loss function is convex. The
most technical issue is a suitable choice for the topology on the space of Markov
kernels, for which both the compactness and continuity requirements are met. For
a loss function that is bounded and continuous in δ and a compact space A , the
weak topology on factors of the product space Π{P(δ ∈ ·|Y = y) : y ∈ Y } makes
the space of all Markov kernels compact by Tychonov’s theorem (after defini-
tion C.2.7), while the dependence P(δ ∈ ·|Y = ·) 7→ R(θ ,δ ) is continuous for ev-
ery θ . (The product space contains all Markov kernels and the product topology
means the following: P(δ ∈ ·|Y = ·)→ Q(δ ∈ ·|Y = ·) whenever P(δ ∈ ·|Y = y)
converges weakly to Q(δ ∈ ·|Y = y), for every y ∈ Y . Compare with the topology
of pointwise convergence, as after definition C.6.1.) Then the minimax theorem as-
serts the existence of a possibly randomized minimax decision rule δ M , such that
supp∈Θ R(p,δ M) = infδ supp∈Θ R(p,δ M). (See exercise 2.6.24.)

Remark 2.5.9. One important remark concerning the use the minimax decision prin-
ciple remains: considering (2.49), we see that the minimax principle chooses the
decision rule that minimizes the maximum of the risk R( · ,δ ) over Θ . As such, the
minimax criterion takes into account only the worst-case scenario and prefers deci-
sion rules whose worst case compares well to the worst cases of other decision rules.
In practical problems, that means that the minimax principle tends to take a rather
pessimistic (or, more neutrally, conservative) perspective on decision problems.

To conclude, we demonstrate that the decision-theoretic approach can also be
used to formulate estimation problems in a generalized way, if we choose the deci-
sion space A equal to the state-space Θ .

Example 2.5.10. (Decision theoretic L2-estimation) Let Y ∼ N(θ0,1) for some un-
known θ0 ∈ Θ , an (bounded or unbounded) interval in R. Choose A = Θ and
L : Θ ×Θ → R equal to the quadratic difference,
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L(θ ,a) = (θ −a)2,

a choice referred to as an L2-loss. (If boundedness is a concern, we may always
replace any L≥ 0 by L∧1, without changing the minimization question materially.)
Consider the decision-space

∆ = {δc : Y →A : δc(y) = cy, c≥ 0}.

Note that ∆ plays the role of a family of estimators for θ0 here. The risk-function
takes the form:

R(θ ,δc) =
∫

L(θ ,δc(Y ))dPθ =
∫
R
(θ − cy)2 dN(θ ,1)(y)

=
∫
R

(
c(θ − y)+(1− c)θ

)2 dN(θ ,1)(y)

=
∫
R

(
c2(y−θ)2 +2c(1− c)θ(θ − y)+(1− c)2

θ
2
)

dN(θ ,1)(y)

= c2 +(1− c)2
θ

2.

It follows that δ1 is risk-better than all δc for c > 1, so that for all c > 1, δc is
inadmissible. But c may lie in [0,1) as well, and ordering in the uniform sense of
(2.48) does not apply to any of the corresponding δc. To see this, note that R(θ ,δ1)=
1 for all θ , whereas for c < 1 and some θ > 1/(1− c), R(0,δc) < 1 < R(θ ,δc).
Indeed, for any 0 ≤ c1 < c2 ≤ 1, δc1 and δc2 are incompatible. Therefore, all the
decision rules δc, 0≤ c≤ 1 are admissible.

The minimax criterion does give rise to a preference. However, in order to guar-
antee its existence, we have to change the original problem because, as things stand,
risk functions are unbounded. One way to control the problem is to bound the pa-
rameter space: let M > 0 be given and assume that Θ = [−M,M]. The minimax risk
for δc is then given by

sup
θ∈Θ

R(θ ,δc) = c2 +(1− c)2M2,

which is minimal iff c = M2/(1+M2), i.e. the minimax decision rule for this prob-
lem (or, since we are using decision theory to estimate a parameter in this case, the
minimax estimator in ∆ with respect to L2-loss) is therefore,

δ
M(Y ) =

M2

1+M2 Y.

Note that if we let M → ∞, this estimator for θ converges to the MLE for said
problem.

Remark 2.5.11. Example 2.5.10 also offers opportunity to make the point that ad-
missibility is not sufficient for an estimator to be a ‘good’ (or even sensible) estima-



68 2 Bayesian basics

tor: consider the same decision problem, with a family of ‘decision rules’ θ̂ : Y →Θ

that contains stochastic estimators like θ̂(Y )=Y and the estimators above, as well as
the deterministic family of all data-independent, fully biased estimators θ̂θ0(y) = θ0,
for all y∈Y and θ0 ∈Θ . Note that L(θ0, θ̂θ0(Y ))= 0 with Pθ0 -probability one, so for
every θ0 ∈Θ , R(θ0, θ̂θ0) = 0. However, R(θ0, θ̂θ1) for θ1 ̸= θ0, as well as R(θ0, θ̂)

for a stochastic estimators θ̂(Y ) are strictly greater than 0. That implies that all the
estimators θ̂θ0 are admissible!

2.5.2 Bayesian decision theory

Returning to remark 2.5.9, by comparison, Bayesian decision theory presents a more
balanced perspective because instead of maximizing the risk function over Θ , the
Bayesian has the prior to integrate over Θ . Optimization of the resulting integral
takes into account more than just the worst case, so that the resulting decision rule
is based on a less pessimistic perspective than the minimax decision rule.

Definition 2.5.12. Let the state-space Θ , states Pθ , (θ ∈Θ ), decision space A and
loss L be given. Additionally, assume that (Θ ,G ) is a measurable space with prior
Π : G → R, and that θ 7→ R(θ ,δ ) is measurable for every δ . The map r,

r(Π ,δ ) =
∫

Θ

R(θ ,δ )dΠ(θ), (2.51)

is called the Bayesian risk function. Let δ1,δ2 ∈ ∆ be given. The decision rule δ1 is
Bayes-preferred to δ2, if

r(Π ,δ1)≤ r(Π ,δ2).

If δ Π ∈ ∆ minimizes δ 7→ r(Π ,δ ), i.e.

r(Π ,δ Π ) = inf
δ∈∆

r(Π ,δ ). (2.52)

then δ Π is called a Bayes rule for the prior Π . The quantity infδ r(Π ,δ ) is called
the Bayes risk (for the prior Π ).

The relative pessimism of the minimax decision rule is an expression of the follow-
ing comparison of the respective criteria.

Proposition 2.5.13. Let Y ∈ Y denote data in a decision theoretic problem with
state space Θ , decision space A and loss L : Θ ×A → R. For any prior Π and all
δ : Y →A ,

r(Π ,δ )≤ sup
θ∈Θ

R(θ ,δ ),

i.e. any Bayesian risk function is upper bounded by minimax risk.

The proof of this proposition follows from the fact that the minimax risk is an upper
bound for the integrand in the Bayesian risk function.
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Example 2.5.14. (see example 2.5.10) Let Θ = R and Y ∼ N(θ0,1) for some un-
known θ0 ∈Θ . Choose the loss-function L : Θ ×A → R and the decision space ∆

as in example 2.5.10. We choose a prior Π = N(0,τ2) (for some τ > 0) on Θ . Then
the Bayesian risk function is given by:

r(Π ,δc) =
∫

Θ

R(θ ,δc)dΠ(θ) =
∫
R

(
c2 +(1− c)2

θ
2)dN(0,τ2)(θ)

= c2 +(1− c)2
τ

2,

which is minimal iff c = τ2/(1+ τ2). The (unique) Bayes rule for this problem and
corresponding Bayes risk are therefore,

δ
Π (Y ) =

τ2

1+ τ2 Y, r(Π ,δ Π ) =
τ2

1+ τ2 .

In the Bayesian case, there is no need for a compact parameter space Θ , since we
do not maximize but integrate over Θ .

In the above example, we could find the Bayes rule by straightforward optimization
of the Bayesian risk function, because the class ∆ was rather restricted. If we extend
the class ∆ to contain all non-randomized decision rules, the problem of finding the
Bayes rule seems to be far more complicated at first glance. However, as we shall
see in theorem 2.5.16, the following definition turns out to be the solution to this
question.

Definition 2.5.15. (The conditional Bayes decision principle) Let the state-space
Θ , states Pθ , (θ ∈Θ ), decision space A and loss L be given. In addition, assume
that (Θ ,G ) is a measurable space with prior Π : G → R, and that θ 7→ L(θ ,δ ) is
measurable for every decision rule δ . We define δ ∗ : Y → A to be such that for
PΠ -almost-all y ∈ Y ,∫

Θ

L(θ ,δ ∗(y))dΠ(θ |Y = y) = inf
a∈A

∫
Θ

L(θ ,a)dΠ(θ |Y = y). (2.53)

Pointwise for almost-all y, the decision rule δ ∗(y) is assumed to minimizes the pos-
terior expected loss. This defines the decision rule δ ∗ implicitly as a point-wise
minimizer, which raises the usual questions concerning existence and uniqueness,
of which little can be said in any generality. However, if existence (and measurabil-
ity) of δ ∗ is established, δ ∗ is Bayes-risk optimal.

Theorem 2.5.16. Assume that (Θ ,G ) and (A ,H ) are measurable spaces, with
prior Π : G → R on Θ and let L be a measurable loss function. If the decision
rule δ ∗ : Y →A is well-defined and measurable, then δ ∗ is a Bayes rule.

Proof. Denote the class of all decision rules for this problem again by ∆ . According
to theorem 2.1.6 (more particularly, exercise 2.6.7, based on (2.4)) for any measur-
able decision rule δ : Y →A ,
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r(Π ,δ ) =
∫

Θ

R(θ ,δ )dΠ(θ) =
∫

Θ

∫
Y

L(θ ,δ (y))dPθ (y)dΠ(θ)

=
∫

Y

∫
Θ

L(θ ,δ (y))dΠ(θ |Y = y)dPΠ (y).

By assumption, the conditional Bayes decision rule δ ∗ exists. Since δ ∗ satisfies
(2.53) point-wise for all y ∈ Y , we have∫

Θ

L(θ ,δ ∗(y))dΠ(θ |Y = y)≤ inf
δ∈∆

∫
Θ

L(θ ,δ (y))dΠ(θ |Y = y).

Substituting this in (2.19), we obtain

r(Π ,δ ∗)≤
∫

Y
inf

δ∈∆

∫
Θ

L(θ ,δ (y))dΠ(θ |Y = y)dPΠ (y)

≤ inf
δ∈∆

∫
Y

∫
Θ

L(θ ,δ (y))dΠ(θ |Y = y)dPΠ (y) = inf
δ∈∆

r(Π ,δ ).

which proves that δ ∗ is a Bayes rule.

It is noted that randomization of the decision is not needed when optimizing with
respect to the Bayes risk. The conditional Bayes decision rule is non-randomized
and optimal.

2.5.3 Admissibility and the complete class theorem

It is important to understand the relationship between Bayes rules and admissibility:
below we consider the so-called complete class theorem ([261, 262], see also [230]),
which roughly says that, for any decision problem, any admissible decision rule δ

is a Bayes rule for some prior distribution. The implication is that the frequentist
looking for admissible decision rules, needs to consider only those decision rules
that minimize posterior expected loss for some prior.

Definition 2.5.17. A subset C of a set ∆ of decision functions is a complete class if
for any δ ∈ ∆ \C, we can find an element in C that is risk-better than δ . A complete
class C is a minimal complete class, if it contains no proper subset that is a complete
class.

Clearly, admissible decision rules are in any complete class, but more is true.

Proposition 2.5.18. If a minimal complete class C exists, C is equal to the set of all
admissible decision rules.

Proof. Note that if C is a minimal complete class and δ ∈C is not admissible, then
there is a δ ′ ∈ ∆ that is risk-better than δ . Since C is minimal, δ ′ does not lie in C.
Then there is a δ ′′ ∈C that is risk-better than δ ′, and by extension, also risk-better
than δ . The latter result is not possible because C is minimal. Conclude that C is a
subset of the admissible decision rules.
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So if the set of all admissible decision rules is complete, it is minimal complete.
For the formulation of the theorem below, we assume that Θ is compact and all

risk functions R(·,δ ) are continuous. The associated risk family R is a subset of
C(Θ), which we view as a Banach space relative to the sup-norm. (For the proof
below, we assume only the theory of locally convex spaces, and leave aside aspects
of the proof that depend on the ordered vector-space structure. (See the introductory
paragraph of appendix C.7.))

Theorem 2.5.19. (Complete class theorem)
Let the parameter space Θ be compact and let the risk family R be convex. Assume
that all risk functions in R are continuous in θ . Then, any admissible decision rule
δ ∈ ∆ is a Bayes rule for some Borel prior probability measure on Θ .

Proof. Let δ be an admissible (randomized) decision rule. Due to the admissibility
of δ , the set of risk functions that are risk-better than R(·,δ ) is empty, In the linearly
shifted convex family R− R(·,δ ), the risk function for δ is shifted to zero. The
closure of R−R(·,δ ) is a closed convex subset that meets the negative quadrant
only in the origin, due to admissibility. According to the Hahn-Banach theorem (in
its geometric form, theorem C.7.11) there exists a continuous linear functional I
on C(Θ) such that I ≥ 0 on the closure of R−R(·,δ ), which implies I(R(·,δ )) ≤
I(R(·,δ ′)) for any δ ′. The Riesz representation theorem, theorem C.8.2, says that
there exists a finite Borel measure µ on Θ such that,

I( f ) =
∫

Θ

f (θ)dµ(θ),

for any continuous function f on Θ . (This argument does not establish the positivity
of µ! For that, a version of the Hahn-Banach theorem specific to Riesz spaces is
required, that separates (non-strictly) any individual point in the lower bound of a
closed convex set from the rest of that set. For more, see [48], chapter I.) After
normalization, Π = µ/∥µ∥ defines a Borel probability measure, such that,

r(Π ,δ ) =
∫

Θ

R(θ ,δ )dΠ(θ)≤
∫

Θ

R(θ ,δ ′)dΠ(θ) = r(Π ,δ ′)

for every δ ′. So δ is the Bayes rule for the prior Π .

Regarding the convexity condition for the risk family, recall the example of the
maximal risk family, which is convex.

Not only are there conditions so that admissible decision rules are Bayes rules,
one of these conditions also guarantees that Bayes rules are admissible.

Theorem 2.5.20. Let Θ be a Hausdorff topological space with a Radon prior prob-
ability measure Π of full support. Assume also that for every δ ∈ ∆ , θ 7→ R(θ ,δ ) is
continuous and r(Π ,δ ) < ∞. Then any decision rule δ ′ that is a Bayes rule for Π ,
is an admissible decision rule.

Proof. Let δ ′ be a Bayes rule for a prior Π of full support. Suppose that δ ′ is not
admissible: then there exists a δ ∈ ∆ such that, for all θ ∈Θ ,
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R(θ ,δ )≤ R(θ ,δ ′),

and for some parameter value θ0 ∈Θ and some ε > 0, R(θ0,δ )−R(θ0,δ
′) =−ε <

0. By continuity of the risk functions, there exists an open neighbourhood U of θ0
such that,

R(θ ,δ )−R(θ ,δ ′)≤− 1
2 ε,

for all θ ∈U . Since Π has full support, Π(U)> 0, and,

r(Π ,δ )− r(Π ,δ ′) =
∫

Θ

(
R(θ ,δ )−R(θ ,δ ′)

)
dΠ(θ)

=
∫

Θ\U

(
R(θ ,δ )−R(θ ,δ ′)

)
dΠ(θ)+

∫
U

(
R(θ ,δ )−R(θ ,δ ′)

)
dΠ(θ)

≤− 1
2 εΠ(U)< 0,

and δ ′ is not a Bayes rule for Π .

Theorems 2.5.19 and 2.5.20 immediately raises two further questions: the first ques-
tion is whether the compactness and continuity conditions are necessary? The ex-
istence of a probability measure Π depends on the Riesz representation and one
wonders how much the Riesz-Markov-Kakutani generalization, theorem C.8.7, can
add to this, or how this type of theorem can be stretched by sequential versions
on σ -compact spaces, for example. Indeed there exist many generalized complete
class theorems (see, e.g. Robert (2001) [230]), and with the right definition of what a
‘generalized’ Bayes rule amounts to, admissible decision rules on non-compact pa-
rameter spaces can be represented as such. The second question, of course, is under
which conditions Bayes rules form a complete class (see Le Cam (1955) [180]).

2.5.4 Frequentist versus Bayesian classification

Many decision-theoretic questions take the form of a classification problem: under
consideration is a population Ω of objects that each belong to one of a finite number
of classes A = {1,2, . . . ,L}. The class K of the object is the unknown quantity of
interest. Observing a vector Y of its features, the goal is to classify the object, i.e.
estimate which class it belongs to. We formalize the problem in decision-theoretic
terms: the population is a probability space (Ω ,F ,P); both the feature vector and
the class of the object are random variables, Y : Ω → Y and K : Ω → A respec-
tively. The state-space in a classification problem equals the decision space A : the
class can be viewed as a “state” in the sense that the distribution PY |K=k of Y given
the class K = k depends on k.

A decision rule (or classifier, as it is usually referred to in the context of classi-
fication problems) is based on the feature vector Y and classifies the object in class
δ (Y ), i.e. the classifier maps features to classes by means of a map δ : Y → A .
Such a δ can be viewed equivalently as a finite partition of the feature-space Y : for
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every k ∈A , we define
Yk = {y ∈ Y : δ (y) = k}

and note that if k ̸= l, then Yk ∩Yl =∅ and Y1∪Y2∪ . . .∪YL = Y . The partition
of the feature space is such that if Y = y ∈ Yk for certain k ∈ A , then δ classifies
the object in class k. Depending on the context of the classification problem, a loss-
function L : A ×A → R is defined (see the examples in the introduction to this
section). Without context, the most natural loss function in a classification problem
is,

L(k, l) = 1{k ̸=l}.

i.e. we incur a loss equal to one for each misclassification. Using the minimax deci-
sion principle, we look for a classifier δ M : Y →A that minimizes:

δ 7→ sup
k∈A

∫
Y

L(k,δ (y))dP(y|K = k) = sup
k∈A

P
(
δ (Y ) ̸= K

∣∣ K = k
)
,

i.e. the minimax decision principle prescribes that we minimize the probability of
misclassification uniformly over all classes (consequently focussing only on the mis-
classification probability for the worst-case value of k ∈A ).

In a Bayesian context, we need a prior on the state-space, which equals A in
classification problems. Note that if known (or estimable, as in many practical cir-
cumstances), the marginal probability distribution for K is to be used as the prior
for the state k, in accordance with definition 2.1.2. In the absence of information on
the marginal distribution of K, ignorance can be represented by equal prior weights
1/L for all values of K. Here, we assume that the probabilities P(K = k) are known
and use them to define the prior density with respect to the counting measure on the
(finite) space A :

π(k) = P(K = k).

The Bayes rule δ ∗ : Y → A for this classification problem is defined as the mini-
mizer of

δ 7→ ∑
k∈A

L(k,δ (y))dΠ(k|Y = y) =
L

∑
k=1

Π
(
δ (y) ̸= K

∣∣ Y = y
)

for every y∈Y . According to theorem 2.5.16, the classifier δ ∗ minimizes the Bayes
risk, which in this situation is given by:

r(Π ,δ ) = ∑
k∈A

R(k,δ )π(k) = ∑
k∈A

∫
Y

L(k,δ (y))dP(y|K = k)π(k)

= ∑
k∈A

P
(
K ̸= δ (Y )

∣∣ K = k
)

P(K = k) = P
(
K ̸= δ (Y )

)
.

Summarizing, the Bayes rule δ ∗ minimizes the overall probability of misclassifi-
cation, rather than the worst-case that the minimax classifier focusses on. Readers
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interested in the statistics of classification and its applications are encouraged to
read B. Ripley’s “Pattern recognition and neural networks” (1996) [231].

To close the chapter, the following remark is in order: when we started our com-
parison of frequentist and Bayesian methods, we highlighted the conflict of philoso-
phies. But now that we have seen some of the differences in more detail by con-
sidering estimation, confidence sets, testing and decision theory in both schools, we
can be more specific. Statistical problems can be solved in both schools and often
the differences are smaller that one might fear (especially in the large-sample limit,
see part II). Whether one chooses for a Bayesian or frequentist statistical method
is usually not determined by deeply held philosophical beliefs, but by much more
practical considerations. Perhaps the classification example of this subsection illus-
trates this point most clearly: if one is concerned about correct classification for
objects in the most difficult class, one should opt for the minimax decision rule. If,
on the other hand, one wants to minimize the overall misclassification probability,
one should choose to adopt the conditional Bayes decision rule, with a prior for k
that equals the marginal for K (or approximates it well). In other words, depending
on the risk to be minimized (minimax risk and Bayes risk are different!) one arrives
at different classifiers.

More generally the (subjective) choice of a prior can either form a benefit or a
drawback, depending on the needs: on the one hand, frequentist methods can claim
a form of objectivity that is appreciated, for example, in most scientific and medical
settings. On the other, choice of a prior offers (admittedly subjective) control over
a statistical procedures through bias. If well-chosen, such bias can be of great intu-
itive statistical value, like the subjective bias of example 1.3.1. Bayesian methods
are popular in forensic science because the freedom to choose a prior leaves room
to incorporate background information and common-sense. From a more techni-
cal point of view, bias may be required for regularization purposes (like a penalty
in frequentist terms, see remark 2.2.21). Prior bias may even be guided in a data-
dependent way, e.g. when we employ empirical Bayesian methods to optimize a
procedure (as in section 3.4).

Another reason to use one or the other may be computational advantages or use-
ful theoretical results that exist for one school but have no analogue in the other.
Philosophical preference should not play a role in the choice for a statistical proce-
dure, practicality and usefulness should (and usually do).

2.6 Exercises

2.6.1. CALIBRATION
A physicist prepares for measurement of a physical quantity Z in his laboratory.
To that end, he installs a measurement apparatus that will give him an outcome of
the form Y = Z + e where e is a measurement error due to the inaccuracy of the
apparatus, assumed to be stochastically independent of Z. Note that if the expecta-
tion of e equals zero, long-run sample averages converge to the expectation of Z;
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if the expected error Pe ̸= 0, on the other hand, averaging does not cancel out the
resulting bias. The manufacturer of the apparatus says that e is normally distributed
with known variance σ2 > 0. The mean θ of this normal distribution depends on the
way the apparatus is installed and thus requires calibration. The following questions
pertain to the calibration procedure.

The physicist decides to conduct the following steps to calibrate his measure-
ment. First, he makes certain that the apparatus receives no input signal, Z = 0. Then
he repeats measurement of Y , generating an i.i.d. sample of size n, which amounts
to an i.i.d. sample from the distribution of e used to estimate the unknown mean θ .
The physicist expects that the expected error Pe lies close to zero.

a. Explain why, from a subjectivist point of view, the choice θ ∼ N(0,τ2) forms a
suitable prior in this situation. Explain the role of the parameter τ2 > 0.

b. With the choice of prior as in part a., calculate the posterior density for θ .
c. Interpret the influence of τ2 on the posterior, taking into account your answer

under part a. Hint: take limits τ2 ↓ 0 and τ2 ↑∞ in the expression you have found
under b.

d. What is the influence of the sample size n? Show that the particular choice of
the constant τ2 becomes irrelevant in the large-sample limit n→ ∞.

2.6.2. Let X1, . . . ,Xn be an i.i.d. sample from the uniform distribution U [0,θ ], with
unknown parameter θ ∈Θ = (1,∞). As a prior for θ , choose the Pareto distribu-
tion with exponent α > 0. Calculate the posterior density for θ with respect to the
Lebesgue measure on (1,∞).

2.6.3. Let X1, . . . ,Xn be an i.i.d. sample from the Poisson distribution Poisson(λ ),
with unknown parameter λ > 0. As a prior for λ , let λ ∼ Γ (2,1). Calculate the
posterior density for λ with respect to the Lebesgue measure on [0,∞).

2.6.4. Let X1, . . . ,Xn be an i.i.d. sample from a binomial distribution Bin(k,θ), with
known k ≥ 1 and unknown θ ∈ Θ = [0,1]. As a prior for θ , use a beta distribu-
tion, θ ∼ β (2,2). Calculate the posterior density for θ with respect to the Lebesgue
measure on [0,1].

2.6.5. Let X1, . . . ,Xn be an i.i.d. sample from a normal distribution N(0,σ2), with
unknown σ2 > 0. We define the prior for the variance σ2 implicitly, by stating that
the inverse 1/σ2 is distributed according to a Γ (α,β ) distribution. Calculate the
posterior density for σ2 with respect to the Lebesgue measure on [0,∞).

2.6.6. Let (P,F ,Π) be a model with prior for i.i.d. X1, . . . ,Xn taking values in a
sample space (X ,B). Suppose that the model is dominated by a σ -finite measure
µ on (X ,B) and that the prior is dominated by a σ -finite measure ν on (P,G ).
Show that if µ ′ is another σ -finite measure on (X ,B), such that P ≪ µ ′ ≪ µ ,
and ν ′ is another σ -finite measure on (P,G ), such that Π ≪ ν ′ ≪ ν , then the
MAP estimator θ̃2 does not change with µ ′ (compare with exercise 1.6.1), but θ̃2
does change with ν ′.
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2.6.7. Use theorem 2.1.6 to show that, for any B×G -measurable ϕ : Y ×Θ →
[0,∞], ∫

Y

∫
Θ

ϕ(y,θ)dΠ(θ |Y = y)dPΠ (y) =
∫

Θ

∫
Y

ϕ(y,θ)dPθ (y)dΠ(θ).

Hint: in the case that we have a dominated model, (2.13) provides a more explicit
form of the posterior, which makes the following simplified proof possible. Use def-
initions (2.51) and (2.47), and theorems B.3.10, B.3.9 to arrive at,∫

Θ

∫
Y

ϕ(y,θ)dPθ (y)dΠ(θ) =
∫

Y

∫
Θ

ϕ(y,θ) pθ (y)dΠ(θ)dµ(y)

=
∫

Y

(∫
Θ

pθ (y)dΠ(θ)
)∫

Θ

ϕ(y,θ)dΠ(θ |Y = y)dµ(y),

With (2.3), rewrite the expression,∫
Θ

∫
Y

ϕ(y,θ)dPθ (y)dΠ(θ) =
∫

Y

∫
Θ

ϕ(y,θ)dΠ(θ |Y = y)dPΠ (y).

In the non-dominated case, rely on a monotone sequence of simple approximations
for the σ(B×G )-measurable ϕ , monotone convergence of integrals and approxi-
mation in Π ∗-measure of A ∈ σ(B×G ) by finite unions of (disjoint) rectangles to
use Bayes’s Rule (2.4) directly.

2.6.8. In the model of exercise 2.6.2, calculate the maximum-likelihood estimator,
the posterior mean and the maximum-a-posteriori estimator.

2.6.9. In the model of exercise 2.6.3, calculate the maximum-likelihood estimator,
the posterior mean and the maximum-a-posteriori estimator.

2.6.10. In the model of exercise 2.6.4, calculate the maximum-likelihood estimator,
the posterior mean and the maximum-a-posteriori estimator.

2.6.11. In the model of exercise 2.6.5, calculate the maximum-likelihood estimator,
the posterior mean and the maximum-a-posteriori estimator.

2.6.12. Consider the following questions in the context of exercise 2.6.3, after exer-
cise 2.6.9.

a. Let n→∞ both in the MLE and MAP estimator and conclude that the difference
vanishes in the limit, Pλ -almost-surely.

b. Following remark 2.2.21, explain the difference between ML and MAP estima-
tors exclusively in terms of the prior.

c. Consider and discuss the choice of prior λ ∼Γ (2,1) twice, once in a qualitative,
subjectivist Bayesian fashion, and once following the frequentist interpretation
of the log-prior-density.

2.6.13. Let Y ∼ P0 denote the data and P a model with metric d. Suppose that P is
endowed with a prior defined on the Borel σ -algebra induced by the metric topology.
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Assume that P0≪PΠ and that P is compact. The following questions pertain to the
small-ball estimators defined in definition 2.2.18 and remark 2.2.19. We assume that
the posterior distribution is such that for all ε > 0 and all P ∈P , the (topological)
boundary of the ball Bd(P,ε) receives mass equal to zero: Π(∂Bd(P,ε)|Y ) = 0, P0-
almost surely.

a. Show that, for any p∈ (1/2,1) and large enough ε > 0, the small-ball estimator
P̂ of exists, P0-almost-surely.

b. Show that for any two measurable model subsets A,B⊂P ,∣∣Π(A |Y )−Π(B |Y )
∣∣≤Π(A∪B |Y )−Π(A∩B |Y ),

P0-almost-surely.
c. Show that for every ε > 0, the map P 7→ Π(Bd(P,ε) |Y ) is continuous, P0-

almost-surely.
d. Show that for every ε > 0, the small-ball estimator of definition 2.2.18 exists.
e. Let some p ∈ (1/2,1) be given. Suppose that ε > 0 denotes some radius for

which there exists a ball Bd(P,ε) ⊂P of posterior probability greater than or
equal to p. Show that, if both P̂1 and P̂2 are centre points of such balls, then
d(P̂1, P̂2)< 2ε , P0-almost-surely.

2.6.14. Let Xn = (X1, . . . ,Xn) be an i.i.d. sample from the normal distribution
N(µ,σ2) for certain µ ∈ R, σ2 > 0. Show that the sample average is distributed
according to the normal distribution,

PnX ∼ N(µ,σ2
n ),

with variance σ2
n = σ2/n.

2.6.15. Let Y be normally distributed with known variance σ2 > 0 and unknown
location θ . As a prior for θ , choose Π = N(0,τ2). Let α ∈ (0,1) be given. Using
the posterior density with respect to the Lebesgue measure, express the level-α HPD
credible set in terms of Y , σ2, τ2 and quantiles of the standard normal distribution.
Consider the limit τ2 → ∞ and compare with level-α confidence intervals centred
on the ML estimate for θ .

2.6.16. Let Y ∼ Bin(n; p) for known n ≥ 1 and unknown p ∈ (0,1). As a prior for
p, choose Π = Beta( 1

2 ,
1
2 ). Calculate the posterior distribution for the parameter p.

Using the Lebesgue measure on (0,1) to define the posterior density, give a level-α
credible interval Dα(Y ) for p, using quantiles of beta-distributions. Give an equation
that characterizes the choice of quantiles for which Dα(Y ) is an HPD credible set.

2.6.17. Let (Θ ,G ) a measurable space parametrizing a model Θ →P : θ 7→ Pθ for
data Y ∈ Y , with prior Π . Assume that the posterior is regular and dominated by
a σ -finite measure µ on (Θ ,G ), with density π( · |Y ) : Θ → [0,∞). Show that if the
HPD credible set Dα(Y ) satisfies Π(Dα(Y )|Y ) = 1−α , then Dα(Y ) has minimal
µ-measure among all credible sets of level α , almost-surely.
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2.6.18. Let Θ be a subset of R and let Θ →P : θ 7→ Pθ describe an identifiable
parametrization of the model P for an i.i.d. sample X1, . . . ,Xn, and assume that
there exists a θ0 ∈Θ such that Pθ0 is the marginal distribution for each of the Xi. Let
θ and θ ′ with θ ′ > θ from Θ be given and consider the hypotheses,

H0 : θ0 = θ , H1 : θ0 = θ
′,

Given a significance level α ∈ (0,1), write down the Neyman-Pearson test for H0
versus H1 (see lemma 2.4.5), in each of the following cases,

a. for all θ ∈ [0,1], Pθ = Bernoulli(θ);
b. for all θ ∈ (0,∞), Pθ = Poisson(θ);
c. for all θ ∈ [0,1], Pθ = Bin(θ ,k) for some known integer k ≥ 1.

2.6.19. Consider a dominated model P = {Pθ : θ ∈Θ} for data Y , where Θ ⊂R is
an interval. For certain θ0 ∈Θ , consider the simple null-hypothesis and alternative:

H0 : θ = θ0, H1 : θ ̸= θ0.

Show that if the prior Π is absolutely continuous with respect to the Lebesgue mea-
sure on Θ , then the posterior odds ratio in favour of the hypothesis H0 equals zero,
almost surely.
[Remark: conclude that calculation of posterior odds ratios makes sense only if
both hypotheses receive non-zero prior mass. Otherwise, the statistical question we
ask is rendered invalid ex ante by our beliefs concerning θ , as expressed through
the choice of the prior. (See example 2.1.13.)]

2.6.20. Let X1, . . . ,Xn be an i.i.d. sample from a binomial distribution Bin(θ ,k), for
some known integer k ≥ 1 and an unknown parameter θ ∈Θ = [0,1]. Let the prior
Π for θ be a Beta distribution Beta(α,β ), with certain parameters α,β > 1.

a. Calculate the posterior distribution for θ .
b. Write down the equations that determine the two end-points of the HPD credible

interval (based on the density of the posterior relative to Lebesgue measure on
Θ ), for given credible level δ ∈ (0,1).

Consider the hypotheses,

H0 : θ ≤ 1
2 , H1 : θ > 1

2 .

c. Give the prior odds, posterior odds and Bayes factor for the hypotheses H0 and
H1.

2.6.21. PRISONER’S DILEMMA
Two men have been arrested on the suspicion of burglary and are held in separate
cells awaiting interrogation. The prisoners have been told that burglary carries a
maximum sentence of x years. However, for any prisoner who confesses, the sen-
tence is reduced to y years (where 0 < y < x).
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Guilty of the crime he is accused of, our prisoner contemplates whether to con-
fess to receive a lower sentence, or to deny involvement in the hope of escaping
justice. If he keeps his mouth shut and so does his partner in crime, they will both
walk away free. If he keeps his mouth shut but his partner talks, he gets the maxi-
mum sentence. If he talks, he will always receive a sentence of y years and the other
prisoner receives y or x years depending on whether he confessed or not himself. To
talk or not to talk, that is the question.

There is no data in this problem, so we set θ equal to 1 or 0, depending on
whether the other prisoner talks or not. Our prisoner can decide to talk (t = 1) or
not (t = 0). The loss function L(θ , t) equals the prison term for our prisoner. In the
absence of data, risk and loss are equal.

a. Calculate the minimax risk for both t = 0 and t = 1. Argue that the minimax-
optimal decision for our prisoner is to confess.

As argued in section 2.5, the minimax decision can be overly pessimistic. In the
above, it assumes that the other prisoner will talk and chooses t accordingly.

The Bayesian perspective balances matters depending on the chance that the
other prisoner will confess when interrogated. This chance finds its way into the
formalism as a prior for the trustworthiness of the other prisoner. Let p ∈ [0,1] be
the probability that the other prisoner confesses, i.e. Π(θ = 1) = p and Π(θ = 0) =
1− p.

b. Calculate the Bayesian risks for t = 0 and t = 1 in terms of x, y and p. Argue that
the Bayes rule for our prisoner is as follows: if y/x > p then our prisoner does
not confess, if y/x < p, the prisoner confesses. If y/x = p, the Bayes decision
criterion does not have a preference.

So, depending on the degree to which our prisoner trusts his associate and the ratio
of prison terms, the Bayesian draws his conclusion. The latter is certainly more
sophisticated and perhaps more realistic, but it requires that our prisoner quantifies
his trust in his partner in the form of a prior distribution.

2.6.22. Consider a classification problem based on a probability space (Ω ,F ,P),
measurable feature vector Y : Ω → Y and class K : Ω →K , where both Y and
K are Polish spaces. Assume that A = K and the loss function L : K ×K → R
is such that L(k, l)≥ 0 with equality if k = l.

a. Show that if the σ -algebra generated by K is contained in the σ -algebra gen-
erated by Y , there exists a non-randomized classifier δ : Y →K with the fol-
lowing property: if we define model distributions Pk as conditional distributions
for Y given K = k (cf. definition 2.1.1), then the risk function k 7→ R(k,δ ) is
almost-surely minimal (that is: R(k,δ ) = 0, for all k in a measurable subset
F ⊂K such that P(K(ω) ∈ F) = 1.

Interpret as follows: if ‘Y contains all information about K’, we can reconstruct K
from Y , making perfect classification possible.

This point can be extended, because for classification we adopt an essentially
Bayesian view of the class/state/parameter k in the problem, when we assume that
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K ∈ K has a distribution (acting as a prior for k). Below, we assume that K is
R with K quadratically integrable, and we specify to Bayesian risk functions with
quadratic loss.

b. Show that if L(k, l) = (k− l)2, then the conditional expectation EP[K|Y ] : Y →
R of K given Y defines a classifier that minimizes the Bayesian risk function.
Hint: EP[K|Y ] is the orthogonal projection of K onto the closed subspace of
square-integrable, Y -measurable functions L2(Ω ,σ(Y ),P) in L2(Ω ,F ,P).

The conditional expectation EP[K|Y ] represents the closest (L2-)approximation of
K we can make with a function that can only depend on Y , representing another
perspective on the ‘information that Y contains about K’.

c. Show explicitly that with quadratic loss like above, EP[K|Y ] : Y →R coincides
with the conditional Bayes decision rule δ ∗ of definition 2.5.15.

2.6.23. Consider a decision problem in which we have a state space Θ = {θ0,θ1}
and a decision space A = {a1,a2,a3,a4,a5}, with the following loss function:

L(θ0,a1) = 0, L(θ0,a2) = 3, L(θ0,a3) = 1, L(θ0,a4) = 3, L(θ0,a5) = 4,
L(θ1,a1) = 4, L(θ1,a2) = 4, L(θ1,a3) = 0, L(θ1,a4) = 0, L(θ1,a5) = 1,

a. Consider a prior such that Π(θ0) = 4/5 and Π(θ1) = 1/5. Although there is
no data in this problem, there is still the question which decisions minimize the
Bayesian risk function under this prior. Find all Bayes rules.

2.6.24. Make the reasoning of example 2.5.8 precise and formulate an existence
theorem for a minimax decision rule. Hint: find a topology (using definition C.7.14)
such that for every y, the space of all distributions for δ |Y = y is compact; use
Tychonov’s theorem to conclude that the product is compact; show that the space of
all Markov kernels is closed in the product space; show that the map taking Markov
kernels into risk functions is continuous.

2.6.25. The expression of the posterior as a fraction of integrated likelihoods, equa-
tion (2.6), suggests that the posterior is dominated by the prior. As we shall see in
this exercise, the situation is more complicated: although every null-set of the prior
is a null-set of the posterior almost-surely, this does not imply domination.

a. Use Bayes’s Rule (2.4) to prove the following: if A ∈ G is such that Π(A) = 0,
then Π(A|Y ) = 0, almost-surely.

b. Argue that this does not imply Π(·|Y )≪Π , almost-surely, in general.
c. Give a simple, extra condition for the space Y , sufficient to show that Π(·|Y )≪

Π , almost-surely.

Some example exam problems

2.6.26. Consider an experiment in which we observe a single X distributed accord-
ing to a binomial distribution Pn,p = Bin(n, p). We assume that n is known, and for
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the unknown parameter p ∈ [0,1], we have three possible prior choices,

Π0 = Beta( 1
2 ,

1
2 ), Π1 =U [0,1], Π2 = Beta(0,0).

a. With the three priors Π0,Π1,Π2, calculate the three posteriors. Give the associ-
ated posterior means p̃0(X), p̃1(X), p̃2(X) and posterior variances.

b. With the three priors Π0,Π1,Π2, calculate the three MAP-estimators p̂0(X),
p̂1(X), p̂2(X) and calculate their biases.

Take the decision-theoretic perspective on estimation by the choice Θ = [0,1] for the
space in which our decisions take values, and a quadratic loss function L : [0,1]2→
[0,∞) : (p1, p2) 7→ (p1− p2)

2.

c. With the three priors Π0,Π1,Π2, calculate the three formal Bayes estimators
p′0(X), p′1(X), p′2(X).

For i ∈ {1,2,3}, suppose we are interested in estimators T (X) that minimize the
quantity,

si =
∫ 1

0
Pn,p
(
T (X)− p

)2 dΠi(p),

d. Which estimator has minimal si: p̃i, p̂i or p′i? Explain why.

2.6.27. In this problem, we calculate posterior distributions.

a. Define P = {N(θ ,σ2) : θ ∈Θ = [0,∞)}, the model for normal distributions
of unknown, positive location θ and known variance σ2 > 0. We assume that
the data X1, . . . ,Xn form an i.i.d. sample from Pθ0 for some θ0 ∈ R. As a prior
on Θ , we use the exponential distribution Exp(λ ) for some λ > 0 (which has
density π(θ) = λ exp(−λ θ) for θ ≥ 0 and π(θ) = 0 for θ < 0). Calculate
the posterior for θ . Hint: express the normalization constant in terms of the
distribution function Φ for the standard normal distribution.

b. Consider a single-observation X from a uniform distribution U [0,θ ] with un-
known θ > β , for some known constant β ∈ R. As a prior Π for θ , we use a
Pareto distribution with parameters α > 0, β . Hint: recall that the Pareto distri-
bution has a Lebesgue density π(θ) = (αβ α)/θ α+1 for all θ > β and π(θ) = 0
for θ ≤ β . Calculate the posterior distribution for θ .

2.6.28. A series of n≥ 1 independent Bernoulli trials X1, . . . ,Xn is performed, with
unknown success probability θ ∈ [0,1]: for all 1≤ i≤ n, P(Xi = 1) = θ . We assign
a beta-prior with parameters a > 0,b > 0 for θ . Denote S = ∑

n
i=1 Xi.

a. Calculate the posterior for θ . Also give the posterior mean and variance, as a
function of a,b and S.

b. Suppose we plan to perform the experiment again, independently, and shall ob-
serve a total number of successes T . Based on the outcome S of the original
series, the Bayesian predicts the distribution of T . Based on your answer under
part a., give this prediction.
Hint: express your answer for P(T = k|S) as a fraction B(a1,b1)/B(a2,b2) of
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two normalization constants for beta-densities, times
(n

k

)
, for a1,a2,b1,b2 > 0

that depend on a,b,k and S.

Assume again only the original series with outcome S has been observed. Instead
of an independent second series, we observe one more Bernoulli trial Y , which is
independent of the X1, . . . ,Xn, with success probability that is only half as large as
that for the first n observations, P(Y = 1) = θ/2.

c. Write down the likelihood function θ 7→ L(θ ;X1, . . . ,Xn,Y ) for observation of
the original series and Y .

Suppose that we observe Y = 0 and we take a prior with parameters a = b = 1.

d. Show that, with Y = 0, the posterior density of θ relative to Lebesgue density
on [0,1], is given by,

π(θ |S) =C
(
2θ

S−θ
S+1)(1−θ)n−S

where the normalization constant is,

C−1 = 2
Γ (S+1)Γ (n−S+1)

Γ (n+2)
− Γ (S+2)Γ (n−S+1)

Γ (n+3)
.

Hint: Note that B(a,b) = Γ (a)Γ (b)/Γ (a+b).

2.6.29. Let the data Y ∈ [0,∞) be distributed according to an exponential distribution
Exp(θ), for some θ > 0. As a prior for θ , we use a Gamma-distribution Γ (α,β )
with hyperparameters α > 0, β > 0.

a. Calculate the posterior distribution for θ , given Y .

Assume that, next, we observe Y ′ which is another draw from Exp(θ), stochastically
independent of Y . (Mind, all conditional on the same draw ϑ = θ from the prior.)

b. Show that the posterior predictive distribution for Y ′, given Y has a Lebesgue
density given by,

p(y′|Y = y) = (α +1)
(β + y)α+1

(β + y+ y′)α+2 .

Hint: for all x > 0, Γ (x+1) = xΓ (x).
c. Show (explicitly, by integration) that p(y′|Y = y) above describes a probability

density with respect to Lebesgue measure on [0,∞).

2.6.30. Consider the parametric model P consisting of geometric distributions
P = {Geo(θ) : θ ∈Θ = (0,1)} for data X1, . . . ,Xn ∈ {0,1,2, . . .}. Counting mea-
sure dominates the model and densities take the form pθ (k) = θ(1− θ)k for
k ∈ {0,1,2, . . .}. As a prior Π on (0,1) we take a Beta(α,β )-distribution with
known parameters α,β > 0. The Lebesgue density of Π is given by,

π(θ) = B(α,β )−1
θ

α−1(1−θ)β−1
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for θ ∈ (0,1), where B(α,β ) =Γ (α)Γ (β )/Γ (α+β ) is the normalization constant.

a. Calculate the density for the posterior with respect to Lebesgue measure.
b. Express the posterior mean θ̂1(X1, . . . ,Xn) as a fraction of normalization con-

stants B(α ′,β ′) for certain data-dependent values of α ′,β ′. Use the relation
Γ (x+1) = xΓ (x), valid for all x≥ 0 to show that,

θ̂1(X1, . . . ,Xn) =
α +n

α +β +n+∑i Xi
.

c. Calculate also the maximum-likelihood estimator θ̂ML for θ . Show that in the
limit n→ ∞, θ̂1− θ̂ML goes to zero.

2.6.31. In this problem sentences are presented from which one or more words have
been left out: in each part below, give the missing word (or words, as in parts a. and
e.).

a. Given a parametrized model P = {Pθ : θ ∈Θ} for data Y , with closed, . . . . . . . . .
parameter space Θ , it is assumed that ϑ is . . . . . . . . . with respect to the posterior
in order to define the posterior mean θ̂ =

∫
θ dΠ(θ |Y ).

b. Given a parametrized model P = {Pθ : θ ∈Θ}, the parametrization is said to
be identifiable if the map Θ →P : θ 7→ Pθ is . . . . . . . . ..

c. Given a parametrized model P = {Pθ : θ ∈Θ} for data Y the conditional dis-
tribution for Y given θ ∈Θ is called a . . . . . . . . . distribution.

d. Given a parametrized model P = {Pθ : θ ∈Θ} for data Y ∼P0 and an estimator
θ̂ : Y →Θ , the distribution for θ̂(Y ) under P0 is called the . . . . . . . . . distribution.

e. Suppose a prior has been chosen for which the prior odds ratio is not equal to
one. The . . . . . . . . . Bayesian prefers Bayes factors over posterior odds ratios,
while the . . . . . . . . . Bayesian prefers posterior odds ratios over Bayes factors.

2.6.32. In the following it is required that you give short but accurate expressions
for definitions, (in)equalities or other notions from the theory of Bayesian statistics.

a. Let (Y ,B) be a measurable sample space and let a model P = {pθ : θ ∈Θ}
for data Y ∈Y be given, with a measurable parameter space (Θ ,G ) and a prior
Π : G → [0,1]. The posterior Π(·|Y ), prior predictive PΠ , model distributions
Pθ and prior Π are related through an equality called Bayes’s Rule. Give this
equality.

b. Frequentist use of Bayesian tools requires that Bayesian definitions make sense
under frequentist assumptions: given the frequentist view that the data Y has
distribution Y ∼ P0, state the technical condition that guarantees Bayesian defi-
nitions are also viable as frequentist definitions.

c. Often the data is known/assumed to have been generated as an independent and
identically distributed (i.i.d.) sample. How does one express the i.i.d. property
in the Bayesian framework?

d. Describe in one or two sentences (but with accuracy!) how a posterior odds ratio
differs from the corresponding Bayes factor.
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e. Let a parametrized model P = {pθ : θ ∈Θ} for data Y with Θ ⊂Rd be given.
Suppose that we choose a prior Π and that the posterior distribution is domi-
nated by Lebesgue measure on Θ , with density Θ → [0,∞) : θ 7→ π(θ |Y ). Give
the definition of the HPD credible set of credible level α ∈ (0,1).

2.6.33. Consider the parametric model P consisting of exponential distributions
P = {Exp(θ) : θ ∈Θ = (0,∞)}. Lebesgue measure dominates the model and den-
sities take the form pθ (x) = θ exp(−θ x), for x≥ 0. Assume that the data X1, . . . ,Xn
form an i.i.d. sample from some P0 = Pθ0 ∈P . As a prior Π on the model we take a
Γ (α,β )-distribution with known parameters α,β > 0. The Lebesgue density of Π

is given by,

π(θ) =
β α

Γ (α)
θ

α−1 e−β θ ,

for the parameter θ > 0.

a. Calculate the density for the posterior with respect to the Lebesgue measure.
b. Calculate the maximum-a-posteriori estimator θ̂MAP for θ . Calculate also the

maximum-likelihood estimator θ̂ML for θ .
c. Using the law of large numbers, show that the difference between θ̂MAP and

θ̂ML goes to zero as n→ ∞.
d. Let D(Xn) be a credible interval [θ0(Xn),θ1(Xn)]. Using that the posterior den-

sity θ 7→ π(θ |Xn) is unimodal (that means: is increasing on an interval (−∞,θ ∗]
and decreasing on [θ ∗,∞)) write down two equations for θ0(Xn) and θ1(Xn) in
order for D(Xn) to be a HPD credible set of credible level α . (There is no need
to solve these equations or to substitute your answer from part a.)

For the last part of this problem, consider the hypotheses,

H0 : 0 < θ ≤ 1, H1 : θ > 1.

e. Write down the Bayes factor in favour of hypothesis H0. (There is no need to
solve or simplify the resulting integrals.)

2.6.34. In this problem, we consider minimax and Bayesian decision theory.

a. Give the definitions of the following notions: loss-function, risk-function, min-
imax risk, minimax decision rule.

b. State the minimax theorem.
c. Give the definitions of the following notions: Bayesian risk function, Bayes risk,

Bayes rule.
d. State the conditional Bayes decision principle.
e. Under the assumption that the model is dominated, prove that the conditional

Bayes decision rule is a Bayes rule.
f. Without the assumption that the model is dominated, prove that the conditional

Bayes decision rule is a Bayes rule. Hint: use the disintegration equality.

2.6.35. A radiation measurement device reports cumulative counts X of radiation
over a certain time interval. The count X is assumed to be Poisson distributed with
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mean λ > 0. Over the time interval, the observed total count was x = 23. For the
parameter λ , a Gamma prior Γ (α,β ) with mean 2 and variance 0.5 is chosen.

a. Calculate the posterior Π(·|X) for λ given X . Then substitute X = 23 to find
the realized posterior.

b. Show that the posterior mean λ̂ (X) given X , is a weighted average of X and a
function f (α,β ;X). Give f .

c. Let c > 0 be given. Draw a precise graph of the loss function ℓ : (0,∞)→ R,

µ 7→ ℓ(µ,λ ) = ec(µ−λ )− c(µ−λ )−1,

around the point µ = λ . Does this loss function reflect, either (A) that under-
estimation of the parameter is worse than over-estimation? or (B) that over-
estimation of the parameter is worse than under-estimation? Motivate your an-
swer.

d. Show that the estimator λ̃ > 0 defined as the minimizer of expected loss under
the posterior, that is, the (X-dependent) value λ̃ such that,∫

∞

0
ℓ(λ̃ ,λ )dΠ(λ |X) = inf

µ>0

∫
∞

0
ℓ(µ,λ )dΠ(λ |X),

is given by,

λ̃ (X) =−1
c

log
∫

∞

0
e−cλ dΠ(λ |X)

e. Without making any calculations, show that the Bayesian risk of λ̃ is lower than
or equal to the Bayesian risk of λ̂ .

2.6.36. Consider a decision problem involving a states θ from a state space Θ

labelling probability distributions Pθ for data Y to be observed, based on which
we take a decision a from a decision space A . The loss function is denoted
L : Θ ×A → [0,∞). When we adopt the Bayesian perspective, we endow Θ with (a
σ -algebra and) a prior Π .

We take Θ = R, Y ∈ R, Pθ = N(θ ,1) for all θ and a Borel prior Π = N(0,τ2)
for some τ2 > 0.

a. What is the posterior for the state θ?

Take Θ = A , denote the decision rule by δ : R→A and take as a loss function:

L(θ1,θ2) = aθ
2
1 +2bθ1θ2 + cθ

2
2

for some constants a,b,c≥ 0.

b. Based on the conditional Bayes decision principle, derive the Bayes rule δ ∗ and
give the Bayes risk.

c. Explain why the constant a does not make an appearance in the expression for
δ ∗.
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2.6.37. Consider a state ϑ that can take values in Θ = {θ1,θ2} only, and an action
a that lies in A = {a1,a2}, with a loss function L : Θ ×A → R,

L(θ1,a1) = L(θ2,a2) = 0, L(θ1,a2) = 5, L(θ2,a1) = 10.

As a prior for the state ϑ , we choose Π(ϑ = θ1) = η , Π(ϑ = θ2) = 1−η , for some
fixed η ∈ (0,1). We observe a normal random variable X ∈R, distributed according
to Pθ1 = N(0,1) if ϑ = θ1, or according to Pθ2 = N(1,1) if ϑ = θ2.

a. Calculate the posterior probabilities Π(ϑ = θ1|X) and Π(ϑ = θ2|X).
b. Let δ :R→A be a decision rule; give the Bayesian risk function r(Π ,δ ). Hint:

calculate first R(θ1,δ ) and R(θ2,δ ).
c. Calculate the expected posterior loss under the action a1; then calculate also the

expected posterior loss under action a2.

For each realization X = x of the observation, we can now compare the expected
posterior losses associated with actions a1 and a2. Let δc : R→A be the decision
rule defined by,

δc(x) =

{
a1, if x≤ c
a2, if x > c

for some choice of the threshold c ∈ R.

d. State the conditional Bayes risk principle. How is it related to the notion of a
Bayes rule?

e. For which value of c is δc a Bayes rule?



Chapter 3
Choice of the prior

Bayesian procedures have received much criticism from frequentists, often fo-
cussing on the choice of the prior as an undesirable source of ambiguity. The an-
swer of the subjectivist that the prior represents the “belief” of the statistician or
“expert knowledge” pertaining to the measurement’s randomness elevates this am-
biguity to a matter of principle, thus setting the stage for a heated debate between
“pure” Bayesians and “pure” frequentists concerning the philosophical merits of ei-
ther school within statistics. As said, the issue is complicated further by the fact that
the Bayesian procedure does not refer to any “true distribution” P0 of the observa-
tion (see section 2.1), providing another point of fundamental disagreement. In line
with the last sentence of section 2.5, we leave the philosophical argument to others
and try to discuss the choice of a prior at a more conventional and more practical
level.

In this chapter we consider priors for parametric models from various points of
view. In section 3.1, we discuss priors that emphasize the subjectivist’s “belief”. In
section 3.2 we construct priors with the express purpose not to emphasize any part
of the model more than others, as advocated by objectivist Bayesians. Hierarchical
prior construction and Bayesian modelling are the subject of section 3.3, and meth-
ods that choose priors by frequentist means (commonly known as empirical Bayes
methods) form the subject of section 3.4. Because it is mathematically desirable and
computationally advantageous to have closed-form expressions for posterior distri-
butions, so-called conjugacy of families of distributions over the parameter space
is considered in section 3.5. Special attention goes to the Dirichlet distributions of
section 3.6 because they describe a conjugate family of probability distributions on
spaces of probability measures (rather than parametrizing spaces). As will become
clear in the course of the chapter, the choice of a prior is highly dependent on the
model under consideration, as well as on the purpose of the analysis.

All of the material of this chapter applies only in parametric models. To find a
suitable prior for a non-parametric model can be surprisingly difficult. The concept
of a measure on an infinite-dimensional space has technical subtleties that do not
play a role in parametric models (e.g. the lack of default dominating measures like
the counting measure on a discrete space or Lebesgue measure on Rd). One con-
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struction stands out as completely natural, however, built from refining partitions
and coherent collections of priors like those of section 3.6: see section 8.2 for the
definition of a conjugate family of priors on non-parametric models called Dirichlet
process priors.

3.1 Subjective priors

As was explained in chapters 1 and 2, all statistical procedures require the statis-
tician to make certain choices, e.g. for model and method of inference. The sub-
jectivist chooses the model as a collection of stochastic explanations of the data
that he finds “reasonable”, based on criteria no different from those frequentists and
objectivist Bayesians would use.

3.1.1 Motivation for the subjectivist approach

Bayesians then proceed to choose a prior that assigns mass to all parts of the model,
usually in such a manner that the support of the prior covers all of the model itself.
But even after the support is fixed, there is a large collection of possible priors left to
be considered, leading to different posterior distributions. The objectivist Bayesian
will choose from those possibilities a prior that is “homogeneous” (in some suit-
able sense), in the hope of achieving unbiased inference. The subjectivist, however,
chooses his prior such as to emphasize parts of the model that he believes in stronger
than others, thereby introducing a bias in his inferential procedure explicitly. Such a
prior is called a subjective prior, or informative prior. The reason for this approach
is best explained by examples like 1.3.1, which demonstrate that intuitive statistical
reasoning is not free of bias either.

Subjectivity finds its mathematical expression when high prior “belief” is trans-
lated into “relatively large” amounts of assigned prior mass to certain regions of the
model. However, there is no clear rule directing the exact fashion in which prior
mass is to be distributed. From a mathematical perspective this is a rather serious
shortcoming, because it leaves us without a precise definition of the subjectivist ap-
proach. Often the subjectivist will have a reasonably precise idea about his “beliefs”
at the roughest level (e.g. concerning partitions of the model into a few subsets) but
none at more detailed levels. When the parameter space Θ is unbounded this lack of
detail becomes acute, given that the tail of the prior is hard to fix by subjective rea-
soning, yet highly influential for the inferential conclusions based on its posterior. In
practice, a subjectivist will often choose his prior without mathematical precision.
He considers the problem, interprets the parameters in his model and chooses a
prior to reflect all the (background) information at his disposition, ultimately filling
in remaining details in an ad-hoc manner. It is worthwhile to mention that studies
have been conducted focussed on the ability of people to make a realistic guess at a
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probability distribution: they have shown that without specific training or practice,
people tend to be overconfident in their assessments, assigning too much mass to
possibilities they deem most likely and too little to others [3]. This suggests that
people tend to formulate their “beliefs” on a deterministic basis and vary around
their established opinions only slightly (by adding only a little bit of “noise”) when
asked to give a realistic probabilistic perspective. (For more concerning the intrica-
cies of choosing subjective prior distributions, see Berger (1985) [19].)

Remark 3.1.1. For this reason it is imperative that a subjectivist prior choice is fully
described alongside inferential conclusions based upon it. Reporting on methods is
important in any statistical setting, but if chosen methods lead to express bias, ex-
planation is even more important. Indeed, not only the prior but also the reasoning
leading to its choice should be reported, because in a subjectivist setting, the moti-
vation for the choice of a certain prior is an intrinsic part of the statistical analysis.

3.1.2 Methods for the construction of subjective priors

If the model Θ is one-dimensional and the parameter θ has a clear interpretation, it
is often not exceedingly difficult to find a reasonable prior Π expressing the subjec-
tivist’s “belief” concerning the value of θ .

Example 3.1.2. If one measures the speed of light in vacuo c (a physical constant,
approximately equal to 299792458 m/s), the experiment will be subject to random
perturbations outside the control of the experimenter. For example, imperfections of
the vacuum in the experimental equipment, small errors in timing devices, electronic
noise and countless other factors may influence the resulting measured speed Y . We
model the perturbations collectively as a normally distributed error e ∼ N(0,σ2)
where σ is known as a characteristic of the experimental setup. The measured speed
is modelled as Y = c+ e, i.e. the model P = {N(c,σ2) : c > 0} is used to infer on
c. Based on experiments in the past the experimenter knows that c has a value close
to 3 ·108 m/s, so he chooses his prior to reflect this: a normal distribution located at
300000000 m/s with a standard deviation of (say) 1000000 m/s will do. The latter
choice is arbitrary, just like the choice for a normal distribution over other possible
error distributions.

The situation changes when the parameter has a higher dimension, Θ ⊂ Rd : first
of all, interpretability of each of the d components of θ = (θ1,θ2, . . . ,θd) can be
far from straightforward, so that concepts like prior “belief” or “expert knowledge”
become inadequate guidelines for the choice of a prior. Additionally, the choice for
a prior in higher-dimensional models also involves choices concerning the depen-
dence structure between parameters.

Remark 3.1.3. Often, subjectivist inference employs exceedingly simple, parametric
models for the sake of interpretability of the parameter (and to be able to choose a
prior accordingly). Most frequentists would object to such choices for their obvious
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lack of realism, since they view the data as being generated by a “true, underlying
distribution”, usually assumed to be an element of the model. By contrast, the sub-
jectivist does not have the ambition to be strictly realistic and calls for interpretabil-
ity instead: to the subjectivist, inference is a personal rather than a universal matter.
As such, the preference for simple parametric models is a matter of subjective inter-
pretation rather than an assumption concerning reality or realistic distributions for
the data.

When confronted with the question which subjective prior to use on a higher-
dimensional model, it is often of help to define the prior in several steps based on a
choice for the dependence structure between various components of the parameter.
Consider a the parameter that lies in Rd (endow R with the (Borel) σ -algebra B)
and suppose that the subjectivist can formulate a reasonable distribution for the first
component θ1, provided he can think about the other components θ2, . . . ,θd as be-
ing fixed at any value: this prescribes the conditional prior distribution Πθ1|θ2,...,θd

,
of θ1 given the other components. Next suppose that a reasonable subjective prior
for the second component may be found, conditional on θ3, . . . ,θd . This amounts
to specification of the conditional distribution Πθ2|θ3,...,θd

. If we continue like this,
eventually defining the marginal prior Πθd for the last component θd , we have found
a dependent prior for the full parameter θ , because for all A1, . . . ,Ad ∈B,

Π(θ1 ∈ A1, . . . ,θd ∈ Ad) =

Π(θ1 ∈ A1|θ2 ∈ A2, . . . ,θd ∈ Ad)× . . .×Π(θd−1 ∈ Ad−1|θd ∈ Ad)Π(θd ∈ Ad).

Example 3.1.4. We consider a certain species of monkey and are interested in esti-
mation of the average weight w and length l for a certain sub-population. Suppose
that we observe an i.i.d. sample of pairs (Wi,Li), (1 ≤ i ≤ n), weight and length
of the i-th monkey drawn from the sub-population. Let’s assume that the sample
size n is small and we want to use our limited amount of data in the most efficient
way. In the choice for a prior for (w, l), the (subjective) Bayesian will look for ex-
ternal information that informs the estimation of (w, l) beyond what the data itself
has to offer: let’s assume we have prior knowledge that derives from the (much
larger) population of all monkeys of this species: according to the subjectivist’s ex-
pert knowledge, weight w and length l of this species are related (approximately)
through a power-law relationship w = K lα , for some known K,α > 0.

As our model for (W,L), we choose products of Gamma distributions with shape
parameter k = 3: (W,L) ∼ Γ (w/3,3)×Γ (l/3,3), so that the model distribution
(W,L)|(w, l) has expectation (w, l). Note that to the frequentist, this suggests esti-
mation by sample means (W n,Ln). A subjective prior for (w, l) is now defined as
follows: given the length l, we specify (for some fixed choice λ > 0),

w|l ∼ Γ
(
λ
−1 K lα ,λ

)
,

so that the conditional prior expectation for w|l is K lα . For l, we choose a marginal
prior of the form,

l ∼ Γ (λ−1 ℓ,λ ),
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where ℓ is an approximate mean length for a monkey of this species. This has an
effect that can be explained in two ways: firstly the bias that the prior introduces
clearly shrinks the estimate towards the curve w = K lα , permitting it to “correct”
for variance that the sample means might display because they are based on a rather
small number of observations. A second view is that the chosen prior lets the ob-
served lengths Li play a role not only for the estimation of l but also that of w, using
that, according to the curve, a monkey of length Li usually has weight K Lα

i . To
interpret λ , note that prior variances of l and w|l are equal to ℓ2/λ and K2 l2α/λ

respectively, i.e. λ is inversely proportional to uncertainty expressed in the prior
(higher values of λ bias the prior (and hence also the posterior) more to the prior
expectation (ℓ,K ℓα)).

So in the above example, observed lengths become informative for the mean weight
w and observed weights become informative for the mean length l, through the
choice of a subjective prior. This extra inferential aspect is the strength of subjective
Bayesian statistics and it enables a wealth of modelling options. Clearly a frequentist
would also be able to shrink his estimates towards the expected curve for (w, l), but
his philosophy, like that of the objective Bayesian, tells him not to.

The construction indicated here is reminiscent of that of a so-called hyperprior,
which is discussed in section 3.5. The difference is, that components of θ all occur in
the definition of model distributions Pθ , whereas hyperparameters do not. Note that
it is important to choose a parametrization of the model in which the independence
between θi and (θ1, . . . ,θi−1), given (θi+1, . . . ,θd), is plausible for all i≥ 1.

In certain situations, the subjectivist has more factual information at his disposal
when defining the prior for his analysis. In particular, if a probability distribution
on the model reflecting the subjectivist’s “beliefs” can be found by other statistical
means, it can be used as a prior. Suppose the statistician is planning to measure
a quantity Y and infer on a model P; suppose also that this experiment repeats
or extends an earlier analysis. From the earlier analysis, the statistician may have
obtained a posterior distribution on P . For the new experiment, this posterior may
serve as a prior.

Example 3.1.5. Let Θ→P : θ 7→Pθ be a parametrized model for i.i.d. X1,X2, . . . ,Xn
with prior measure Π1 : G → [0,1]. Let the model be dominated (see defini-
tion 1.1.3), so that the posterior Π1( · |X1, . . . ,Xn) satisfies (2.15). Suppose that
this experiment has been conducted, with the sample realised as (X1,X2, . . . ,Xn) =
(x1,x2, . . . ,xn). Next, consider a new, independent experiment in which a quantity
Xn+1 is measured (with the same model). As a prior Π2 for the new experiment, we
use the (realised) posterior of the earlier experiment, i.e. for all G ∈ G ,

Π2(G) = Π1(G |X1 = x1, . . . ,Xn = xn).

The posterior for the second experiment then satisfies:
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dΠ2(θ |Xn+1) =
pθ (Xn+1)dΠ1(θ |X1 = x1, . . . ,Xn = xn)∫

Θ

pθ (Xn+1)dΠ1(θ |X1 = x1, . . . ,Xn = xn)

=

pθ (Xn+1)
n

∏
i=1

pθ (xi)dΠ1(θ)∫
Θ

pθ (Xn+1)
n

∏
j=1

pθ (x j)dΠ1(θ)

(3.1)

The latter form is comparable to the posterior that would have been obtained if we
had conducted a single experiment with an i.i.d. sample X1,X2, . . . ,Xn+1 of size n+1
and prior Π1. In that case, the posterior would have been of the form:

Π( · |X1, . . . ,Xn+1) =

n+1

∏
i=1

pθ (Xi)dΠ1(θ)∫
Θ

n+1

∏
j=1

pθ (X j)dΠ1(θ)

, (3.2)

i.e. the only difference is the fact that the posterior Π1( · |X1 = x1, . . . ,Xn = xn) is
realised. As such, we may interpret independent consecutive experiments as a sin-
gle, interrupted experiment and the posterior Π1( · |X1, . . . ,Xn) can be viewed as an
intermediate result.

3.2 Non-informative priors

Objectivist Bayesians argee with frequentists that the “beliefs” of the statistician
analyzing a given measurement should play a minimal role in the methodology.
Obviously, the model choice already introduces a bias, but rather than embrace this
necessity and expand upon it like subjectivists, they seek to keep the remainder of
the procedure unbiased. In particular, they aim to use priors that do not introduce
additional information (in the form of prior “belief”) in the procedure. Subjectivists
introduce their “belief” by concentrating prior mass in certain regions of the model;
correspondingly, objectivists prefer priors that are “homogeneous” in an appropriate
sense.

3.2.1 Uniform priors

At first glance, one may be inclined to argue that a prior is objective (or non-
informative) if it is uniform over the parameter space: if we are inferring on pa-
rameter θ ∈ [0,1] and we do not want to favour any part of the model over any
other, we would choose the Lebesgue measure on [0,1] for a prior. Attempts to
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minimize the amount of subjectivity introduced by the prior therefore focus on uni-
formity (argumentation that departs from the Shannon entropy in discrete probabil-
ity spaces reaches the same conclusion (see, for example, Ghosh and Ramamoor-
thi (2003) [115], p. 47)). The original references on Bayesian methods (e.g. Bayes
(1763) [14], Laplace (1774) [173]) use uniform priors as well. But there are several
problems with this approach: first of all, one must wonder how to extend such rea-
soning when θ ∈ R (or any other unbounded subset of R). In that case, Lebesgue
measure is infinite and cannot be normalized to a probability measure. Any attempt
to extend Π to such unbounded models as a probability measure would eventually
lead to inhomogeneity, i.e. go at the expense of the unbiasedness of the procedure.

The compromise some objectivists are willing to make, is to relinquish the inter-
pretation that subjectivists give to the prior: they do not express any prior “degree
of belief” in A ∈ G through the subjectivist statement that the (prior) probability
of finding ϑ ∈ A equals Π(A). Although they maintain the Bayesian interpreta-
tion of the posterior, they view the prior as a mathematical definition rather than a
philosophical concept. Then, the following definition can be made without further
reservations.

Definition 3.2.1. Given a model (Θ ,G ), a prior measure Π : G → [0,∞] such that
Π(Θ) = ∞ is called an improper prior.

Note that any dependence on the normalization factor for a prior cancels in the
expression for the posterior, cf. (2.4) or (2.6): any finite multiple of a (bounded)
prior is equivalent to the original prior as far as the posterior is concerned. How-
ever, this argument does not extend to the improper case: integrability problems or
other infinities may ruin the procedure, even to the point where the posterior mea-
sure becomes infinite or ill-defined. So not just the philosophical foundation of the
Bayesian approach is lost, mathematical integrity of the procedure can no longer
be guaranteed either. When confronted with an improper prior, the entire procedure
must be checked for potential problems. In particular, one must verify that the poste-
rior is a well-defined probability measure. (Throughout this book we use only priors
that are probability measures.)

But even if one is willing to accept that objectivity of the prior requires that we
restrict attention to models on which “uniform” probability measures exist (e.g. with
Θ a bounded subset of Rd), a more fundamental problem exists: the very notion of
uniformity is dependent on the parametrization of the model, which is problematic
because the parametrization is a subjective choice: the result is that two objectivist
Bayesians may insist on uniformity each in their own chosen parametrization, and
reach a subjective disagreement on what is objectively bona fide! To see this we
look at a model that can be parametrized in two ways and we consider the way
in which uniformity as seen in one parametrization manifests itself in the other
parametrization. Suppose that we have a d-dimensional parametric model P with
two different parametrizations, on Θ1 ⊂ Rd and Θ2 ⊂ Rd respectively,

φ1 : Θ1→P, φ2 : Θ2→P (3.3)
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both of which are bijective. Assume that P is a measurable space with σ -algebra G .
Require that φ1 and φ2 are Borel-to-G measurable. Assume that their inverses φ

−1
1

and φ
−1
2 are measurable as well (or assume that P is a Souslin space and use the re-

mark following theorem C.4.10). Assuming that Θ1 is bounded, we consider the uni-
form prior Π1 on Θ1, e.g. the normalized Lebesgue measure Π1(A)= µ(Θ1)

−1
µ(A),

for all A ∈B1. This induces a prior Π ′1 on P: for all B ∈ G ,

Π
′
1(B) = (Π1 ◦φ

−1
1 )(B). (3.4)

In turn, this induces a prior Π ′′1 on Θ2: for all C ∈B2,

Π
′′
1 (C) = (Π ′1 ◦ (φ−1

2 )−1)(C) = (Π ′1 ◦φ2)(C) =
(
Π1 ◦ (φ−1

1 ◦φ2)
)
(C).

Even though Π1 is uniform, generically Π ′′1 is not, because, effectively, we are map-
ping (a subset of) Rd to Rd by φ

−1
2 ◦φ1 : Θ1→Θ2. (Differentiable counterparts to

such measurable re-coordinatizations are used extensively in differential geometry,
where a smooth manifold is parametrized in various ways by sets of maps called
charts.)

Example 3.2.2. Consider the model of all normal distributions centred on the origin
with unknown variance between 0 and 1. We may parametrize this model in many
different ways, but we consider only the following two:

φ1 : (0,1)→P : τ 7→ N(0,τ), φ2 : (0,1)→P : σ 7→ N(0,σ2). (3.5)

Although used more commonly than φ1, parametrization φ2 is not special in any
sense: both parametrizations describe exactly the same model. Now, suppose that
we choose to endow the first parametrization with a uniform prior Π1, equal to the
Lebesgue measure µ on (0,1). By (3.4), this induces a prior on P . Let us now see
what this prior looks like if we consider P parametrized by σ : for any constant
C ∈ (0,1) the point N(0,C) in P is the image of τ =C and σ =

√
C, so the relation

between τ and corresponding σ is given by

τ(σ) = (φ−1
2 ◦φ1)(σ) = σ

2.

Since Π1 equals the Lebesgue measure, we find that the density of Π ′′1 with respect
to the Lebesgue measure equals:

π
′′
1 (σ)dσ = π1(τ(σ))

∣∣∣ dτ

dσ

∣∣∣(σ)dσ = 2σ dσ .

This density is non-constant and we see that Π ′′1 is non-uniform. In a subjectivist
sense, the prior Π ′′1 places higher prior “belief” on values of σ close to 1 than on
values close to 0.

From the above argument and example 3.2.2, we see that uniformity of the prior is
entirely dependent on the parametrization: what we call “uniform” in one parametriza-
tion, may be highly non-uniform in another: what is deemed objective in one
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parametrization can turn out to be highly subjective in another. What matters is
the model P itself and not its parametrization in terms of any specific parameter. A
notion of uniformity intrinsic to P would resolve the matter in a parametrization-
independent way, but spaces of probability measures do not come with such a notion
automatically.

3.2.2 Jeffreys prior and reference priors

Once it is clear that uniformity on any parametrizing space does not have intrinsic
meaning in the model P , the very definition of objectivity in terms of uniformity
of the prior is void. A subjectivist can use any parametrization to formulate his
prejudice but an objectivist has to define his notion of “objectivity” regardless of
the parametrization used. Therefore, the emphasis is shifted: instead of looking for
uniform priors, we look for priors that are well-defined on P and declare them
objective. For differentiable parametric models, a construction from Riemannian
geometry can be used to define a parameterisation-independent prior (see Jeffreys
(1946), (1961) [141, 142]) if we interpret the Fisher information as a Riemannian
metric on the model (as first proposed by Rao (1945) [226] and extended by Efron
(1975) [89]; for an overview, see Amari (1990) [4]) and use the square-root of its
determinant as a density with respect to the Lebesgue measure.

Definition 3.2.3. Let Θ ⊂ Rd be open and let P be a dominated model with iden-
tifiable, differentiable parametrization Θ →P . Assume that for every θ ∈Θ , the
score-function ℓ̇θ is square-integrable with respect to Pθ . The Jeffreys prior Π has
the square root of the determinant of the Fisher information Iθ = Pθ ℓ̇θ ℓ̇

T
θ

as its den-
sity with respect to the Lebesgue measure on Θ :

dΠ(θ) =
√

det(Iθ )dθ . (3.6)

The expression for Jeffreys prior has the appearance of being highly dependent on
the parametrization of P in terms of θ ∈Θ . However, the form (3.6) of this prior is
the same in any other parametrization related in a smooth way (a property referred
to sometimes as covariance with respect to diffeomorphisms). In other words, no
matter which (smooth) parametrization we use to calculate Π cf. (3.6), the induced
measure Π ′ on P is always the same one. As such, Jeffreys prior is a measure
defined intrinsically on P .

Example 3.2.4. We calculate the density of Jeffreys prior in the normal model of ex-
ample 3.2.2. The score-function with respect to the parameter σ in parametrization
φ2 of P is given by:

ℓ̇σ (X) =
1
σ

(X2

σ2 −1
)
.

The Fisher information (which is a 1×1-matrix in this case), is then given by:
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Iσ = Pσ ℓ̇σ ℓ̇σ =
1

σ2 Pσ

(X2

σ2 −1
)2

=
2

σ2

Therefore, the density for Jeffreys prior Π takes the form

dΠ(σ) =

√
2

σ
dσ ,

for all σ ∈Θ2 = (0,1). A similar calculation using the parametrization φ1 shows
that, in terms of the parameter τ , Jeffreys prior takes the form:

dΠ(τ) =
1√
2τ

dτ,

for all τ ∈Θ1 = (0,1). That both densities give rise to the same measure on P is
the assertion of the following lemma.

Lemma 3.2.5. (Parameterization-independence of Jeffreys prior) Suppose that the
conditions of definition 3.2.3 are satisfied and that φ1 and φ2 are two parametriza-
tions related through a diffeomorphism (i.e. φ

−1
1 ◦φ2 and φ

−1
2 ◦φ1 are differentiable

bijections). Then the densities (3.6), calculated in coordinates φ1 and φ2 induce the
same measure on P , the Jeffreys prior.

Proof. Since the Fisher information can be written as:

Iθ1 = Pθ1(ℓ̇θ1 ℓ̇
T
θ1
),

and the score ℓ̇θ1(X) is defined as the gradient of θ1 7→ log pθ1(X) with respect to
θ1, the change of parametrization θ1(θ2) = (φ−1

1 ◦φ2)(θ2) induces a transformation
of the form,

Iθ2 = S1,2(θ2) Iθ1(θ2) S1,2(θ2)
T ,

on the Fisher information matrix, where S1,2(θ2) is the total derivative of θ2 7→
θ1(θ2) in the point θ2 of the model. Therefore,√

det Iθ2 dθ2 =
√

det(S1,2(θ2) Iθ1(θ2) S1,2(θ2)T )dθ2

=
√

det(S1,2(θ2))2
√

det(Iθ1(θ2))dθ2

=
√

det(Iθ1(θ2))
∣∣det(S1,2(θ2))

∣∣dθ2 =
√

det(Iθ1)dθ1

i.e. the form of the density of the Jeffreys prior is such that reparametrization leads
exactly to the Jacobian for the transformation of dθ2 to dθ1.

Ultimately, the above construction derives from the fact that the Fisher information
Iθ (or, in fact, any Hessian of a twice-differentiable convex function) can be viewed
as a Riemann metric on the “smooth manifold” P . The definition of a measure with
Lebesgue density (3.6) is then a standard construction of a measure on the manifold
in differential geometry.
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Example 3.2.6. To continue with the normal model of examples 3.2.2 and 3.2.4, we
note that σ(τ) =

√
τ , so that dσ/dτ(τ) = 1/(2

√
τ). As a result,

√
det Iθ2 dθ2 =

√
2

σ
dσ =

√
2

σ(τ)

∣∣∣dσ

dτ

∣∣∣(τ)dτ =
1√
2τ

dτ =
√

det(Iθ1)dθ1,

which verifies the assertion of lemma 3.2.5 explicitly.

Other constructions and criteria for the construction of non-informative priors
exist: very popular is the use of so-called reference priors, as introduced in Lind-
ley (1956) [193] and rediscovered in Bernardo (1979) [24] (see also Berger and
Bernardo (1992) [20]). By defining principle, a reference prior is required to max-
imize the Kullback-Leibler divergence of the prior relative to the posterior. To mo-
tivate this condition, we have to look at information theory, from which Kullback-
Leibler divergence emerges as a (popular but by no means unique) way to quan-
tify the notion of the “amount of information” contained in a probability distribu-
tion. Sometimes called the Shannon entropy, the Kullback-Leibler divergence of the
counting measure with respect to a distribution P in discrete probability spaces,

S(P) = ∑
ω∈Ω

p(ω) log(p(ω)),

can be presented as such convincingly (see Bolzmann (1895, 1898) [44], Shannon
(1948) [242]). For lack of a default dominating measure, the argument does not
extend formally to continuous probability spaces but is generalized regardless.

Definition 3.2.7. A reference prior Π on a dominated, parametrized model Θ →
P : θ 7→ Pθ for an observation Y is a maximizer of the so-called Lindley entropy,

SL =
∫ ∫

log
(

π(θ |Y = y)
π(θ)

)
dΠ(θ |Y = y)dPΠ (y),

which measures the prior-predictive expectation of the Kullback-Leibler divergence
of the prior with respect to the posterior.

Note that Bayes’s Rule (2.4) (see also exercise 2.6.7) allows us to rewrite the Lindley
entropy in the form,

SL =
∫ ∫

log
(

π(θ |Y = y)
π(θ)

)
dPθ (y)dΠ(θ),

Usually, the derivation of a reference prior [24] is performed in the large-sample
limit where the posterior for a sufficiently smooth model becomes asymptotically
normal, in accordance with the Bernstein-von Mises theorem of chapter 4. For cer-
tain models, Jeffreys prior emerges as a reference prior.

For an overview of various objective methods of constructing priors, the reader is
referred to Kass and Wasserman (1995) [147]. When using non-informative priors,
however, the following general warning should be heeded.
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Remark 3.2.8. In many models, non-informative priors, including Jeffreys prior and
reference priors, are improper.

3.3 Hierarchical priors

Consider again the problem of estimating the mean of a single, normally distributed
observation Y with known variance. The model consists of all normal distributions
Pθ = N(θ ,σ2), where θ ∈ R is unknown and σ2 > 0 is known. Imposing a normal
prior on the parameter θ , Π = N(0,τ2), for some choice of τ2 > 0, we calculate the
posterior distribution,

Π(θ ∈ A|Y ) = N
(

τ2

σ2 + τ2 Y,
σ2τ2

σ2 + τ2

)
(A), (3.7)

for every A ∈B. As long as sufficient expert knowledge is available, subjectivist
choices for a certain value of τ2 can be motivated, as in example 3.1.2. But in sit-
uations where no prior belief on the parameter θ is available, or if the parameter
itself does not have a clear interpretation, there is no subjectivist way forward, even
though a choice for τ2 is required. This leaves various options: we may express
our ignorance concerning τ2 by choosing a prior on objectivist grounds, or by con-
sidering (more and more homogeneous but still normal) priors in the limit τ → ∞,
motivated by the approximate unbiasedness of resulting estimators.

Remark 3.3.1. However, from a statistical perspective there exists a better way to
deal with the uncertainty in τ2: since τ2 is not known, we estimate its value from
the data.

In this section and the next, we consider this answer from the Bayesian and from
the frequentist’s angle respectively, giving rise to procedures known as hierarchical
Bayesian modelling and empirical Bayesian estimation.

3.3.1 Hyperparameters and hyperpriors

First we turn to the Bayesian answer to remark 3.3.1: the Bayesian views a param-
eter to be estimated as just another random variable in the probability model. In
case we want to estimate the parameter for a family of priors, then that parameter
is to be included in the probability space from the start. Going back to the example
with which we started this section, this means that we still use normal distributions
Pθ = N(θ ,σ2) to model the uncertainty in the data Y , supply θ ∈ R with a prior
Π1 = N(0,τ2) and then proceed to choose a another prior Π2 for τ2 ∈ (0,∞):

Y |θ ,τ2 = Y |θ ∼ Pθ = N(θ ,σ2), θ |τ2 ∼Π1 = N(0,τ2), τ
2 ∼Π2,
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Note that the parameter τ2 has no direct bearing on the model distributions: condi-
tionally on θ , Y |θ is independent of τ2. The hierarchical Bayesian approach gives
rise to priors that intermediate between subjective and objective philosophies. The
subjectivist makes a definite, informed choice for τ2 while the objectivist keeps
himself as uncommitted as possible: if Π2 is chosen highly concentrated around one
point in the model resembling a degenerate measure, the procedure will be close to
subjective; if Π2 is spread widely and is far from degenerate, the procedure will be
less biased and closer to objective.

More importantly, the flexibility gained through introduction of Π2 offers a much
wider freedom of modelling. Particularly we may add several levels of parameters,
building up a hierarchy of priors for parameters of priors. Such structures are used
to express detailed subjectivist beliefs, much in the way graphical models are used
to build intricate dependency structures for observed data. The origins of the hierar-
chical approach go back, at least, to Lindley and Smith (1972) [194].

Definition 3.3.2. Let the data Y be random in (Y ,B). A hierarchical Bayesian
model for Y consists of a collection of probability measures P = {Pθ : θ ∈Θ0}, with
(Θ0,G0) measurable and endowed with a prior Π : G0 → [0,1] built up in the fol-
lowing way: for some k≥ 1, we introduce measurable spaces (Θi,Gi), i = 1,2, . . . ,k,
conditional priors

Gi×Θi+1→ [0,1] : (G,θi+1) 7→Πi(G|θi+1),

for i = 0, . . . ,k−1 and a marginal Πk : Gk→ [0,1] on Θk. The prior for the original
parameter θ is then defined by,

Π(θ ∈ G) =
∫

Θ1×...×Θk

Π0(θ ∈ G|θ1)dΠ(θ1|θ2) . . . dΠ(θk−1|θk)dΠk(θk), (3.8)

for all G ∈ G0. The parameters θ1, . . .θk and the priors Π1, . . . ,Π2 are called hyper-
parameters and their hyperpriors.

It is worth mentioning that the same hierarchical structure is used in so-called graph-
ical models to model detailed dependence structures for higher-dimensional obser-
vations: if Y = (Y1, . . . ,Yd), the joint distribution may be constructed in several steps
from the conditional distributions Yi|Yi+1 . . .Yd . A graphical model is defined when
these conditionals are chosen from (usually parametric) families, leading to statis-
tical questions regarding estimation, testing and uncertainty quantification for the
parameter. The resulting models are sometimes referred to as Bayesian belief net-
works due to the analogy with hierarchical priors. However the conceptual differ-
ence is clear: components of Y are observed while components of the parameter θ

and hyperparameters are not.
Definition 3.3.2 is also very close to the general Bayesian model that incorporates

all components of the parameter as modelling parameters, as in example 3.1.4. What
distinguishes hierarchical modelling from the general situation is the independence
of Y |θ from higher (hyper)components of the parameter. This distinction is repeated
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at higher levels in the hierarchy, i.e. levels are separate from one another through the
conditional independence of θi|θi+1 from θi+2, . . . ,θk.

Remark 3.3.3. The hierarchy indicated in definition 3.3.2 inherently loses inter-
pretability as we ascend in level. One may be able to give a viable interpretation to
the parameter θ and to the hyperparameter θ1, but higher-level parameters θ2,θ3, . . .
become harder and harder to understand heuristically. Since the interpretation of
the hierarchy requires a subjective motivation of the hyperpriors, interpretability of
each level is imperative, or left as a non-informative choice. In practice, Bayesian
hierarchical models are rarely more than a few levels deep (k = 2,3) and the last
hyperprior Πk is often chosen by objective criteria.

3.3.2 Hierarchical prior construction in an example

To illustrate the rather formal definitions of the previous subsection, we consider a
very basic example of Bayesian modelling with hierarchical priors in some detail.

Example 3.3.4. We observe the number Y of surviving offspring from a bird’s lit-
ter and aim to estimate the number of eggs the bird has laid: the bird lays N ≥ 0
eggs, distributed according to a Poisson distribution with parameter λ > 0. For the
particular species of bird in question, the Poisson rate λ is not known exactly: the
uncertainty in λ can be modelled in many ways; here we choose to model it by a
Gamma-distribution Γ (α,β ) (with density denoted pα,β ), where α and β are cho-
sen to reflect our imprecise knowledge of λ as well as possible. Each of the eggs
then comes out, producing a viable chick with known probability p∈ [0,1], indepen-
dently. Hence, the total number Y of surviving chicks from the litter is distributed
according to a binomial distribution, conditional on N,

Y |N,λ = Y |N ∼ Bin(N, p), N|λ ∼ Poisson(λ ), λ ∼ Γ (α,β ).

The posterior distribution is obtained as follows: conditional on N = n, the proba-
bility of finding Y = k is binomial,

P(Y = k|N = n) =
(

n
k

)
pk(1− p)n−k,

so Bayes’s rule tells us that the posterior is given by:

P(N = n|Y = k) =
P(N = n)
P(Y = k)

(
n
k

)
pk(1− p)n−k.

Since ∑n≥0 P(N = n|Y = k) = 1 for every k, the marginal P(Y = k) (that is, the
denominator or normalization factor for the posterior given Y = k) can be read off
once we have the expression for the numerator. We therefore concentrate on the
marginal for N = n, (n≥ 0):
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P(N = n) =
∫
R

P(N = n|λ ) pα,β (λ )dλ =
β α

Γ (α)

∫
∞

0

e−λ λ n

n!
λ

α−1 e−βλ dλ .

The integral is solved using the normalization constant of the Γ (α + n,β + 1)-
distribution: ∫

∞

0
e−(β+1)λ

λ
α+n−1 dλ =

Γ (α +n)
(β +1)α+n .

Substituting and using the identity Γ (α +1) = α Γ (α), we find:

P(N = n) =
Γ (α +n)

Γ (α)

1
n!

β α

(β +1)α+n

=
1
n!

(
β

β +1

)α

(β +1)−n
n

∏
l=1

(
α + l−1

) (3.9)

Although not in keeping with the subjective argumentation of the introduction to
this example, for simplicity we consider α = β = 1 and find that in that case,

P(N = n) =
(1

2

)(n+1)
.

The posterior for N = n given Y = k then takes the form:

P(N = n|Y = k) =
1
2n

(
n
k

)
pk(1− p)n−k

/
∑

m≥0

1
2m

(
m
k

)
pk(1− p)m−k.

The eventual form of the posterior illustrates that the hierarchy contributes only to
the construction of the prior: in case we choose α = β = 1, the posterior we find
from the hierarchical approach does not differ from the posterior that we would have
found if we had started from the model that incorporates a geometric prior for N,

Y |N ∼ Bin(N, p), N ∼ Geo(1/2).

Indeed, even if we leave α and β free, the marginal distribution for N we found in
(3.9) is none other than the prior (3.8) for this problem.

The hierarchical approach to prior construction allows for greater freedom and a
more solid foundation to motivate the choice for certain prior over other possibil-
ities. This point is all the more significant in light of remark 3.1.1: the motivation
of a subjectivist choice for the prior is part of the statistical analysis rather than an
external aspect of the procedure. Hierarchical Bayesian modelling helps to refine
and justify motivations for subjectivist priors.
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3.4 Empirical priors

More unexpected is the frequentist perspective on remark 3.3.1, which goes by the
general name empirical Bayes: point-estimate τ2 first based on available data and
then perform the Bayesian analysis with the estimate as a “plug-in” for the unknown
τ2. Critical notes can be placed with the philosophical foundations for this practice,
since it appears to combine the methods of two contradictory schools of statistics.
Be that as it may, the method is used routinely based on its practicality: ultimately
justification comes from the subjectivist who does not reject frequentist methods to
obtain expert knowledge on his parameters, or from the frequentist who wants to
de-bias posteriors.

There are two problems however: of course common sense tells us that it is cru-
cial for any statistical analysis that we first obtain a certain feeling for the statisti-
cal problem by inspection of the data, before making decisions on how to analyse
it. However, this frequentist form of “expert knowledge” is at odds with another
common-sense practical rule: good statistical practice requires that one may not use
the data to decide which statistical method to use for the analysis of the same data.
The rationale behind this dictum is the potential for introduction of bias in the anal-
ysis. The first problem, then, is that posteriors for data-dependent priors have the
potential to be biased in complicated and unpredictable ways.

This warning is customarily ignored in the literature: it is common practice to
calculate the posterior Π(·|Y,τ) for fixed values of a hyperparameter τ2 and subse-
quently substitute “plug-in” estimates τ̂(Y ) based on the same data Y . Howegver,
the resulting quantity,

Π(ϑ ∈ B |Y, τ̂(Y )) =
∫

B
pθ (Y )dΠτ̂(Y )(θ)

/ ∫
Θ

pθ (Y )dΠτ̂(Y )(θ), (3.10)

is not a posterior: the random probability measure (3.10) has little to do with the
conditional distribution of θ |Y , because the definition of the posterior, Bayes’s rule
in the form (2.4), does not leave room for any data-dependence of the prior.

To avoid these problems, a data-dependent prior should not depend on the same
data Y that is used later to derive the posterior distribution for θ |Y : ideally one splits
the available data into two independent parts, making any data-driven choice for the
prior based on one sub-sample and performing the analysis proper with the other.
Independence between the sub-samples guarantees the absence of bias. In fact the
subjective prior choice of example 3.1.4 is motivated in this way: a natural “split
of the sample” occurs in situations where we analyse data pertaining to individuals
from a larger population. It is often reasonable to assume that hyperparameters can
be estimated from the population and that we can use the estimates as hyperparam-
eters for the prior choice to analyse the data for the individuals. Typically, one has
data consisting of i.i.d. X1, . . . ,Xn that can be split into two independent, smaller
i.i.d. samples (which poses the interesting question which fraction of the data is to
be used for estimation of hyperparameters like τ2 and how much data should be in-
volved in the calculation of the posterior). But even after splitting of the sample into
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Y and Y ′, a possible source of problems remains: uncertainty quantification based on
an empirical-Bayes posterior accounts for the uncertainty due to the random nature
of Y , but not that of Y ′, potentially leading to credible sets that are too small. In case
we do not split the sample, the problem is aggravated by the fact that the amount of
data available for calculation of the posterior is larger, leading to credible sets that
are smaller, suggesting even less uncertainty.

A sophisticated application of the empirical Bayes idea is the estimation of
hyperparameters by maximum-likelihood applied to the prior predictive distribu-
tion. Recall that the prior expectation of the distribution of the data (see defini-
tion 2.1.4) “predicts” the marginal distribution of the data. This prediction may be
reversed to decide which value for the hyperparameter leads to the best explanation
of the observed data based on the likelihood principle. More formally, denote the
data by Y (taking values in a measurable space (Y ,B)) and denote the model by
P = {Pθ : θ ∈Θ0}. Consider a family of priors parametrized by a hyperparameter
η ∈ H, {Πη : η ∈ H}. For every η , the prior predictive distribution Pη is given by:

Pη(A) =
∫

Θ

Pθ (A)dΠη(θ),

for all A ∈B. In this way we obtain a new model for the observation Y , given by
P ′ = {Pη : η ∈ H}, contained in the closed convex hull of the original model (see
theorem 2.2.5). Note that this new model is parametrized by the hyperparameter;
hence if we close our eyes to the rest of the problem and we follow the maximum-
likelihood procedure for estimation of η in this new model, we find the value of the
hyperparameter that best explains the observation Y . Assuming that the model P ′ is
dominated, with densities {pη : η ∈H}, the maximum-likelihood estimate is found
as the point η̂(Y ) ∈ H such that

pη̂(Y ) = sup
η∈H

pη(Y ).

under the assumptions of existence and uniqueness, by the usual methods for
maximum-likelihood estimation.

Definition 3.4.1. The estimator η̂(Y ) is called the ML-II estimator, provided it ex-
ists and is unique.

Remark 3.4.2. There is one caveat that applies to the ML-II approach: in case the
data Y consists of an i.i.d.-distributed sample, the prior predictive distribution de-
scribes the sample as exchangeable, but not i.i.d.! Hence, comparison of prior pre-
dictive distributions with the data suffer from the objection raised in remark 2.1.19.
The frequentist who assumes that the true, underlying distribution Pn

0 of the sample
is i.i.d., has to keep in mind that the ML-II model is misspecified.
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3.4.1 Model selection with empirical methods

A situation where empirical Bayes methods are often used, is in model selection:
suppose that there are several models P1,P2, . . . with priors Π1,Π2, . . ., each of
which may serve as a reasonable explanation of the data, depending on an unknown
parameter K ∈ {1,2, . . .}. The choice to use model-prior pair (Pk,Πk) in the deter-
mination of the posterior is made after estimation of K. Where the Bayesian chooses
a hyperprior for the hyperparameter K, frequentist ways to estimate K leads to em-
pirical Bayes methods.

Example 3.4.3. Consider the situation where we are provided with an i.i.d. sequence
of specimens from a population that is divided into an unknown, finite number of
classes K. All we know about the classes is that they occur with equal probabilities
in the population. For each specimen the (random) class L is unknown, all we ob-
serve is a real-valued X , where it is assumed that X |L = l is normally distributed
conditional on the class l, with unknown mean µl ∈ R and known variance (which
we normalize to 1). Then each observation X is distributed according to a discrete
mixture of normal distributions,

X |K,µ ∼ PK;µ1,...,µK =
1
K

K

∑
l=1

N(µl ,1),

where the components of µ = (µ1, . . . ,µK) ∈RK satisfy µ1 < .. . < µK , to maintain
identifiability of the parametrization. For every value of K ≥ 1, we have a model of
the form,

PK =
{

PK;µ1,...,µK : (µ1, . . . ,µK) ∈ RK , µ1 < .. . < µK
}

Each of these models can be endowed with a prior ΠK on RK , for example, by draw-
ing an i.i.d. sample µ ′1, . . . ,µ

′
K from the standard normal distribution and ordering

the results: µk = µ ′(k), (1≤ k ≤ K).
At this point, a Bayesian would choose a hyperprior Π2 for the discrete hyperpa-

rameter K ≥ 1 and proceed to calculate the posterior using all models Pk, weighed
by the prior masses Π2(K = k) for all k ≥ 1, in accordance with the methods of
section 3.3. Alternatively, the Bayesian can (split the sample and) estimate K with
some estimator K̂ (like a frequentist would), to analyse the posterior using only one
model PK̂ , cf. the methods of this section. To estimate K various methods exist: in-
spection of the data may reveal which number of classes is most appropriate if there
are clearly separated peaks in the observations. Otherwise, posterior odds (based on
the right prior for K, see below) or frequentist clustering methods exist to estimate
K.

But estimation of K to select one of the models PK is a difficult statistical prob-
lem: maximization of the likelihood with an unbounded number of classes picks
a number of classes equal to (or in the order of) the sample-size, simply because
assigning each data-point its own class leads to the largest likelihood function. A
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similar phenomenon arises in regression, where it is called overfitting: if we allow
regression polynomials of arbitrary degree, maximization of the likelihood fits the
data perfectly by choosing a polynomial of degree equal to the sample-size. The fit
is perfect, residuals are zero and any associated measure for quality (like R2) will
reflect this. But we are no longer doing statistics because we are not distinguishing
signal from noise (in fact, we have interpreted all noise as signal and the fit reflects
this). Using such a fit in practice (for example to predict the distribution of another
independent sample) leads to bad results because even though the second sample has
the same underlying signal, noise differs and the fit does not anticipate this. Both for
estimation of the number of mixture components and of the degree of a regression
polynomial, one would like to have a sensible way to regularize the estimate for the
number of clusters K, and then estimate µ1, . . . ,µk.

In such questions of model selection, penalized likelihood criteria are employed
which favour smaller choices for K over larger ones. Note that it is not clear, nei-
ther intuitively nor mathematically, how the penalty should depend on K or on the
sample-size, nor which proportionality between penalty and likelihood is appro-
priate. A well-known standard choice comes in the form of the so-called Akaike
information criterion (AIC) for model selection [241]: it argues for maximization
of the (k-dependent) likelihood minus twice the dimension of the k’th parameter
space (here 2k), motivated from information theory and large sample sizes. The
Bayesian faces the same problem when he chooses a prior for K: if he assigns too
much prior weight to the higher-dimensional models, his estimators (or, equiva-
lently, the bulk of the resulting posterior’s mass) will get the chance to “run off”
to infinity with growing samplesize, indicating inconsistency from over-fitting. The
so-called Bayesian information criterion (BIC) [241] weighs the AIC penalty by
the logarithm of the sample size, motivated by the Bernstein-von Mises limit of
chapter 4, maximizing likelihood minus 2k log(n). Indeed, the correspondence be-
tween the frequentist’s necessity for a penalty in maximum-likelihood methods on
the one hand, and the Bayesian’s need for a prior expressing sufficient bias for the
lower-dimensional model choices on the other, is explained in remark 2.2.21.

It is difficult to indicate which regularization method is preferred, as long as the
argument is to be made for each sample-size n ≥ 1 separately. Matters organise
themselves in the large-sample limit, where one would like to select the model con-
sistently: if we observe larger and larger i.i.d. samples Xn = (X1,X2, . . . ,Xn), with
each Xi distributed like X above marginally, for some unobserved value K = k, we
would like to have a model selection method that selects the correct number of clus-
ters k with probability growing to one as n→ ∞.

Example 3.4.4. In part II, we shall see that in the model of example 3.4.3, consistent
selection of K is possible, if we restrict the model to consist of an upper-bounded
number of clusters and the locations µi all lie in a fixed, compact subset of R, with
some fixed minimal distance between them. We can summarize these requirements
in terms of a single integer M ≥ 1 such that, 1≤ K ≤M and,

Pl =
{

Pl;µ1,...,µl : (µ1, . . . ,µl) ∈ [−M,M]l , µ1 < .. . < µl ,µi+1−µi > 1/M
}
.
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Then any convex combination of priors Πl that are of full support on their respective
submodels Pl ,

Π =
M

∑
l=1

πl Πl ,

for 0 < π1, . . . ,πM < 1 such that ∑
M
l=1 πl = 1, will lead to a sequence of posteriors

on P = ∪M
l=1Pl that concentrate all mass in the correct component Pk with prob-

ability growing to one as n→∞: consequently, posterior odds can be used to model
select consistently. The restriction that all classes are represented in equal num-
bers in the population is not necessary (although consistent selection with posterior
odds requires a minimal value 1/M for each of the fractions). And the question also
arises, what if we use upper bounds Mn that grow larger with growing sample-size
n? How fast can Mn go to infinity, while still achieving a consistent posterior?

3.4.2 Bias and the James-Stein estimator

What is clear in the clustering and regression examples, is that model selection
can also be viewed as correction of a bias inherent to our estimation method, a
bias towards models with a high number of clusters or high order of a regression
polynomial. Such views are particularly fruitful in the Bayesian case, because often,
Bayesian point estimators that are expectations with respect to the posterior like the
posterior predictive distribution PΠ |Y , (but also the posterior mean of a parameter)
can be decomposed into an unbiased, consistent estimate P̂(Y ) and a bias ascribed
to the prior, like the prior predictive distribution PΠ (but also the prior mean of a
parameter),

PΠ |Y = (1−λ ) P̂(Y )+λ PΠ . (3.11)

Refer to decomposition (8.12) for an example in the context of the Dirichlet process
prior and posterior. If with growing samplesize n we have λn → 0, then the poste-
rior predictive distribution follows the unbiased, frequentist estimate asymptotically
(and will be consistent if P̂n is). There are also cases where λn does not go to zero
and bias persists in the limit, leading to inconsistency of the Bayesian estimator (see
[67] for examples with so-called Gibbs-type priors).

With empirical Bayes methods to estimate which prior predictive distribution
(or prior mean parameter value) is most appropriate, however, the inherent prior
bias in (3.11) may be repairable: if we use the data to de-bias the prior predictive
distribution PΠ itself, such problems can be mitigated or eliminated altogether.

Example 3.4.5. (Univariate normal mean) Consider the simpler case of X1,X2, . . .
that are i.i.d.-N(θ ,σ2)-distributed (with known σ2 > 0) and a normal, non-central
prior for the parameter θ ∈ R, that is, Π = N(α,τ2) for some α ∈ R and τ2 > 0.
The posterior distribution is again a normal distribution (see section 3.5) and it is
easily seen that the posterior mean is,
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θ n(X1, . . . ,Xn) =
σ2α + τ2

∑
n
i=1 Xi

σ2 +nτ2

=
nτ2

σ2 +nτ2 Xn +
σ2

σ2 +nτ2 α.

(3.12)

Note that the sample average Xn is an unbiased, consistent estimator for the location
θ , while the prior expectation α introduces a bias. As n→∞, the difference between
the posterior mean and the sample average goes to zero, so we conclude that the bias
introduced by the prior vanishes asymptotically.

To de-bias θ n not only in the large-sample limit, we use empirical Bayes and
estimate α from an independent i.i.d. sample X ′1, . . . ,X

′
n, with the sample average,

α̂n(X ′1, . . . ,X
′
n) = X ′n,

then both contributions in (3.12) are unbiased at finite values of n. Such de-biasing
of the posterior mean with empirical methods gives rise to point-estimators that are
optimal according to theorem 2.2.13 if they are quadratically integrable.

So, in case that posterior predictive distribution or mean has a bias, empirical Bayes
methods can be used to correct. That idea is applied somewhat unexpectedly in the
following example.

Example 3.4.6. (Multivariate normal mean) Suppose that d ≥ 3 and we consider a
data vector Y = (Y1, . . . ,Yd) with components Yi that are modelled as independent,
and distributed according to a multivariate normal distribution with a covariance
matrix that is a known multiple (σ2 > 0) of the identity,

Yi|θ ∼ N(θi,σ
2),

for each 1 ≤ i ≤ d. A moment’s thought shows that the ML estimator for θ based
only on Y , is given by θ̂ML(Y ) = Y . A prior for the parameter θ ∈ Rd is chosen
as follows: we view the components (θ1, . . . ,θd) as an i.i.d. sample from the one-
dimensional normal distribution N(µ,τ2) with hyperparameters µ ∈ R and τ2 ≥
0 (τ2 = 0 corresponding to a prior distribution degenerate at θ = µ). The prior
predictive distribution for the data vector Y , given µ,τ2, has Lebesgue density,

pΠ

µ,τ2(y1, . . . ,yd) =
d

∏
j=1

1√
2π(σ2 + τ2)1/2

exp
(
−1

2
(y j−µ)2

σ2 + τ2

)
.

The ML-II method prescribes that we maximize the prior predictive likelihood
pΠ

µ,τ2(Y ′1, . . . ,Y
′
d) based on an independent copy Y ′ of Y (in principle, but with Y ′=Y

commonly). Analysing (µ,τ2) 7→ log pΠ

µ,τ2 , we find that µ- and τ2-derivatives are
given by:
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∂

∂ µ
log pΠ

µ,τ2(Y ′) =
1

σ2 + τ2

d

∑
j=1

(Y ′i −µ),

−2
∂

∂τ2 log pΠ

µ,τ2(Y ′) =
d

σ2 + τ2 −
d
(
s2

d(Y
′)+(Y ′−µ)2

)
(σ2 + τ2)2 ,

with Y ′ = d−1
∑ j Y ′i and s2

d(Y
′) = d−1

∑ j(Y ′j −Y ′)2. Solving for µ and substituting,
we find ML-II estimates for the hyperparameters,

µ̂(Y ′) = Y ′, τ̂
2(Y ′) = max{0,s2

d(Y
′)−σ

2},

(with τ̂2(Y ′) = 0 signifying degeneracy at θ = µ̂(Y ′)). Essentially, the resulting em-
pirical prior imposes, for each component θ j, 1≤ j ≤ d, a bias towards the average
value Y ′ of the observed components Y ′1 through Y ′d with two distinct cases. When
s2

d(Y
′)≥σ2, differences between (observed) components are relatively large and the

prior is normal located at µ̂(Y ′) with a variance that adds with σ2 to the observed
s2

d(Y
′); when s2

d(Y
′)< σ2, differences between observed components Y ′1, . . . ,Y

′
d are

relatively small, indicating that their average Y ′ may be informative for estimation
of the means θi of individual components of Y . In the first case, the bias formu-
lated by the prior expectation Y ′ is mitigated by a prior variance that leaves room
for doubt; in the second case, the prior is concentrated all the way on δ

θ=Y ′ (as in
example 2.1.13). This is reflected in the posterior: when s2

d(Y
′)≥ σ2, the empirical

Bayes posterior for the j-th component of θ is (see (3.7)),

Π(θ ∈ A|Y,µ = µ̂(Y ′),τ2 = τ̂
2(Y ′))

= Nd
(
λ̂ (Y ′)Y ′+(1− λ̂ (Y ′))Y,(1− λ̂ (Y ′))σ2)(A),

where λ̂ (Y ′) = σ2/s2
d(Y
′); when s2

d(Y
′)< σ2, all posterior mass is shrunk into one

point (see example 2.1.13). Re-combining both cases, we decompose the empirical
Bayes posterior expectation in the form (1≤ j ≤ d),

θ̃ j(Y ;Y ′) =
(
1− κ̂(Y ′)

)
Y ′+ κ̂(Y ′)Yj, (3.13)

where κ̂(Y ′) = max{0,1−σ2/s2
d(Y
′)}. As said, it is customary not to split the sam-

ple and use Y also in the role of Y ′. In that case write θ̃(Y ) = (1− κ̂(Y ))Y + κ̂(Y )Y .
It came as a great surprise that the empirical Bayes estimator θ̃(Y ) outperforms

the maximum-likelihood estimate θ̂(Y ) and all other unbiased estimators for the
problem with respect to expected squared-error loss L(θ ,θ ′) = ∥θ−θ ′∥2 = Σ j(θ j−
θ ′j)

2 (see Efron and Morris (1973) [88]). In fact, a slightly different estimator that
shrinks the unbiased estimate towards the sample average was written down without
reference to any Bayesian methods in Stein’s 1956 work [246]: for d ≥ 3, what is
now known as the James-Stein estimator is the shrinkage estimator,

θ̂JS(Y ) =
(

1− (d−2)σ2

s2
d

)
(Y −Y )+Y . (3.14)
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It was shown in James and Stein (1961) [138] that θ̂JS is risk-better than the usual
estimates: shockingly, for all θ ∈ Rd ,

Pθ∥θ̂JS−θ∥2 ≤ Pθ∥θ̂ −θ∥2,

with strict inequality for most values of θ (for proof, see corollary 4.7.2 in Lehmann
and Casella (1998) [177]). The Lehmann-Scheffé theorem even amplifies this to the
assertion that the James-Stein estimator is risk-better than any unbiased estimator,
i.e. unbiased estimators are inadmissable (see definition 2.5.4 and example 2.5.10).
It was recognized in [88] that point-estimators that result from empirical Bayes pos-
teriors introduce the type of bias that the James-Stein estimator has and, correspond-
ingly, outperform unbiased estimators in the given example. Indeed, if we use an un-
biased estimator for σ2/(σ2+τ2) rather than the ML-II estimate (see problem 4.7.1
in [177]), the resulting empirical Bayes estimator coincides with the James-Stein
estimator. Because the ML estimator for this problem is optimal with respect to
mean squared-error within the class of unbiased estimators, cf. theorem 2.2.13, it
is called efficient. Correspondingly, the James-Stein and empirical Bayes estimators
are called superefficient.

To provide some counterweight to that remarkable conclusion, let us consider
some of the drawbacks of shrinkage estimation: first of all, the improvement oc-
curs only if we assess performance using the d-dimensional mean squared-error. For
example, it can be shown that the James-Stein estimator estimates individual com-
ponents of θ with larger errors than the non-shrunk estimate [177]. Secondly, the
squared-error Bayes risk function (combine definition 2.5.12 and example 2.5.10)
for shrinkage estimators is generally higher than that of their non-shrunk versions
(for a discussion in the context of the multivariate mean problem discussed above,
see example 4.7.3 in [177]). This may be explained by the fact that risk functions of
estimators with fixed points of shrinkage tend to display wild fluctuations around the
point of shrinkage (although this phenonemon is well-understood only if the model
is one-dimensional [179]). Finally, posterior variance tends to be shrunk as well (see
(3.7)), which leads to credible sets (and confidence sets based on the James-Stein
estimator) that are too small. This can be understood from the fact that the empirical
Bayes posterior does not account for the inaccuracies in the estimation of τ2, it only
quantifies the uncertainty in the subsequent estimation of θ , thus underestimating
the overall error. Notwithstanding their practical usefulness, this is perhaps the most
serious short-coming of shrinkage estimators: improved estimation accuracy comes
at the cost of impaired uncertainty quantification and other forms of inference be-
yond point estimation.

3.5 Conjugate families

In this section, we consider a type of prior choice that is motivated primarily by
mathematical convenience, rather than philosophy or statistical utility. Recall that
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if we model the data with normal distributions of known variance but unknown
location θ and we supply θ with a normal prior, then the posterior for θ is again a
normal distribution. Since the calculation of the posterior is tractable, any choice for
the parameters of the normal prior can immediately be updated to values for location
and variance of the normal posterior upon observation of Y = y. Not only does this
signify ease of manipulation in calculations with the posterior, it also reduces the
computational burden dramatically since numerical integration or simulation from
the posterior is no longer necessary.

3.5.1 Basic definition with an example

The subject of this section revolves around the following definition.

Definition 3.5.1. Let (P,A ) be a measurable model for an observation Y ∈Y . Let
M denote a collection of probability distributions on (P,A ). The set M is called a
conjugate family for the model P , if the posterior based on a prior from M again
lies in M:

Π ∈M ⇒ Π( · |Y = y) ∈M, (3.15)

for almost all y ∈ Y .

(Like before, the phrase “almost all” in the above definition refers to the prior pre-
dictive distribution for Bayesians, and to the true P0 for frequentists, taking into
account condition (2.12).) Such structure was first proposed by Raiffa and Schlaifer
(1961) [224]. Their method for the prior choice is usually classified as objectivist
because it does not rely on subjectivist notions and is motivated without reference
to outside factors.

Remark 3.5.2. Often in the literature, a prior is refered to as a “conjugate prior” if
the posterior is of the same form. This is somewhat misleading, since it is the family
M that is closed under conditioning on the data Y , a property that depends on the
model and on M itself, but not on the particular Π ∈M.

Example 3.5.3. Consider an experiment in which we observe n independent Bernoulli
trials and consider the total number of successes, Y ∼ Bin(n, p) with unknown pa-
rameter p ∈ [0,1],

Pp(Y = k) =
(

n
k

)
pk(1− p)n−k.

For the parameter p we choose a prior p ∼ Beta(α,β ) from the Beta-family, for
some α,β > 0,

dΠ(p) = B(α,β ) pα−1(1− p)β−1 dp,

where B(α,β ) =Γ (α +β )/(Γ (α)Γ (β )) normalizes Π . Then the posterior density
with respect to the Lebesgue measure on [0,1] is proportional to:

dΠ(p|Y ) ∝ pY (1− p)n−Y pα−1(1− p)β−1 dp = pα+Y−1(1− p)β+n−Y−1 dp,
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We conclude that the posterior again lies in the Beta-family, with parameters equal
to a data-amended version of those of the prior, as follows:

Π( · |Y ) = Beta(α +Y,β +n−Y ).

So the family of Beta-distributions is a conjugate family for the binomial model. De-
pending on the available amount of prior information on θ , the prior’s parameters
may be chosen on subjective grounds. However, in the absence thereof, the parame-
ters α,β suffer from the same ambiguity that plagues the parameter τ2 featuring in
the example with which we opened this section.

Example 3.5.3 indicates a strategy to find conjugate families for a given parametrized,
dominated model P = {Pθ : θ ∈Θ}. Customarily, we view densities y 7→ pθ (y) as
functions of the outcome Y = y but they are functions of the parameter θ as well and
their dependence θ 7→ pθ (y) determines which prior densities θ 7→ π(θ) preserve
their functional form when multiplied by the likelihood pθ (Y ) to yield the posterior
density.

3.5.2 Exponential families

Although we shall encounter an example of a conjugate family for a non-parametric
model in subsection 8.2.2, conjugate families are mostly part of parametric statistics.
Many models are so-called exponential families, for which conjugate families of
priors are found readily.

Definition 3.5.4. A Lebesgue-dominated collection of probability measures P =
{Pθ : θ ∈Θ} (with densities pθ ) is called a k-parameter exponential family, if there
exists a k ≥ 1 such that for all θ ∈Θ ,

pθ (x) = exp
( k

∑
i=1

ηi(θ)Ti(x)−B(θ)
)

h(x), (3.16)

where h and Ti, i = 1, . . . ,k, are statistics and B, ηi, i = 1, . . . ,k are real-valued
functions on Θ .

Any exponential family can be parametrized such that the exponent in (3.16) is
linear in the parameter: by the mapping Θ → H : ηi = ηi(θ) (a bijection if the
original parametrization is identifiable), taking Θ into H = η(Θ) and B into A(η) =
B(θ(η)), any exponential family can be rewritten in its so-called canonical form.

Definition 3.5.5. An exponential family P = {Pη : η ∈H}, H ⊂Rk is said to be in
its canonical representation, if

pη(x) = exp
( k

∑
i=1

ηi Ti(x)−A(η)
)

h(x). (3.17)
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In addition, P is said to be of full rank if the interior of H ⊂ Rk is non-void, i.e.
H̊ ̸=∅.

Although they are parametric models, exponential families are versatile modelling
tools and have properties that are mathematically tractable; many common models,
like the Bernoulli-, normal-, binomial-, Gamma-, Poisson-models, etcetera, can be
rewritten in the form (3.16). To give an example of a type of parameter that cannot
be accommodated in an exponential family, consider models in which the support
of model distributions is parameter-dependent, like the family of all uniform distri-
butions on R, or the parameter that describes the domain offset in the Pareto-model.

The statistical practicality stems primarily from the fact that for an exponential
family of full rank, the statistics Ti, i = 1, . . . ,k are sufficient and complete, enabling
the use of the Lehmann-Scheffé theorem, (theorem 2.2.13) for minimal-variance
unbiased estimation. Their versatility can be understood in many ways, e.g. by the
Pitman-Koopman-Darmois theorem (see, Jeffreys (1961) [142]; or Robert (2001)
[230]): a family of distributions with parameter-independent supports is exponen-
tial, if and only if in the models describing its i.i.d. samples, there exist sufficient
statistics whose dimension remains bounded asymptotically.

Example 3.5.6. The model of all normal distributions P = {N(µ,σ2) : θ ∈R,σ2 >
0} on R forms an exponential family. To see this, write θ =(µ,σ2)∈Θ =R×(0,∞)
and rewrite the usual parametrization in the form (3.16), as follows,

pµ,σ2(x) = (2π)−1/2
σ
−1 exp

(
− (x−µ)2

2σ2

)
= (2π)−1/2 exp

(
− 1

2θ2
x2 +

θ 2
1

θ2
x− θ1

2θ2
− 1

2
logθ2

)
,

and, comparing with (3.16), we read off,

η1(θ) =
θ1

θ2
, η2(θ) =−

1
2θ2

, B(θ) =
θ 2

1
2θ2

+
1
2

logθ2,

T1(x) = x, T2(x) = x2, h(x) = (2π)−1/2.

The map η : Θ → H : θ 7→ (η1,η2)(θ) takes the original parameter into the canon-
ical parameter η ∈ H = R× (−∞,0). Note that the inverse of η takes the form,

(θ1,θ2)(η) =
(
− η1

2η2
,− 1

2η2

)
,

from which we deduce that,

A(η) = B(θ(η)) =− η2
1

4η2
+

1
2

log
(
− 1

2η2

)
,

for the new normalization. Expressed in these new parameters η , the density takes
the form (3.17). Note that H = R× (−∞,0) has non-empty interior, so the normal
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model is an exponential family of full rank. In case we had started with the model
P = {N(θ ,θ) : θ > 0}, for example, the analysis would have been largerly analo-
gous; however, the latter P is not of full rank.

Presently our interest lies with the following theorem which says that if a model P
constitutes an exponential family, there exists a conjugate family of priors for P .

Theorem 3.5.7. Let P be a model that can be written as an exponential family,
cf. definition 3.5.4. In its canonical parametrization (3.17), P and the family of
distributions Πµ,λ , defined by Lebesgue probability densities

πµ,λ (η) = K(µ,λ ) exp
( k

∑
i=1

ηiµi−λ A(η)
)
, (3.18)

(where µ ∈Rk and λ ∈R are such that 0 < K(µ,λ )< ∞), is a conjugate family for
P: the posterior associated with prior Πµ,λ is Πµ+T (X),λ+1.

Proof. Parametrize P as in (3.17). Choosing a prior on H of the form (3.18), we
find that the posterior again takes the form (3.18),

π(η |X) ∝ exp
( k

∑
i=1

ηi(µi + Ti(X))− (λ +1)A(η)
)

(the factor h(X) arises both in numerator and denominator of (2.6) and is η-
independent, so that it cancels). The data-amended versions of the parameters µ

and λ that emerge from the posterior are therefore given by:

(µ +T (X),λ +1),

and we conclude that the distributions Πµ,λ form a conjugate family for P .

3.6 Dirichlet priors

In this section we consider any sample space X of finite cardinality and priors on
the space of all probability distributions on X . Not only does this serve as the full
model for a random observation that can take only a finite number of values and
the parameter space for the corresponding multinomial distributions, it also serves
as the building block for the construction of a class of priors on non-parametric
models, as illustrated by the Dirichlet process priors of section 8.2.

Let X = {1,2, . . . ,k} (with its powerset 2X as a σ -algebra) and consider the
collection M1(X ) of all probability measures on X . Every P ∈ M1(X ) has a
density p : X → [0,1] (with respect to the counting measure on X ) and we denote
pi = p(i) = P({i}), so that for every A ∈ 2X , P(A) = ∑l∈A pl . Therefore, the space
M1(X ) can be parametrized as follows,
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M1(X ) =
{

P : 2X → [0,1] :
k

∑
i=1

pi = 1, pi ≥ 0, (1≤ i≤ k)
}
,

and is in bijective correspondence with the simplex in Rk (see example 1.1.13). We
are interested the following family of distributions on M1(X ), which generalize the
family of Beta distributions.

Definition 3.6.1. (Finite-dimensional Dirichlet distribution) Let µ = (µ1, . . . ,µk)
with µi ≥ 0 for all 1 ≤ i ≤ k. A vector p = (p1, . . . , pk) satisfying pi ≥ 0 for all
1≤ i≤ k and Σi pi = 1, is said to have a Dirichlet distribution Dirµ with parameter
µ , if the density π for p satisfies:

π(p) =
Γ
(
∑

k
l=1 µl

)
Γ (µ1) . . .Γ (µk)

pµ1−1
1 pµ2−1

2 . . . pµk−1
k .

If µl = 0 for some l, 1 ≤ l ≤ k, then we set Dirµ(pl = 0) = 1 marginally and we
treat the remaining components of p as (k−1)-dimensional.

Example 3.6.2. Consider the case where k = 2 (so that p2 = 1− p1): in that case,
the density of the Dirichlet distribution takes the form:

π(p1, p2) =
Γ (µ1 +µ2)

Γ (µ1)Γ (µ2)
pµ1−1

1 (1− p1)
µ2−1,

i.e. p1 has a Beta distribution B(µ1,µ2).

We also note the following two well-known facts on the Dirichlet distribution
(proofs can be found in [115]).

Lemma 3.6.3. (Gamma-representation of Dirµ )
If Z1, . . . ,Zk are independent and each marginally Γ -distributed Zi ∼ Γ (µi,1), 1 ≤
i≤ k, then with S = ∑

k
i=1 Zi, (Z1

S
, . . . ,

Zk

S

)
∼ Dirµ , (3.19)

i.e. the normalized vector has a Dirichlet distribution and is independent of S.

Lemma 3.6.3 shows that we may think of a Dirµ -distributed vector as the L1-
projection of a vector composed of k independent, Γ -distributed components, onto
the space M1(X ) of probability distributions.

Lemma 3.6.4. Let X be a finite point-set. If the density p : X → [0,1] of a dis-
tribution P is distributed according to a Dirichlet distribution with parameter µ ,
p ∼ Dirµ , then for any partition {A1, . . . ,Am} of X , the vector of probabilities
(P(A1),P(A2), . . . ,P(Am)) has a Dirichlet distribution,(

P(A1),P(A2), . . . ,P(Am)
)
∼ Dirµ ′ ,

where the parameter µ ′ is given by:
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(µ ′1, . . . ,µ
′
m) =

(
∑

l∈A1

µl , . . . , ∑
l∈Am

µl

)
. (3.20)

The identification (3.20) in lemma 3.6.4 suggests that we adopt a slightly different
perspective on the definition of the Dirichlet distribution: we view µ as a bounded
measure on X , so that P∼ Dirµ , if and only if, for every partition (A1, . . . ,Am),(

P(A1), . . . ,P(Am)
)
∼ Dir(µ(A1),...,µ(Am)). (3.21)

Property (3.21) serves as the point of departure of the generalization to the non-
parametric model, because it does not depend on the finite nature of X (see defini-
tion (8.9)).

Definition 3.6.5. Let X be a finite point-set; the Dirichlet family D(X ) is defined
to be the collection of all Dirichlet distributions on M1(X ), i.e. D(X ) consists of
all Dirµ with µ a bounded measure on X .

Properties of Dirichlet distributions now follow and are listed as direct consequences
in the following lemma.

Lemma 3.6.6. Let µ be a bounded measure on a finite point-set X and let B⊂X
be given. Then, if µ(B) = 0, then P(B) = 0, Dirµ -almost-surely; if µ(B) > 0, then
P(B)> 0, Dirµ -almost-surely, and the Dirµ -expectation of P is,∫

P(B)dDirµ(P) =
µ(B)

µ(X )
.

Proof. Consider the partition (B1,B2) of X , where B1 = B, B2 =X \B. According
to (3.21), (

P(B1),P(B2)
)
∼ Dir(µ(B),µ(X )−µ(B)),

so that P(B) ∼ Beta(µ(B),µ(X )− µ(B)). Stated properties then follow from the
properties of Beta distributions.

The following property of Dirichlet distributions describes two independent Dirichlet-
distributed quantities in convex combination, which form a new Dirichlet-distributed
quantity if mixed by means of an independent Beta-distributed parameter.

Lemma 3.6.7. Let X be a finite point-set and let µ1, µ2 be two measures on
(X ,2X ). Let (P1,P2) be independent and marginally distributed as

P1 ∼ Dirµ1 , P2 ∼ Dirµ2 .

Furthermore, let λ be independent of P1,P2 and marginally distributed according to
λ ∼ Beta(µ1(X ),µ2(X )). Then the convex combination λ P1 +(1− λ )P2 again
has a Dirichlet distribution with base measure µ1 +µ2:

λ P1 +(1−λ )P2 ∼ Dirµ1+µ2 .
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The reason to choose Dirichlet distributions on M1(X ) rather than some other para-
metric family, is the fact that they are conjugate for the multinomial model, which
amounts to conjugacy of the Dirichlet family for the full model of i.i.d. observations
in X .

Theorem 3.6.8. Let X be a finite sample space and let X1, . . . ,Xn denote an i.i.d.
sample of observations in X . The Dirichlet family D(X ) is conjugate for the full
model: if the prior equals Dirµ , the posterior is a Dirichlet distribution Dirµn with,

µn = µ +
n

∑
i=1

δXi , (3.22)

as a base measure.

Proof. The posterior can be written as in (2.15) with the likelihood taking the form:

P 7→
n

∏
i=1

pXi =
k

∏
l=1

pNl
l ,

where Nl denotes the number of Xi equal to l, for all 1 ≤ l ≤ k. Multiplying by the
prior density for Π = Dirµ , we find that the posterior density is proportional to,

π(p|X1, . . . ,Xn) ∝ π(p)
n

∏
i=1

pXi ∝

k

∏
l=1

pNl
l

k

∏
l=1

pµl−1
l =

k

∏
l=1

pµl+Nl−1
l ,

which is again a Dirichlet density (but with changed base measure). Since the poste-
rior is a probability distribution, we know that the normalization factor follows suit.
Note that we may view Nl as the density of the measure,

Nl =
n

∑
i=1

1{Xi = l}=
n

∑
i=1

δXi({l}),

for every 1 ≤ l ≤ k. So the posterior is the Dirichlet distribution Dirµn , with base
measure (3.22).

The posterior predictive distribution for a single, new observation is therefore given
by,

PΠ |Xn
(A) =

∫
P(A)dΠ(P|Xn) =

∫
P(A)dDirµn(P) =

µn(A)
µn(X )

=
µ(A)+∑

n
i=1 δXi(A)

µ(X )+n
= (1−λn)

1
n

n

∑
i=1

1(Xi ∈ A)+λn
µ(A)

µ(X )
,

(3.23)

with λn = µ(X )(µ(X ) + n)−1. Here, Pn(A) = n−1
∑i 1(Xi ∈ A) is an unbiased,

consistent estimator for the true probability of X ∈ A, while µ(A)/µ(X ) repre-
sents the location of prior bias. The strength of this bias is controlled by µ(X ),
which serves to controls how concentrated Dirµ is around its location: if µ(X ) is
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large compared to n, prior bias is strongly represented while the unbiased, purely-
data-based estimator Pn is more muted; if µ(X ) is small compared to n, prior bias
becomes is less pronounced and posterior predictive distribution adopts more of
the purely data-based estimator Pn. As n→ ∞, λn→ 0 and Pn overwhelms all prior
bias. At finite n, the empirical choice µ̂n(Xn) = Pn de-biases the posterior predictive
distribution in the sense that PnPΠ |Xn

(A) = P(A) for every A⊂X .

3.7 Exercises

3.7.1. A PROPER JEFFREYS PRIOR
Let X be a random variable, distributed Bin(n; p) for known n and unknown
p ∈ (0,1). Calculate Jeffreys prior for this model, identify a standard family of
probability distributions that this prior would belong to, if it were normalized as
a probability distribution.

3.7.2. JEFFREYS AND UNIFORM PRIORS
Let P be a model parametrized according to some mapping Θ →P : θ 7→ Pθ . As-
suming differentiability of this map, Jeffreys prior Π takes the form (3.6). In other
parametrizations, the form of this expression remains the same, but the actual de-
pendence on the parameter changes. This makes it possible that there exists another
parametrization of P such that Jeffreys prior is equal to the uniform prior. We shall
explore this possibility below.
For each of the following models in their ‘standard’ parametrizations θ 7→ Pθ , find
a parameter η = η(θ) with parameter space H = η(Θ), such that the density of the
Jeffreys prior, expressed in terms of η , is constant. Also express model distributions
in η-dependent form.

a. The model of all Poisson distributions,

Pλ (X = k) = pλ (k) = e−λ λ k

k!
,

for k ≥ 0, with unknown λ > 0.
b. The models of all Γ (k,θ)-distributions with Lebesgue densities,

pk,θ (x) =
1

Γ (k)θ k xk−1 exp(−x/θ),

for x≥ 0, with known k > 0 and unknown θ ∈ (0,∞).
c. The model of all binomial distributions,

Pθ (X = k) = pθ (k) =
(

n
k

)
θ

k(1−θ)n−k,

for k ≥ 0, with known n≥ 1 and unknown θ ∈ (0,1).
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To conclude, prove the following:

d. If a parametrization η like above exists and H is unbounded, Jeffreys prior is
improper (in all parametrizations).

3.7.3. OPTIMALITY OF UNBIASED BAYESIAN POINT ESTIMATORS
Let P be a dominated, parametric model, parametrized identifiably by Θ →P :
θ 7→ Pθ , for some Θ ⊂ Rk. Assume that (X1, . . . ,Xn) ∈X n form an i.i.d. sample
from a distribution P0 = Pθ0 ∈P , for some θ0 ∈ Θ . Let Π be a prior on Θ and
denote the posterior by Π(·|X1, . . . ,Xn). Assume that T : X n → Rm is a sufficient
statistic for the model P .

a. Use the factorization theorem to show that the posterior depends on the data
only through the sufficient statistic T (X1, . . . ,Xn).

b. Let θ̂n : X n →Θ denote a point-estimator derived from the posterior. Use a.
above to argue that there exists a function θ̃n : Rm→Θ , such that,

θ̂n(X1, . . . ,Xn) = θ̃n(T (X1, . . . ,Xn)).

Bayesian point-estimators share this property with other point-estimators that are
derived from the likelihood function, like the maximum-likelihood estimator and
penalized versions thereof. Next, assume that T is complete, that Pn

0 (θ̂n)
2 < ∞ and

that θ̂n is unbiased, i.e. Pn
0 θ̂n = θ0.

c. Apply the Lehmann-Scheffé theorem to prove that, for any other unbiased esti-
mator θ̂ ′n : X n 7→Θ ,

Pn
0 (θ̂n−θ0)

2 ≤ Pn
0 (θ̂

′
n−θ0)

2.

The message of this exercise is, that Bayesian point-estimators that happen to be
unbiased and quadratically integrable, are automatically L2-optimal in the class of
all unbiased estimators for θ . They share this remarkable property with maximum-
likelihood estimators.

3.7.4. CONJUGATE MODEL-PRIOR PAIRS
In this exercise, conjugate model-prior pairs (P,Π) are provided. In each case, we
denote the parameter we wish to estimate by θ and assume that other parameters
have known values. Let X denote a single-observation.
In each case, derive the posterior distribution to prove conjugacy and identify the
X-dependent transformation of parameters that takes prior into posterior.

a. X |θ ∼ N(θ ,σ2) and θ ∼ N(µ,τ2), with known σ2 > 0 and some choice for
τ2 > 0.

b. X |θ ∼ Poisson(θ) and θ ∼ Γ (α,β ), with some choice for α,β > 0.
c. X |θ ∼Γ (ρ,θ) and θ ∼Γ (α,β ), with known ρ > 0 and some choice for α,β >

0.
d. X |θ ∼ Bin(n;θ) and θ ∼ β (α,β ), with known n ≥ 1 and some choice for

α,β > 0.
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e. X |θ ∼ N(µ,θ−1) and θ ∼ Γ (α,β ), with known µ > 0 and some choice for
α,β > 0.

f. X |θ1, . . . ,θk ∼ Mk(n;θ1, . . . ,θk) with known k,n ≥ 1 and θ ∼ Dirα , where Mk
denotes the multinomial distribution for n observations drawn from k classes
with probabilities θ1, . . . ,θk and Dirα is a Dirichlet distribution on the simplex
in Rk (see definition 3.6.1; this proves again theorem 3.6.8).

3.7.5. In this exercise, we generalize the setup of example 3.3.4 to multinomial
rather than binomial context. Let k ≥ 1 be known. Consider an observed random
variable Y and an unobserved N = 1,2, . . ., such that, conditionally on N, Y is dis-
tributed multinomially over k classes, while N has a Poisson distribution with hy-
perparameter λ > 0,

Y |N ∼Mk(N; p1, p2, . . . , pk), N ∼ Poisson(λ ).

Determine the prior predictive distribution of Y , as a function of the hyperparameter
λ .

3.7.6. Let X1, . . . ,Xn form an i.i.d. sample from a Poisson distribution Poisson(θ)
with unknown θ > 0. As a family of possible priors for the Bayesian analysis of
this data, consider exponential distributions θ ∼ Πλ = Exp(λ ), where λ > 0 is a
hyperparameter.

a. Calculate the prior predictive distribution for X .
b. Give the ML-II estimate λ̂ for λ .
c. With the estimated hyperparameter, give the posterior distribution θ |X1, . . . ,Xn.
d. Calculate the posterior mean. Compare its data-dependence to that of the poste-

rior mean we would have obtained if we had not made an empirical choice for
the hyperparameter, but a fixed choice.

3.7.7. Let X1, . . . ,Xn form an i.i.d. sample from a binomial distribution Bin(N; p),
for known N and unknown p ∈ [0,1]. For the parameter p we take a prior p ∼
β (α,β ) with hyperparameters α,β > 0.

a. Show that the family of β -distributions is conjugate for binomial data.
b. Using (standard expressions for) the expectation and variance of β -distributions,

give the posterior mean and variance in terms of the original α and β chosen
for the prior and the data.

c. Calculate the prior predictive distribution and discuss the steps one would per-
form in the ML-II procedure to estimate p.

Some example exam problems

3.7.8. In 1814, Laplace asked the question, “What is the probability p that the sun
comes up tomorrow?” In the following, we illustrate his Bayesian answer. The data
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is based on binary X1, . . . ,Xn ∈ {0,1}, denoting whether the sun came up (Xi = 1), or
did not come up (Xi = 0) on day 1≤ i≤ n in the observation period: the statistician
observes only the total number of times the sun came up Y := ∑

n
i=1 Xi. We assume

that the X1, . . . ,Xn form an i.i.d. sample from the Bernoulli(p)-distribution, where
n≥ 1 is known and p ∈ [0,1] is the unknown parameter of interest.

a. Give the model distributions as densities with respect to the counting measure
qp(k) := P(Y = k|p) for 0≤ k ≤ n and parameter p ∈ [0,1].

Regarding the prior Π for p, we make the objectivist’s choice and pick a uniform
distribution: p∼U [0,1].

b. Calculate the posterior for p, given Y . To which parametric family of distribu-
tions does the posterior belong? In terms of the standard parametrization of this
family, give the (Y -dependent) values of the parameters.

c. Give the posterior mean p̂1,n.

A subjectivist would argue that the above uniform prior ignores well-established
prior knowledge concerning the parameter p: on all days outside the observa-
tion period, the sun has always come up. According to subjectivist standards, the
prior for p should reflect that piece of information. (Hint: A random variable Z
has a beta distribution Beta(a,b) with a,b > 0, if Z ∈ [0,1] and Pa,b(Z ≤ z) =
B(a,b)−1 ∫ z

0 xa−1(1− x)b−1 dx, with normalization B(a,b) = Γ (a)Γ (b)/Γ (a+b).)

d. Calculate the posterior mean p̂2,n for a prior Π = Beta(a,b), where the hy-
perparameters a,b > 0 are not fixed yet. Make a choice for the values of the
parameters a,b that express the above, subjectivist expert knowledge.

e. Show that, regardless of the choice for the hyperparameters a,b, the difference
between p̂1,n and p̂2,n goes to zero as the length of the observation period n→∞.

3.7.9. For some n≥ 1, let X1, . . . ,Xn form an i.i.d. sample from a Poisson distribution
Poisson(θ), for some θ > 0.

a. Give the Jeffreys prior for this model. Is this prior proper?
b. Give the posterior distribution for θ based on the Jeffreys prior of part a. Indi-

cate to which standard family of distributions this posterior belongs and give the
associated parameter values in terms of the sample size n and the observations
X1, . . . ,Xn.

c. Based on the posterior of part b., give the posterior mean θ̂n. View θ̂n as a point
estimator for θ and determine what its bias is.

Assume that the sample mean Xn is a sufficient and complete statistic in the Poisson
model.

d. Based on the conditions for the theorem of Lehmann-Scheffé, argue that the
point estimator θ̂ ′n, defined to be equal to posterior mean θ̂n minus its bias, is
the unique minimal-variance unbiased estimator for θ .

3.7.10. Consider the so-called Galenshore distribution for Y with parameters a > 0
and θ > 0, which is defined by the Lebesgue density:
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pa,θ (y) =
2

Γ (a)
θ

2ay2a−1e−θ 2y2
,

for y > 0.

a. Let Y be distributed according to a Galenshore distribution with known a and
unknown θ . Show that the family of Galenshore distributions for θ is a conju-
gate family in this model. Given Y and a Galenshore prior with hyperparameters
c,d > 0, give the Galenshore parameters for the posterior.

3.7.11. In this problem, we consider exponential families.

a. What is the general form of a k-parameter exponential family. Express your
answer by characterization of a collection of densities.

b. Give the canonical form of an exponential family. When do we say that an
exponential family has full rank?

(Caution: in the following two parts, use the general or canonical form of an expo-
nential family and do not choose some example.)

c. Give an exponential family in general, use the canonical form to write down a
collection of distributions on the parameter space and show that this collection
forms a conjugate family.

d. Given an exponential family in general, calculate the parameters of the posterior
given a prior from the conjugate family of part c..

Let P be a k = 2-parameter model of Lebesgue densities pα,β with α,β > 0, of the
form,

pα,β (x) =

{
0, if x < β

αβ

xα+1 , if x≥ β

e. Is P an exponential family?

3.7.12. Consider a model in which we observe a sample of X1, . . . ,Xn that are in-
dependent but not identically distributed: for each Xi, there is a Binomial distri-
bution for the sum of n Bernoulli trials with an i-dependent success-probability θi
(1≤ i≤ n). The prior for θ = (θ1, . . . ,θn) will have a hyperparameter η ,

Xi
∣∣ θ ,η = Xi

∣∣ θi ∼ Bin(n,θi).

The parameters θ1, . . . ,θk form an i.i.d. sample from a Beta-prior with parameters
equal to η ∈ [0,1] and (1−η). That means the vector of all θi has an n-fold product
distribution,

(θ1, . . . ,θn)
∣∣ η ∼ Beta(η ,1−η)n.

For the hyperparameter η , we impose a uniform hyperprior,

η ∼U [0,1].

a. Show that the posterior mean for ∑i θi equals,
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∑
i=1

θi dΠ(θ |X1, . . . ,Xn) =
n

n+1

(
X̄n + η̂n

)
where η̂n denotes the posterior mean for η . (Hint: Start your calculation as if
there were a fixed value of η . The result is interpreted as being conditional on
η , and integration with respect to the posterior for η yields the result required.)



Chapter 4
The Bernstein-von Mises theorem

Throughout the preceding chapters, we have occasionally looked at the behaviour
of statistical methods for estimation, testing, uncertainty quantification and deci-
sion taking in the asymptotic limit, i.e. when the sample size goes to infinity. The
asymptotic regime of statistical methods provides approximations to hard-to-obtain
finite-sample results: while most finite-sample calculations are intractable even in
the simplest models, the analysis of the large-sample limit often remains possible.
The asymptotic answer may then be used as an approximation to the finite-sample
answer. That perspective also dominates the developments of part II of this book,
which deals with non-parametric models.

In this chapter we consider the large-sample behaviour of posterior distribu-
tions on smooth parametric models for i.i.d. sequences of data. Here, smoothness
roughly says that we assume a dominated model parametrized by θ ∈Θ , requiring
that the dependence θ 7→ log pθ (Xn) of the likelihood function on the parameter is
differentiable (see, however, definition 4.1.12). The frequentist asymptotic theory
of estimation, testing and uncertainty quantification in smooth parametric models
is well-understood: if Xn is distributed i.i.d.-Pθ0 for some true value θ0 of the (k-
dimensional) parameter, and the estimators θ̂n(Xn) belong to the family of so-called
regular estimators (see definition 4.1.10), then the n1/2-rescaled differences between
estimators θ̂n(Xn) and θ0 converge weakly to a limit described by Hajék’s 1970 con-
volution theorem. Accordingly, the best possible regular estimators are those that
satisfy,

√
n
(
θ̂n(Xn)−θ0

) Pθ0 -w.
−−−−→Nk(0, I−1

θ0
),

where Iθ0 denotes the Fisher information at θ0. Estimators with this limiting be-
haviour are called efficient and the limit distribution gives rise to Wald-type confi-
dence ellipsoids centred on efficient estimators (see definition (4.4)), as well as test
sequences that separate θ0 from complements of ellipsoids of radii proportional to
(1+o(1))n−1/2.

In section 4.2 we consider the Bernstein-von Mises theorem, which asserts that
the sequence of posteriors on a smooth parametric model converges in total varia-
tion to a sequence of normal distributions centred on efficient point-estimators, with

123
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covariance (nIθ0)
−1:

sup
B

∣∣∣Π(ϑ ∈ B
∣∣ X1, . . . ,Xn

)
−N(θ̂n,(nIθ0)

−1)(B)
∣∣∣ Pθ0−−→0, (4.1)

where (θ̂n) denotes any efficient estimator sequence. The limit (4.1) concerns a rel-
atively strong form of convergence, and correspondingly, permits refinement to the
level of uncertainty quantification: sequences of credible sets are approximations of
Wald-type, efficient confidence sets asymptotically. We compare this to asymptotic
uncertainty quantification as in subsection 2.3.4, where enlargements of credible
balls were shown to be asymptotically interpretable as confidence balls. To con-
clude this chapter we take a brief excursion to non-parametric setting: we consider
the Bernstein-von Mises theorem for semi-parametric estimation problems (where
a model of distributions Pθ ,η , (θ ∈Θ (parametric), η ∈ H (non-parametric)) is pro-
posed for the estimation of (only) the parameter of interest θ , in the presence of a
nuisance parameter η).

Although the name of the central theorem of this chapter refers to the historical
work of Bernstein (1917) [15] and von Mises (1931) [204], it is Le Cam (1953) [179]
who truly deserves the credit for the present-day, general formulation. Certainly the
most useful reference for this subject is Le Cam and Yang (1990) [191]. A version of
the Bernstein-von Mises theorem based on Le Cam’s inequality (see subsection ??)
can be found in Le Cam (1986) [187].

4.1 Efficient estimation in smooth parametric models

First we consider frequentist estimation in smooth parametric models and state
Hajék’s convolution theorem, which characterizes efficiency of estimation. This
paves the way for the Bernstein-von Mises theorem of the next section, which asserts
that posterior distributions in smooth parametric models concentrate in an asymp-
totically normal way around efficient point-estimators. Essential to the development
of efficient estimation are two concepts: smoothness of the model and regularity of
the estimator. When properly defined and then combined, smoothness and regular-
ity describe a notion of statistical optimality comparable (and related) to estimators
that achieve minimal mean-squared error within the family of unbiased estimators in
sense of Lehmann-Scheffé, cf. theorem 2.2.13. By contrast, the analysis given here
is, on the one hand, strictly asymptotic, but on the other, not limited to unbiased es-
timators. Before we specify to this setting, however, we briefly digress to introduce
some generalities concerning asymptotic estimation.
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4.1.1 Asymptotic statistics

The study of the asymptotic regime of an estimation procedure is interesting for
two reasons. Firstly, as was mentioned in the introductory words of this chapter,
asymptotic results provide approximations to exact values: while exact finite-sample
calculations are usually intractable, the analysis of their large-sample limits often
remains possible. Secondly, if we have several possible estimation procedures avail-
able, asymptotic large-sample behaviour provides ways to compare their perfor-
mance. For example, to choose between two consistent estimation procedures, one
can consider rate of convergence and other properties of limit distributions that char-
acterise the degree of concentration (like asymptotic variance or asymptotic risk).
In this subsection, we provide some aspects of asymptotic point estimation that are
important for this and following chapters. It should be noted that this discussion is
not intended to be comprehensive, nor is it stretched to full generality. For a more
comprehensive presentation, the reader is referred to some of the excellent books de-
voted entirely to asymptotic statistics, like Ibragimov and Has’minskii (1981) [136],
Le Cam and Yang (1990) [191] and van der Vaart (1998) [260].

The (decidedly frequentist) notion of consistency of a sequence of estimators
based on a growing sample Xn (taking values in spaces Xn) and a well-specified
model P , means that the sequence converges to the true distribution of the data as
the size of the sample goes to infinity.

Definition 4.1.1. A sequence P̂n : Xn→P of estimators in a metric model (P,d)
is said to be consistent in a point P0 ∈P , if:

d(P̂n(Xn),P0)
P0−→0.

and simply consistent if this holds for all points in P .

To generalize to models parametrized by θ in a topological parameter space Θ con-
taining a true parameter θ0, consistency of a sequence of estimators θ̂n(Xn) ∈ Θ

means that θ̂n converges to θ0. The definition of consistency can be strengthened
to almost-sure consistency, by requiring that d(P̂n(Xn),P0) converges to zero (or
θ̂n(Xn) to θ0) P0-almost-surely.

Example 4.1.2. Let P be a model for distributions on R, parametrized by a lo-
cation parameter θ ∈ R and a parameter Q in a (possibly non-parametric) family
H of distributions in M1(R), such that

∫
xdQ(x) = 0: Pθ ,Q(B) = Q(B− θ). That

is, θ parametrizes the expectation of Pθ ,Q, while Q describes how probability is
distributed around that point. We observe i.i.d. samples Xn = (X1,X2, . . . ,Xn) with
single-observation distribution Pθ0,Q0 for some θ0 ∈R and some Q0 ∈H. According
to the law of large numbers, sample averages are almost-surely consistent estimators
for the location θ0:

θ̂n(Xn) =
1
n

n

∑
i=1

Xi
Pθ0,Q0 -a.s.
−−−−−−→θ0.

An estimator that is consistent in a metric model may be analysed further by
appraisal of its rate of convergence and limit distribution.
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Definition 4.1.3. Let P̂n : Xn →P be a sequence of estimators in a metric model
(P,d). Given P0 ∈P , any sequence rn such that,

r−1
n d(P̂n(Xn),P0) = OP0(1), (4.2)

is an upper bound to the rate of convergence of the estimator sequence P̂n with
respect to the metric d, at P0.

(For most estimators in most models, the rate of convergence is the same for all
P0; see, however, examples like 4.1.8 to emphasize that that feature is not generic).
The rate of convergence thus describes the scaling necessary to have metric differ-
ences between P̂n and P0 that are distributed in a non-degenerate way, yet remain
bounded in probability. Similarly, in a metric parametrizing space (Θ ,d) the rate of
convergence is such that r−1

n d(θ̂n(Xn),θ0) = OPθ0
(1).

Example 4.1.4. Consider the model and estimator of example 4.1.2. If we assume
that H consists of (a subset of) all Q ∈ M1(R) such that

∫
x2 dQ(x) < ∞, then the

rescaled differences n1/2
(
θ̂n(Xn)− θ0

)
converge weakly due to the central limit

theorem. Accordingly, the sequence n1/2∥θ̂n−θ0∥ is uniformly tight and (4.2) holds
with rate rn = n−1/2.

Heightening the level of detail one step further, we require that the sequence of esti-
mators, when centred on its point of convergence and rescaled by the rate, converges
weakly to a non-degenerate distribution over the (localised) model.

Definition 4.1.5. Let P̂n be a sequence of estimators in a metric model (P,d). Given
P0 ∈P and rate sequence rn, we say that P̂n has limit distribution LP0 at P0, if,

r−1
n (P̂n−P0)

P0-w.−−−→LP0 , (4.3)

where LP0 is a non-degenerate Borel probability measure on P .

In the parametric case, we say that θ̂n converges to θ0 at rate rn with non-degenerate
limit distribution Lθ0 on Θ ⊂Rk if r−1

n (θ̂n−θ0) converges weakly to Lθ0 on Θ under
Pθ0 .

Example 4.1.6. Consider again the model and estimator of examples 4.1.2 and 4.1.4.
Again assuming that H consists of (a subset of) all Q∈M1(R) such that

∫
x2 dQ(x)<

∞, the central limit theorem implies that,

√
n
(
θ̂n(Xn)−θ0

) Pθ0 ,Q0 -w.
−−−−−→N(0,σ2(Q0)),

where the variance σ2(Q0) = Pθ0,Q0(X − θ0)
2 is equal to the variance of Q0. Ac-

cordingly, the estimators θ̂n are consistent at rate n−1/2 and have a normal limit
distribution with expectation 0 and (Q0-dependent) variance σ2. Note that a smooth
function of the expectation, a parameter ψ that can be written as a (known) differen-
tiable function g(θ) of the expectation θ , is estimable by ψ̂n = g(θ̂n), and according
to the delta rule,
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√
n
(
ψ̂n(Xn)−ψ0

) Pθ0,Q0 -w.
−−−−−→N(0,g′(θ0)

2
σ

2(Q0)).

See van der Vaart (1998) [260] for much more on asymptotic statistics.

4.1.2 Asymptotic optimality in smooth parametric estimation

The concept of efficiency has its origin in Fisher’s 1920’s claim of asymptotic op-
timality of the maximum-likelihood estimator in differentiable parametric models.
Here, optimality of the ML estimate means that they are asymptotically consistent
achieve optimal n−1/2-rate of convergence and have a limit distribution of minimal
variance. In 1930’s and –40’s, Fisher’s ideas on optimality in differentiable models
were sharpened and elaborated upon. To illustrate, consider the following classical
result from M-estimation (which can be found as theorem 5.23 in [260]).

Theorem 4.1.7. Let Θ be open in Rk and assume that P = {Pθ : θ ∈ Θ} is a
Lebesgue-dominated model for i.i.d. data X1,X2, . . ., with densities pθ : X → R
such that θ 7→ log pθ (x) is differentiable at θ0 for all x ∈X , with derivative (or
score function) ℓ̇θ (x). Assume that there exists a function ℓ̇ : X → R such that
P0ℓ̇

2 < ∞ and, ∣∣log pθ1(x)− log pθ2(x)
∣∣≤ ℓ̇(x)∥θ1−θ2∥,

for all θ1,θ2 in an open neighbourhood of θ0. Furthermore, assume that θ 7→
Pθ0 log pθ has a second-order Taylor expansion around θ0 of the form,

Pθ0 log pθ = Pθ0 log pθ0 +
1
2 (θ −θ0)

T Iθ0(θ −θ0)+o(∥θ −θ0∥2),

with non-singular Iθ0 . If (θ̂n) is a consistent estimator sequence satisfying,

Pn log p
θ̂n
≥ sup

θ∈Θ

Pn log pθ −oPθ0
(n−1),

then (θ̂n) is asymptotically linear,

n1/2(θ̂n−θ0) = n−1/2
n

∑
i=1

I−1
θ0

ℓ̇θ0(Xi)+oPθ0
(1)

In particular, n1/2(θ̂n−θ0)
θ0-w.−−−→N(0, I−1

θ0
).

The last assertion of theorem 4.1.7 says that the (near-)maximum-likelihood estima-
tors (θ̂n) are asymptotically consistent, converge at rate n−1/2 and have the inverse
Fisher information I−1

θ0
as the covariance matrix for their (normal) limit distribu-

tion. At this stage of the discussion, we do not have an argument to show that this
asymptotic behaviour is in any sense optimal. Nevertheless, let us take the opportu-
nity to illustrate briefly how asymptotic behaviour translates into inference on θ by
considering associated asymptotic confidence sets.
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Recall definition 2.3.4 and example 2.3.6: an asymptotic confidence set is an ap-
proximate confidence set that is derived not from an exact sampling distribution, but
from approximations implied by limit distributions, e.g. from the normal distribu-
tion N(0, I−1

θ0
) in the above theorem. To demonstrate, first suppose that the model is

one-dimensional and satisfies the conditions of theorem 4.1.7. Denoting quantiles of
the standard normal distribution by ξα , we see from the last assertion of the theorem
that:

Pn
θ0

(
−ξα I−1/2

θ0
< n1/2(θ̂n−θ0)≤ ξα I−1/2

θ0

)
→ 1−2α,

If the Fisher information were known, this would give rise immediately to a confi-
dence interval: the above display implies that,[

θ̂n−n−1/2
ξα I−1/2

θ0
, θ̂n +n−1/2

ξα I−1/2
θ0

]
has asymptotic coverage probability 1− 2α . Since the Fisher information is not
known exactly, we substitute an estimator for it, for example the sample variance S2

n,
to arrive at a studentized version of the above, which has the same asymptotic cov-
erage and can therefore be used as an asymptotic confidence interval. But we could
also have chosen to “plug in” the estimator θ̂n for θ0 in the expression for the Fisher
information to arrive at an estimate I

θ̂n
. To generalize to higher-dimensional Θ ⊂Rk,

recall that if Z has a k-dimensional multivariate normal distribution Nk(0,Σ), then
ZT Σ−1Z possess a χ2-distribution with k degrees of freedom. Denoting quantiles of
the χ2

k -distribution by χ2
k,α , we find that so-called Wald-type confidence sets, ellip-

soids of the form,

Cα(X1, . . . ,Xn) =
{

θ ∈Θ : n(θ − θ̂n)
T I

θ̂n
(θ − θ̂n)≤ χ

2
k,α
}
, (4.4)

have minimal Lebesgue measures among sets with coverage probabilities converg-
ing to 1−α .

4.1.3 Regular and irregular estimator sequences

Theorem 4.1.7 requires a rather large number of smoothness properties of the model:
log-densities are required to be differentiable and Lipschitz and the Kullback-Leibler
divergence must display a second-order expansion with non-singular second deriva-
tive matrix. These conditions are not only there to reflect model smoothness, they
also guarantee that the ML estimator displays a property known as regularity. (The
conditions listed are usually referred to as “regularity conditions”.) The prominence
of regularity in the context of optimality questions was not fully appreciated until in
1951, J. Hodges discovered an estimator that displayed superefficiency with regard
to the asymptotic rate of convergence.

Example 4.1.8. (Hodges’s shrinkage estimator)
Suppose that we estimate a parameter θ ∈Θ = R with an estimator sequence (θ̂n),
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satisfying limiting behaviour described by,

n1/2(θ̂n−θ)
Pθ -w.−−−→Lθ ,

for some laws Lθ , for all θ ∈Θ . In addition, we define a so-called shrinkage esti-
mator,

Sn(Xn) =

{
θ̂n(Xn), if |θ̂n(Xn)| ≥ n−1/4

0, if |θ̂n(Xn)|< n−1/4.

The estimator Sn has a bias towards 0: any realization of θ̂n that is close enough
to 0 is “shrunk” to 0 fully. One shows quite easily that Sn has the same asymptotic

behaviour as θ̂n as long as θ ̸= 0, i.e. n1/2(Sn−θ)
Pθ -w.−−−→Lθ if θ ̸= 0. But if θ = 0,

ε−1
n (Sn−0)

Pθ=0-w.−−−−→0 for any sequence εn > 0, εn ↓ 0. In other words, the asymptotic
quality of Sn is as good as that of θ̂n, and strictly better if θ = 0. In a next step
we could improve on Sn, by constructing a version of Sn that displays shrinkage
in another point. Generalisation of this construction to other estimators and other
models essentially says that any estimator sequence can be improved upon in a
strict sense, at least in one point, through some form of shrinkage. Essentially this
argument makes all estimators inadmissible.

Remark 4.1.9. In one-dimensional models [179], asymptotic superefficiency comes
at a price, paid in terms of the behaviour of risk functions in neighbourhoods of the
point of shrinkage and superefficiency can only be achieved on a subset of Lebesgue
measure zero. In models of dimension three or higher, this restriction does not ap-
ply, as demonstrated by the non-asymptotic risk improvement of the James-Stein
estimator over the ML estimator (see subsection 3.4.2).

So at certain points in the parameter space, Hodges’s shrinkage estimators estimate
with a rate of convergence that is strictly faster than that of the MLE and other esti-
mators like it, while estimating the parameter with identical asymptotics for all other
points in the model. In 1951, Hodges’s superefficiency indicated that Fisher’s 1920’s
claim was false without further refinement and that a comprehensive understanding
of optimality in differentiable estimation problems remained elusive.

Hodges’s example shows that any estimator sequence can be improved upon in
at least one point of the model, which invalidates the question for an optimal esti-
mator. To leave room for a notion of optimality, Hodges’s shrinkage estimator has
to be excluded from the class of eligible estimators. To prepare the relevant defi-
nition heuristically, note that, given Hodges’s counterexample, it is not enough to
specify the way that an estimator sequence converges pointwise; we must restrict
the behaviour of estimators over (n−1/2-)neighbourhoods rather than allow the type
of wild variations that make Hodges’s example possible.

Definition 4.1.10. Let Θ ⊂ Rk be open. An estimator sequence (Tn) for the param-
eter θ is said to be regular at θ if, for all h ∈ Rk,

n1/2
(

Tn−
(
θ +n−1/2h)

)
Pn-w.−−−→Lθ ,
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where Pn = P
θ+n−1/2h. Tn is said to be regular if it is regular in all θ ∈ Θ , and

irregular if there is a θ ∈Θ where Tn is not regular.

The point of definition 4.1.10 is the requirement that the limit law is independent
of h, indicating that limiting behaviour is insensitive to perturbation of the param-
eter of size n−1/2h. Typical examples of regular estimators are sample-means that
estimate expectations (provided a second moment exists), while typical non-regular
estimators are shrinkage estimators (like those of example 4.1.8) and estimators like
θ̂n = max{Xi : 1≤ i≤ n} for the parameter θ that represents the upper bound of the
support for the distribution of a bounded, real-valued random variable X .

Example 4.1.11. (Hodges’s shrinkage estimator, cont.)
To demonstrate that Hodges’s shrinkage estimators are irregular, consider the case
that θ = 0: if we assume that θ̂n is regular at θ = 0, then,

n1/2
(

θ̂n−
h√
n

)
Pn-w.−−−→L0,

for some limit distribution L0. Since n1/2|θ̂n(Xn)| stays below Mn with high prob-
ability, for any Mn → ∞, |θ̂n| ≤ n−1/4 with high probability. That means that
Sn(Xn) = 0 with high probability, so that,

n1/2
(

Sn−
h√
n

)
= h,

which is not h-independent and can not be of the form L′0: Sn(Xn) is not regular at
θ = 0.

4.1.4 Local asymptotic normality and the convolution theorem

The second ingredient we need, is a proper definition for what “model smooth-
ness” means. The property in question was formulated in [182]: rather than require
differentiability of likelihood functions etcetera, their local behaviour is described
directly in terms of random variables playing the role of score functions. The “local”
aspect of the definition stems from the n-dependent re-coordinatization in terms of
the local parameter h = n1/2(θ −θ0). (In the following we assume that the sample
is i.i.d., although usually the definition is extended to more general, dependent mod-
els for the data and applies to models for autoregressive time-series, random walks
on finite state spaces, etcetera [187]).

Definition 4.1.12. (Local asymptotic normality (LAN), [182])
Let Θ ⊂ Rk be open, parametrizing a model P = {Pθ : θ ∈ Θ} for i.i.d. data
X1,X2, . . . that is dominated by a σ -finite measure with densities pθ . The model is
said to be locally asymptotically normal (LAN) at θ0 if, for any converging sequence
hn→ h in Rk:
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log
n

∏
i=1

p
θ0+n−1/2hn

pθ0

(Xi) = hT
Γn,θ0 −

1
2 hT Iθ0h+oPθ0

(1), (4.5)

for random vectors Γn,θ0 such that Γn,θ0

Pθ0 -w.
−−−−→Nk(0, Iθ0).

Typical parameters for which the LAN-expansion (7.14) holds are the parameters θ

(or η(θ)) in exponential families of definition 3.5.4, and typical examples of param-
eters that are not LAN are domain boundaries, like those of a uniform distribution
on an interval or those in exponential or Pareto models. The LAN property formu-
lates a notion of smoothness in parameter dependence and it is useful to formulate
sufficient conditions based on differentiability of the density θ 7→ pθ (x) at θ0 for
every x.

Proposition 4.1.13. Let Θ ⊂ Rk be open, parametrizing a dominated model P =
{Pθ : θ ∈Θ} for i.i.d. data X1,X2, . . . ∈X with densities pθ : X → [0,∞). Assume
that the map θ 7→

√
pθ (x) is continuously differentiable for every x. If elements of

the matrix Iθ = Pθ ℓ̇θ ℓ̇
T
θ

are finite and depend on θ continuously, then the model is
LAN with respect to θ , with,

Γn,θ0 = n−1/2
n

∑
i=1

ℓ̇θ0(Xi).

Proof. See of lemma 7.6 and theorem 7.2 in [260].

But local asymptotic normality can be achieved under weaker conditions; well
known is the following property, best characterized as Hadamard differentiability
of square-roots of model densities relative to the L2(P0) norm.

Definition 4.1.14. (Differentiability in quadratic mean (DQM))
Let Θ ⊂Rk be open. A dominated model P = {Pθ : θ ∈Θ} for i.i.d. data X1,X2, . . .
with densities pθ is said to be differentiable in quadratic mean at θ0 ∈Θ , if there
exists a score function ℓ̇θ0 ∈ L2(Pθ0) such that:∫ (

p1/2
θ0+h− p1/2

θ0
− 1

2 hT ℓ̇θ0 p1/2
θ0

)2
dµ = o

(
∥h∥2),

as h→ 0.

Proposition 4.1.15. A dominated model P = {Pθ : θ ∈Θ} for i.i.d. data X1,X2, . . .
is DQM at θ0, if and only if, it is LAN at θ0.

Proof. For a proof of the forward implication, see theorem 2 in section 17.3 of
[187], or proposition 1 in section 7.2 of [191]. For a proof of the converse, see
proposition 2 in section 17.3 of [187], or proposition 3 in section 7.2 of [191].

In many situations, it is quite straightforward to demonstrate the LAN property di-
rectly, in i.i.d. context usually through application of the central limit theorem for
Γn,θ0 and the law of large numbers for the term that is second order in h.
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Local asymptotic normality of the model and regularity of the estimator sequence
come together in the following theorem which describes the foundation for the con-
volution theorem that follows: the models Pn = {Pn

θ
: θ ∈Θ} for the i.i.d. samples

Xn have a “limiting model” (for a fully developed theory of this type of limits of
experiments, see Le Cam (1964) [183]; see also [187, 191] and [254]) that describes
a single-observation for a normal distribution with unknown location, and regular
sequences of estimators (Tn) are matched with a random variable T in the limiting
model, in an asymptotically unbiased way.

Theorem 4.1.16. Let Θ ⊂ Rk be open; let P = {Pθ : θ ∈Θ} be LAN at θ0 with
non-singular Fisher information Iθ0 . Let (Tn) be regular estimators in the “localized
models” {P

θ0+n−1/2h : h ∈ Rk}. Then there exists a (randomized) statistic T in the
normal location model {Nk(h, I−1

θ0
) : h ∈ Rk} such that T −h∼ Lθ0 for all h ∈ Rk.

Proof. See theorems 7.10, 8.3 and 8.4 in [260], or the more elaborate corol-
lary 7.4.23 in [254].

Theorem 4.1.16 provides every regular estimator sequence with a limit in the form of
a statistic in a very simple statistical experiment involving only a single Nk(h, I−1

θ0
)-

distributed observation X with unknown location h: the (weak) limit distribution
that describes the local asymptotics of the sequence (Tn) under P

θ0+n−1/2h equals
the distribution of T under h, for all h ∈ Rk. Moreover, regularity of the sequence
(Tn) implies that under Nk(h, I−1

θ0
), the distribution of T relative to h is independent

of h, an invariance usually known as equivariance-in-law. The class of equivariant-
in-law estimators for location in the model {Nk(h, I−1

θ0
) : h ∈ Rk} is fully known:

for any equivariant-in-law estimator T for h, there exists a probability distribution
M such that T ∼ Nk(h, I−1

θ0
) ∗M. The most straightforward example is T = X , for

which M = δ0. This argument gives rise to the following central result in the theory
of efficient estimation.

Theorem 4.1.17. (Convolution theorem (Hajék, 1970) [126])
Let Θ ⊂ Rk be open and let {Pθ : θ ∈Θ} be LAN at θ0 with non-singular Fisher
information Iθ0 . Let (Tn) be a regular estimator sequence with limit distribution Lθ0 .
Then there exists a probability distribution Mθ0 such that,

Lθ0 = Nk(0, I−1
θ0

)∗Mθ0 ,

In particular, if Lθ0 has a covariance matrix Σθ0 , then Σθ0 ≥ I−1
θ0

.

(for k× k-matrices, the inequality Σθ0 ≥ I−1
θ0

means that for all v ∈ Rk, vT (Σθ0 −
I−1
θ0

)v ≥ 0.) The occurrence of the inverse Fisher information as an optimal lower-
bound in asymptotic context is finally explained here: the estimator T is unbiased
so it satisfies the Cramér-Rao lower bound for asymptotic variance in the limit-
ing model {Nk(h, I−1

θ0
) : h ∈ Rk}. Convolution of Nk(0, I−1

θ0
) with any distribution M

raises its variance unless M is degenerate: the last assertion of the convolution the-
orem says that, within the class of regular estimates, asymptotic variance is lower-
bounded by the inverse Fisher information. A regular estimator that is optimal in
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this sense, is called best-regular (or sometimes, efficient); an example is the ML
estimator of theorem 4.1.7. Anderson’s lemma below broadens the notion of opti-
mality, in the sense that best-regular estimators outperform other regular estimators
with respect to many loss functions.

Definition 4.1.18. A sub-convex loss-function is a map ℓ : Rk→ [0,∞) such that the
level sets {x ∈ Rk : ℓ(x)≤ c} are closed, convex and symmetric around the origin.

Examples of sub-convex loss-functions are many and include, for example, the com-
mon choices ℓ(x) = ∥x∥p, p≥ 1.

Lemma 4.1.19. (Anderson’s lemma)
For any k≥ 1, any sub-convex loss function ℓ, any probability distribution M on Rk

and any k-dimensional covariance matrix Σ ,∫
ℓdNk(0,Σ)≤

∫
ℓd(Nk(0,Σ)∗M).

Proof. A proof of Anderson’s lemma can be found, for instance, in [136].

Based on Anderson’s lemma, we see that the extent of the convolution theorem
is greater than mere optimality with respect to some specific loss function, effi-
ciency concerns all sub-convex loss functions. To conclude we mention the fol-
lowing equivalence, which characterizes efficiency concisely in terms of a weakly
converging sequence.

Proposition 4.1.20. In a LAN model, estimators (Tn) for θ are best-regular, if and
only if, the (Tn) are asymptotically linear, i.e. for all θ in the model,

n1/2(Tn−θ) =
1√
n

n

∑
i=1

I−1
θ

ℓ̇θ (Xi)+oPθ
(1). (4.6)

The random sequence of n−1/2-rescaled sums on the r.h.s. of (4.6) is denoted by
∆n,θ0 in theorem 4.2.1. Coming back to theorem 4.1.7, we see that under stated con-
ditions, a consistent MLE (θ̂n) is best-regular, finally giving substance to Fisher’s
claim. Referring to the discussion on confidence sets with which we opened this
section, we now know that in a LAN model confidence sets of the form (4.4), based
on best-regular estimators (θ̂n), enjoy a similar form of optimality: according to the
convolution theorem, the asymptotic sampling distributions of best-regular estima-
tor sequences are all the same and sharpest among asymptotic sampling distributions
for regular estimators.

4.2 Le Cam’s Bernstein-von Mises theorem

To address the question of efficiency in smooth parametric models from a Bayesian
perspective, we turn to the Bernstein-von Mises theorem. The first results concern-
ing limiting normality of a posterior distribution date back to Laplace (1820) [174].
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Later, Bernstein (1917) [15] and von Mises (1931) [204] proved results to a simi-
lar extent. Le Cam used the term ‘Bernstein-von Mises theorem’ in 1953 [179] and
proved its assertion in greater generality. Walker (1969) [263] and Dawid (1970)
[65] gave extensions to these results and Bickel and Yahav (1969) [27] proved a
limit theorem for posterior means. Below we follow Le Cam and Yang (1990) [191].

The (proof of the) Bernstein-von-Mises theorem depends crucially on local
asymptotic normality of the model at θ0. A quick sketch of the proof can be given as
follows. Suppose that the prior has a Lebesgue density that is continuous and strictly
positive at θ0. Also assume that the posterior concentrates in neighbourhoods of θ0
of sizes decreasing as n−1/2. Then it makes sense to consider the posterior density
for the local parameter h =

√
n(θ −θ0), with Lebesgue-density:

πn(h |X1,X2, . . . ,Xn )

=
n

∏
i=1

pθ0+h/
√

n(Xi)π(θ0 +h/
√

n)
/ ∫ n

∏
i=1

pθ0+h′/
√

n(Xi)π(θ0 +h′/
√

n)dh′,

almost-surely. Continuity of the Lebesgue density π of the prior at θ0 implies that
π(θ0+h/

√
n) converges to the constant π(θ0), which is strictly positive by assump-

tion. This makes it plausible that upon substitution of the likelihood expansion (4.5),
the posterior density converges to:

∏
n
i=1 pθ0+h/

√
n(Xi)dh∫

∏
n
i=1 pθ0+h′/

√
n(Xi)dh′

≈ ehT ∆n,θ0−
1
2 hT Iθ0 h dh∫

eh′T ∆n,θ0−
1
2 h′T Iθ0 h′ dh′

−→
dN(h, I−1

θ0
)(X)dh∫

dN(h′, I−1
θ0

)(X)dh′
(4.7)

(in a suitable sense with respect to P0). Here X is an observation in the normal limit
model {N(h, I−1

θ0
) : h ∈ Rk}. The r.h.s. of the last display equals dN(X , I−1

θ0
)(h) and

is the posterior based on a sample consisting only of X and the Lebesgue prior on H
for the limit model.

4.2.1 Conditions and consequences of the Bernstein-von Mises
theorem

The Bernstein-von Mises theorem has been formulated in many different forms; the
most general form is as follows [179, 191].

Theorem 4.2.1. (Bernstein-von Mises)
Assume that Θ ⊂ Rk is open and that the model P = {Pθ : θ ∈Θ} is identifiable
and dominated. Suppose X1,X2, . . . forms an i.i.d. sample from Pθ0 for some θ0 ∈Θ .
Assume that the model is locally asymptotically normal at θ0 with non-singular
Fisher information Iθ0 . Furthermore suppose that the prior ΠΘ has a Lebesgue
density that is continuous and strictly positive at θ0 and that for every ε > 0, there
exists a test sequence (φn) such that,
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Pn
θ0

φn→ 0, sup
∥θ−θ0∥>ε

Pn
θ (1−φn)→ 0.

Then posteriors converge to a normal distribution in total variation,∥∥∥Π(h ∈ ·|X1, . . . ,Xn)−N(∆n,θ0 , I
−1
θ0

)
∥∥∥ P0−→0,

centred on ∆n,θ0 =
√

n(θ̂n−θ0), where θ̂n is any best-regular estimator sequence.

Proof. For a proof, see theorem 4.2.4, as well as the misspecified theorems in chap-
ter 5.

Since the total-variational distance ∥N(µ,Σ)−N(ν ,Σ)∥ is bounded by a multi-
ple of ∥µ −ν∥, we find that the assertion of the Bernstein-von-Mises theorem can
also be formulated with

√
n(θ̂n−θ0) replacing ∆n,θ0 . Using the invariance of total-

variation under rescaling and shifts, this leads to (4.1). In particular, according to
theorem 4.1.7 and equivalence (4.6), the maximum-likelihood estimator is best-
regular under stated smoothness conditions on the (log-)likelihood. This serves to
motivate the often-heard statement that “Posterior means coincide with maximum-
likelihood estimators asymptotically”. In figure 4.1, Bernstein-von Mises-type of
convergence of the posterior is demonstrated with a graphical/numerical example.
Also displayed in figure 4.1 are the MAP-estimator of definition 2.2.20 and the
ML estimator. Here, the MLE is efficient so it forms a possible centring sequence
for the limiting sequence of normal distributions in the assertion of the Bernstein-
von Mises theorem. Furthermore it is noted that the posterior concentrates more
and more sharply, reflecting the n−1-proportionality of the variance of its limiting
sequence of normals. It is perhaps a bit surprising in figure 4.1 to see limiting nor-
mality obtain already at such relatively low values of the sample size n. It cannot be
excluded that this is merely a manifestation the normality of the underlying model,
but onset of normality of the posterior appears to happen at unexpectedly low values
of n also in other smooth, parametric setting. It suggests that asymptotic conclusions
based on the Bernstein-von Mises limit accrue validity fairly rapidly, for n in the or-
der of several hundred to several thousand i.i.d. replications of the observation, at
least, in well-behaved simple cases.

The uniformity in the assertion of the Bernstein-Von Mises theorem over model
subsets B implies that it holds also for model subsets that are random. In particular,
given some 0 < α < 1, it is noted that the (Lebesgue-)smallest sets Cα(X1, . . . ,Xn)
such that,

N
θ̂n,(nIθ0 )

−1

(
Cα(X1, . . . ,Xn)

)
≥ 1−α,

are ellipsoids of the form (4.4). Since posterior coverage of Cα converges to the
l.h.s. in the above display, in accordance with the Bernstein-Von Mises limit, we see
that the Cα are asymptotic credible sets of posterior coverage 1−α . Conversely, a
sequence (Dn(X1, . . . ,Xn)) of credible sets of coverage 1−α , is a sequence of sets
that have asymptotic confidence level (arbitrarily close to) 1−α and credible sets of
minimal Lebesgue measure coincide with Wald-type confidence sets asymptotically.
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Fig. 4.1 Convergence of the posterior density. The samples used for calculation of the posterior
distributions consist of n observations; the model consists of all normal distributions with mean
between −1 and 2 and variance 1 and has a polynomial prior, shown in the first (n = 0) graph. For
all sample sizes, the maximum a posteriori and maximum likelihood estimators are indicated by a
vertical line and a dashed vertical line respectively. (From Kleijn (2004) [156])

The above approximation in terms of uncertainty quantification gives rise to an
identification in smooth, parametric models between inference based on frequentist
best-regular point-estimators and inference based on Bayesian posteriors. In a prac-
tical sense, it eliminates the need to estimate θ and the Fisher information Iθ at θ

to arrive at asymptotic confidence sets, if we have an approximation of the poste-
rior distribution of high enough quality (e.g. from MCMC simulation), provided the
Bernstein-von Mises theorem holds.

Remark 4.2.2. The asymptotic identification of credible and confidence sets is par-
tially anticipated by theorem 2.3.14, solely on the basis of posterior concentration:
in the proof of the Bernstein-von Mises theorem below, it becomes clear that the
conditions of theorem 4.2.1 imply that, the posterior converges at rate n−1/2, i.e. for
any sequence Mn→ ∞,

Π
(

B(θ0,n−1/2Mn)
∣∣ X1, . . . ,Xn

) P0−→1,

(see lemma 4.2.8), implying that condition (2.35) is satisfied. Following theo-
rem 2.3.14, the radius-n−1/2Mn enlargements Cn(Xn) of credible sets Dn(Xn) (for
any credible level γ > 0) are asymptotically consistent confidence sets. If we let
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γn ↓ 0 slowly enough, then the enlargements are approximated well by balls of ra-
dius n−1/2Mn centred on a point where the (approximately Gaussian) posterior den-
sity peaks, e.g. the MAP estimator. If, like in most situations and in figure 4.1, the
MAP and ML estimators converge asymptotically and are best-regular, these balls
decrease in radius at rates arbitrarily close to the (asymptotically optimal) rate n−1/2.
Such a sequence of balls asymptotically includes the Wald ellipsoids that are the op-
timal in smooth parametric setting for large enough n. Theorem 2.3.14 demonstrates
what remains of that optimality if we do not use smoothness or parametric aspects
and we maintain only posterior concentration as a condition. Note that if we had
proved posterior concentration of the more specific form,

Π
(

n(θ −θ0)
T Iθ0(θ −θ0)≤ χ

2
n
∣∣ X1, . . . ,Xn

) P0−→1,

for certain constants χ2
n > 0, then enlarged confidence regions C(Xn) would have

the ellipsoid form of Wald’s optimal confidence regions (4.4).

To conclude let us briefly reflect on the conditions of theorem 4.2.1: local asymp-
totic normality and non-singularity of the associated Fisher information are mini-
mal smoothness conditions. They also arise in theorem 4.1.7 and form the back-
drop for any discussion of efficiency. More significant is the required existence of
a “consistent” test sequence: what is required is that, asymptotically, we can distin-
guish P0 from any complement of a θ -neighbourhood around θ0 in a uniform way.
One should compare this condition with the requirement of consistency of near-
maximizers of the likelihood in theorem 4.1.7. Test conditions of the type given
also play a central role in the developments of chapters 6 and 9.

4.2.2 Proof of the Bernstein-von Mises theorem

Below we divide the proof of the Bernstein-Von Mises theorem in two parts, with
a requirement of local n−1/2-sized consistency for the posterior in between. In
a separate lemma, we show that a score-test fills in the gap between local and
global consistency. To maintain the connection with chapter 5, we give the proof
of the Bernstein-Von Mises theorem based on a smoothness property that is slightly
stronger than local asymptotic normality.

Definition 4.2.3. We say that a parametric model P is stochastically LAN (sLAN)
at θ0, if the LAN property of definition 4.1.12 is satisfied for every random sequence
(hn) that is bounded in probability, i.e. for all hn = OP0(1):

log
n

∏
i=1

p
θ0+n−1/2hn

pθ0

(Xi)−hT
n Γn,θ0 +

1
2 hT

n Iθ0hn = oPθ0
(1), (4.8)

for random vectors Γn,θ0 such that Γn,θ0

θ0-w.−−−→Nk(0, Iθ0).
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Theorem 4.2.4. Let the sample X1,X2, . . . be distributed i.i.d.-P0. Let Θ ⊂ Rk be
open, let P = {Pθ : θ ∈Θ} be stochastically LAN at θ0 with non-singular Fisher
information Iθ0 and let the prior Π on Θ be Lebesgue dominated with continuous,
non-zero density. Furthermore, assume that for every sequence of origin-centred
balls (Kn)⊂ Rd with radii Mn→ ∞, we have:

Πn
(

h ∈ Kn
∣∣ X1, . . . ,Xn

) P0−→1. (4.9)

Then posteriors converge to normal distributions in total variation:

sup
B

∣∣∣Πn
(

h ∈ B
∣∣ X1, . . . ,Xn

)
−N

∆n,θ0 ,I
−1
θ0
(B)
∣∣∣ P0−→0, (4.10)

where ∆n,θ0 =
√

n(θ̂n−θ0) for any best-regular estimator-sequence θ̂n.

Proof. The proof is split into two parts: in the first part, we prove the assertion
conditional on a compact neighbourhood K of 0 in Θ , and in the second part we
diagonalize based on a sequence (Kn) with ∪nKn = Rk to prove (5.8). Throughout
the proof we denote the posterior for h given X1,X2, . . . ,Xn by Πn and the normal
distribution N

∆n,θ0 ,I
−1
θ0

by Φn (for ∆n,θ0 , see proposition 4.1.20). For K ⊂ Rk, condi-

tional versions are denoted Π K
n and ΦK

n respectively (assuming that Πn(K)> 0 and
Φn(K)> 0, of course).

Let K ⊂Θ be a ball centered on the origin in Rk. For every open neighbourhood
U ⊂Θ of θ0, θ0 +n−1/2 K ⊂U for large enough n. Since θ0 is an internal point of
Θ , we can define, for large enough n, the random functions fn : K×K→ R by:

fn(g,h) =
(

1− φn(h)
φn(g)

sn(g)
sn(h)

πn(g)
πn(h)

)
+
,

where φn : K → R is the Lebesgue density of the (randomly located) distribution
N

∆n,θ0 ,I
−1
θ0

, πn : K → R is the Lebesgue density of the prior for the centred and

rescaled parameter h and sn : K→ R equals the likelihood product:

sn(h) =
n

∏
i=1

pθ0+h/
√

n

pθ0

(Xi).

Since the model is stochastically LAN by assumption, we have for every random
sequence (hn)⊂ K:

logsn(hn) =
√

nhn(Pn−P0)ℓ̇θ0 −
1
2 hT

n Iθ0hn +oP0(1),

logφn(hn) =− 1
2 (hn−∆n,θ0)

T Iθ0(hn−∆n,θ0)+ constant.

For any two sequences (hn), (gn) ⊂ K, πn(gn)/πn(hn)→ 1 as n→ ∞. Combining
this with the above display we see that:
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log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)

=−
√

nhn(Pn−P0)ℓ̇θ0 +
1
2 hT

n Iθ0hn +
√

ngn(Pn−P0)ℓ̇θ0 −
1
2 gT

n Iθ0gn +oP0(1)

− 1
2 (hn−∆n,θ0)

T Iθ0(hn−∆n,θ0)+
1
2 (gn−∆n,θ0)

T Iθ0(gn−∆n,θ0)

= oP0(1)

as n→ ∞ by proposition 4.1.20. Since x 7→ (1− ex)+ is continuous on R, we con-
clude that for every pair of random sequences (gn,hn)⊂ K×K:

fn(gn,hn)
P0−→0, (n→ ∞).

For fixed, large enough n, Pn
0 -almost-sure continuity of (g,h) 7→ logsn(g)/sn(h) on

K×K is guaranteed by the stochastic LAN-condition. Each of the locations ∆n,θ0 for
Φn is tight, so (g,h) 7→ φn(g)/φn(h) is continuous on all of K×K, Pn

0 -almost-surely.
Continuity (in a neighbourhood of θ0) and positivity of the prior density guarantee
that this holds for (g,h) 7→ πn(g)/πn(h) as well. We conclude that for large enough
n, the random functions fn are continuous on K×K, Pn

0 -almost-surely. Application
of lemma 4.2.5 then leads to the conclusion that,

sup
g,h∈K

fn(g,h)
P0−→0, (n→ ∞). (4.11)

Since K contains a neighbourhood of 0, Φn(K)> 0 is guaranteed. Let Ξn denote the
event that Πn(K)> 0. Let η > 0 be given and based on that, define the events:

Ωn =
{

ω : sup
g,h∈K

fn(g,h)≤ η
}
.

Consider the expression (recall that the total-variation norm is bounded by 2):

Pn
0
∥∥Π

K
n −Φ

K
n
∥∥1Ξn ≤ Pn

0
∥∥Π

K
n −Φ

K
n
∥∥1Ωn∩Ξn +2Pn

0 (Ξn \Ωn). (4.12)

As a result of (4.11) the latter term is o(1) as n→ ∞. The remaining term on the
r.h.s. can be calculated as follows:

1
2 Pn

0
∥∥Π

K
n −Φ

K
n
∥∥1Ωn∩Ξn =

1
2 Pn

0

∫ (
1− dΦK

n

dΠ K
n

)
+

dΠ
K
n 1Ωn∩Ξn

= 1
2 Pn

0

∫
K

(
1−φ

K
n (h)

∫
K sn(g)πn(g)dg

sn(h)πn(h)

)
+

dΠ
K
n (h)1Ωn∩Ξn

= 1
2 Pn

0

∫
K

(
1−

∫
K

sn(g)πn(g)φ K
n (h)

sn(h)πn(h)φ K
n (g)

dΦ
K
n (g)

)
+

dΠ
K
n (h)1Ωn∩Ξn .
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Note that for all g,h ∈ K we have φ K
n (h)/φ K

n (g) = φn(h)/φn(g) since, on K, φ K
n

differs from φn only by a normalisation factor. We use Jensen’s inequality (see,
proposition B.4.8) (with respect to the ΦK

n -expectation) for the (convex) function
x 7→ (1− x)+ to derive:

1
2 Pn

0
∥∥Π

K
n −Φ

K
n
∥∥1Ωn∩Ξn ≤ 1

2 Pn
0

∫ (
1− sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)

)
+

dΦ
K
n (g)dΠ

K
n (h)1Ωn∩Ξn

≤ 1
2 Pn

0

∫
sup

g,h∈K
fn(g,h)1Ωn∩ΞndΦ

K
n (g)dΠ

K
n (h)≤ 1

2 η .

Combination with (4.12) shows that for all compact K ⊂ Rd containing a neigh-
bourhood of 0,

Pn
0
∥∥Π

K
n −Φ

K
n
∥∥1Ξn → 0.

Now let (Km) be a sequence of origin-centred balls in Rk with radii Mm → ∞.
For each m ≥ 1, the above display holds, so if we choose a sequence of balls
(Kn) that traverses the sequence Km slowly enough, convergence to zero can still
be guaranteed. Moreover, the corresponding events Ξn = {ω : Πn(Kn)> 0} satisfy
Pn

0 (Ξn)→ 1 as a result of (4.9). We conclude that there exists a sequence of radii
(Mn) such that Mn→ ∞ and

Pn
0
∥∥Π

Kn
n −Φ

Kn
n
∥∥→ 0, (4.13)

(where it is understood that the conditional probabilities on the l.h.s. are well-
defined on sets of probability growing to one). Combining (4.9) and lemma 4.2.7,
we then use lemma 4.2.6 to conclude that:

Pn
0
∥∥Πn−Φn

∥∥→ 0,

which implies (4.10).

The proof of theorem 4.2.4 makes use of the following three lemmas. For their
formulation, it is not necessary that the sample is i.i.d., and we denote the true data-
distributions by P0,n.

Lemma 4.2.5. Let ( fn) be a sequence of random functions K→R, where K is com-
pact. Assume that for large enough n≥ 1, fn is continuous P0,n-almost-surely. Then
the following are equivalent:

(i) Uniform convergence in probability:

sup
h∈K

∣∣ fn(h)
∣∣ P0,n−−→0,

(ii) Convergence along any random sequence (hn)⊂ K in probability:

fn(hn)
P0,n−−→0,
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as n→ ∞.

Proof. ((ii)⇒(i), by contradiction.) Assume that there exist δ ,ε > 0 such that:

limsup
n→∞

P0,n
(

sup
h∈K

∣∣ fn(h)
∣∣> δ

)
= ε.

Since the functions fn are continuous P0,n-almost-surely, there exists (with P0,n-
probability one) a sequence (h̃n) such that for every n≥ 1, h̃n ∈ K and∣∣ fn(h̃n)

∣∣= sup
h∈K

∣∣ fn(h)
∣∣.

Consequently, for this particular random sequence in K, we have:

limsup
n→∞

P0,n

(∣∣ fn(h̃n)
∣∣> δ

)
= ε > 0.

which contradicts (ii). ((i)⇒(ii).) Conversely, given a random sequence (hn) ⊂ K,
and for every δ > 0,

P0,n

(
sup
h∈K

∣∣ fn(h)
∣∣> δ

)
≥ P0,n

(∣∣ fn(hn)
∣∣> δ

)
.

Given (i), the l.h.s. converges to zero and hence so does the r.h.s..

The next lemma shows that given two sequences of probability measures, a se-
quence of balls that grows fast enough can be used conditionally to calculate the
difference in total-variational distance, even when the sequences consist of random
measures.

Lemma 4.2.6. Let (Πn) and (Φn) be two sequences of random probability measures
on Rk. Let (Kn) be a sequence of subsets of Rk such that

Πn(Rk \Kn)
P0,n−−→0, Φn(Rk \Kn)

P0,n−−→0. (4.14)

Then ∥∥Πn−Φn
∥∥−∥∥Π

Kn
n −Φ

Kn
n
∥∥ P0,n−−→0. (4.15)

Proof. Let K, a measurable subset of Rk and n ≥ 1 be given and assume that
Πn(K)> 0 and Φn(K)> 0. Then for any measurable B⊂ Rk we have:

∣∣Πn(B)−Π
K
n (B)

∣∣= ∣∣∣Πn(B)−
Πn(B∩K)

Πn(K)

∣∣∣
=
∣∣Πn
(
B∩ (Rk \K)

)
+
(
1−Πn(K)−1)

Πn(B∩K)
∣∣

≤Πn
(
B∩ (Rk \K)

)
+Πn(Rk \K)Π K

n (B)≤ 2Πn(Rk \K).

and hence also:
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K
n (B)

)
−
(
Φn(B)−Φ

K
n (B)

)∣∣∣≤ 2
(
Πn(Rk \K)+Φn(Rk \K)

)
. (4.16)

As a result of the triangle inequality, we then find that the difference in total-
variation distances between Πn and Φn on the one hand and Π K

n and ΦK
n on the

other is bounded above by the expression on the right in the above display (which is
independent of B).

Define An,Bn to be the events that Πn(Kn) > 0, Φn(Kn) > 0 respectively. On
Ξn = An ∩ Bn, Π Kn

n and ΦKn
n are well-defined probability measures. Assumption

(4.14) guarantees that Pn
0 (Ξn) converges to 1. Restricting attention to the event Ξn

in the above upon substitution of the sequence (Kn) and using (4.14) for the limit of
(4.16) we find (4.15), where it is understood that the conditional probabilities on the
l.h.s. are well-defined with probability growing to 1.

To apply the above lemma in the concluding steps of the proof of theorem 4.2.4, rate
conditions for both posterior and limiting normal sequences are needed. The rate
condition (4.9) for the posterior is assumed and the following lemma demonstrates
that its analog for the sequence of normals is satisfied when the sequence of centre
points ∆n,θ0 is uniformly tight.

Lemma 4.2.7. Let Kn be a sequence of balls centred on the origin with radii Mn→
∞. Let (Φn) be a sequence of normal distributions (with fixed covariance matrix V )
located at the random points (∆n)⊂Rk. If the sequence ∆n is uniformly tight, then:

Φn(Rk \Kn) = N∆n,V (H ∈ Rk \Kn)
P0,n−−→0.

Proof. Let δ > 0 be given. Uniform tightness of the sequence (∆n) implies the
existence of a constant L > 0 such that:

sup
n≥1

P0,n(∥∆n∥ ≥ L)≤ δ .

For all n≥ 1, call An = {∥∆n∥ ≥ L}, Ac
n = {∥∆n∥< L}. Let µ ∈ Rk be given. Since

N(µ,V ) is tight, for every given ε > 0, there exists a constant L′ such that Nµ,V (H ∈
B(µ,L′)) ≥ 1− ε (where B(µ,L′) defines a ball of radius L′ around the point µ .
Assuming that µ ≤ L, B(µ,L′) ⊂ B(0,L+L′) so that with M = L+L′, Nµ,V (H ∈
B(0,M))≥ 1− ε for all µ such that ∥µ∥ ≤ L. Choose N ≥ 1 such that Mn ≥M for
all n≥ N. Let n≥ N be given. Then:

P0,n
(
Φn(Rk \B(0,Mn))> ε

)
≤ δ +P0,n

({
N∆n,V (H ̸∈ B(0,Mn))> ε

}
∩Ac

n

)
(4.17)

Note that on the complement of An, ∥∆n∥< L, so:

N∆n,V (H ̸∈B(0,Mn))≤ 1−N∆n,V (H ∈B(0,M))≤ 1− inf
∥µ∥≤L

Nµ,V (H ∈B(0,M))≤ ε,

and we conclude that the last term on the r.h.s. of (4.17) equals zero.
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Aside from a slightly stronger smoothness property in the form of the stochastic
LAN condition, theorem 4.2.4 appears to require more than theorem 4.2.1, in the
sense that it requires posterior consistency at rate n−1/2 rather than the (fixed) tests
for consistency. The following lemma asserts that, assuming smoothness, the latter
condition is enough to satisfy the former. Its proof is based on the construction of
a score test that fills in the “gap” left between the fixed-alternative tests and the
growing alternative ∥θ −θ0∥ ≥ n−1/2 Mn.

Lemma 4.2.8. Assume that Θ ⊂Rk is open and that the model P = {Pθ : θ ∈Θ} is
identifiable and dominated. Assume that the model is locally asymptotically normal
at θ0 with non-singular Fisher information Iθ0 and that the prior is Lebesgue dom-
inated with continuous with a density that is non-zero at θ0. Furthermore, suppose
that there exists a test sequence (φn) such that,

Pn
θ0

φn→ 0, sup
∥θ−θ0∥>ε

Pn
θ (1−φn)→ 0.

Then the posterior converges at rate n−1/2, i.e. for every sequence Mn→ ∞,

Π
(
∥θ −θ0∥ ≥ n−1/2 Mn

∣∣ X1, . . . ,Xn
) P0−→0.

Proof. A proof is given in theorem 5.3.1, section 5.3), in the more general, misspec-
ified situation.

4.3 Semi-parametric Bernstein-von Mises theorems [EMPTY]

4.4 Exercises

4.4.1. Let (X ,B) be a measurable space with probability measures P,Q. Show that,
for any n≥ 1, H2(Pn,Qn)≤ nH2(P,Q).

4.4.2. Assume that n1/2(θ̂n−θ0) ∼ N(0, I−1
θ0

). Show that the ellipsoids (4.4) are of
minimal Lebesgue measure among all subsets of asymptotic coverage 1−α .

4.4.3. Consider Hodges’s estimators Sn of example 4.1.8. Show that, for any rate
sequence (εn), εn ↓ 0, ε−1

n (Sn−0) 0-w.−−→0.

4.4.4. Let Θ = (0,∞) and let P = {Pθ : θ ∈Θ} be the model of Poisson distribu-
tions Pθ with means θ . Let the data be an i.i.d. sample from Pθ0 for some θ0 ∈Θ .
Show that this model is LAN for all θ0.

4.4.5. Let Θ = R and let P = {Pθ : θ ∈Θ} be the model of normal distributions
N(θ ,1) of unit variance with means θ . Let the data be an i.i.d. sample from Pθ for
some θ ∈Θ . Show that this model is LAN for all θ .
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4.4.6. Let f be a Lebesgue density on R that is symmetric around the origin. Define
the model P = {Pµ,σ : µ ∈R,σ ∈ (0,∞)} by densities fµ,σ (x) =σ−1 f ((x−µ)/σ).
Show that the Fisher information matrix is diagonal.

4.4.7. Let P and Q be probability measures on a measurable space (X ,B),

a. Show that there exists a σ -finite measure µ such that P,Q≪ µ .
b. Using Radon-Nikodym derivatives p = dP/dµ and q = dQ/dµ , prove that,

sup
B∈B

∣∣P(B)−Q(B)
∣∣= 1

2

∫ ∣∣p−q
∣∣dµ.

c. Show that, for any sequence (Qn) of probability measures on (X ,B), there
exists a probability measure P that dominates all Qn, (n≥ 1).

d. Use the completeness of L1(X ,B,P) to show that the metric space M (X ,B)
of all probability measures on (X ,B) is complete in the topology of total vari-
ation.

4.4.8. Let Θ = (0,∞) and P = {N(0,θ 2) : θ ∈Θ}. Let Π be a Lebesgue dominated
prior on Θ , with continuous, non-zero Lebesgue density. Show that this model satis-
fies the conditions of the Bernstein-von Mises theorem 4.2.1. Find the problematic
range of parameter values in this model. (Hint: calculate the Fisher information,
find a problematic limit for it and describe the effect on the limiting sequence of
normal distributions for parameter values close to the problematic limit.)

4.4.9. Approximation in measure from within by compact subsets has a deep back-
ground in analysis. Central is the notion of a Radon measure (see definition C.8.1).
Show that any probability measure on a Polish space is Radon. Hint: recall that
Polish spaces are Lindelöf: every open cover of an open subset has a countable sub-
cover. (This statement generalizes to continuous images of Polish spaces, known as
Souslin spaces.)

4.4.10. Show that the Borel measure µ of the Riesz representation theorem is a
Radon measure (see definition C.8.1).

4.4.11. Prove the following: for θ ∈ Θ = R, let Fθ (x) = (1− e−(x−θ))∨ 0 be the
standard exponential distribution function located at θ . Assume that X1,X2, . . . form
an i.i.d. sample from Fθ0 , for some θ0. Let Π be a Lebegues dominated prior on Θ

with continuous, non-zero density. Then the associated posterior distribution satis-
fies, with h = n(θ −θ0),

sup
A

∣∣∣Πn
(

h ∈ A
∣∣ X1, . . . ,Xn

)
−Exp−

n(θ̂n−θ0)
(A)
∣∣∣ θ0−→0,

where θ̂n = X(1) is the maximum likelihood estimate for θ0 and Exp−a denotes the
standard negative exponential distribution located at a. (NB: This is an example
of an irregular estimation problem: clearly the model does not depend on θ in a
differentiable way. Inspection of the assertion shows that the rate of convergence is
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n−1 rather than n−1/2, the rate of convergence in regular situations. In addition, the
limiting shape of the posterior is not normal but exponential.)

4.4.12. Show the following: let (Xn) be a sequence of real random variables. If the
sequence (Xn) is almost-surely bounded (i.e. there exists a constant that bounds all
Xn almost-surely), then convergence of Xn in probability and convergence of Xn in
expectation are equivalent.

Some example exam problems

4.4.13. This problem concerns the frequentist theory of efficient estimation and the
Bernstein-von Mises theorem. Denote the model by P = {Pθ : θ ∈Θ}, for some
open parameter space Θ ⊂ R (note: we specialize to one-dimensional parameter
spaces here).

a. Assume that P is a model for i.i.d. data X1, . . . ,Xn ∈X , that is dominated with
densities pθ : X → R for all θ ∈Θ . State the definition of local asymptotic
normality of the model. What is the usual form of the term linear in the local pa-
rameter h on the right-hand side (in terms of the score ℓ̇θ (x) = ∂/∂θ log pθ (x))?

b. State Hajék’s convolution theorem. Discuss the roles of the two main condi-
tions, local asymptotic normality and regularity (that is, formulate what these
two conditions require at a heuristic level). Explain that the assertion implies
that there exists a lower bound for asymptotic variance and give this lower
bound.

c. Give the Bernstein-von Mises theorem. Discuss its conditions regarding the
model and the prior. Explain what justifies the often-heard phrase, ”The pos-
terior centres on the maximum-likelihood estimator asymptotically.”

d. Explain why the Bernstein-von Mises theorem enables the interpretation of
credible sets as asymptotic confidence sets.





Chapter 5
Model misspecification

Generally speaking, statistical analysis requires a choice of a model, which may not
include the frequentist true distribution of the data. Throughout most of what has
preceded, we have assumed that the model P is well-specified, cf. definition 1.1.9.
In asymptotic context, well-specification translates into the assumption that for ev-
ery n ≥ 1, the true distribution P0,n of the sample Xn lies in the n-th model Pn. In
the more specific situation that these models are parametrized with the help of a sin-
gle parameter space Θ by maps Θ →Pn : θ 7→ Pθ ,n, well-specification is expressed
through the assumption that there exists a θ0 ∈Θ such that P0,n = Pθ0,n for all n≥ 1.
Assumptions of this nature, which concern the unknown quantity of interest θ0 di-
rectly, are accepted as an article of faith in most frequentist statistical procedures
(and often difficult or impossible to verify, even asymptotically, through tests based
on the data (see chapter 9, particularly, examples 9.4.12–9.4.14)).

In the proofs of theorems, it is rarely a problem if there is no single θ0 ∈ Θ

to explain all P0,n, because often one can prove exactly the same for n-dependent
θ0,n such that P0,n = Pθ0,n,n. But what happens to our statistical procedures in the
far-worse case when,

P0,n ̸∈Pn, (5.1)

that is, when the true distribution of the data does not even lie in the model? The
smaller the models Pn, the more stringent the assumption that the model is well-
specified. Especially when we consider a parametric models, when Θ ⊂Rk, chances
are that the models we have for the true distribution of the data are misspeci-
fied, cf. (5.1). Commonly ignored in practice, this fact implies that many statisti-
cal procedures are carried out with misspecified models. Theorems assuming well-
specification are used regardless, seldom leading to significant problems, which
raises the question: “Why? What can be said about the reliability of statistical tools
in misspecified situations?”

When we dissociate the definition of the model from sufficient assumptions on P0
for our tools to work, we explore the maximal extent of their applicability properly.
The goal is to state model assumptions and assumptions on the true distribution of
the data separately: in the case of an i.i.d. sample, for example, we would specify

147
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a model P and assume given i.i.d. observations X1, . . . ,Xn, marginally distributed
according to some unknown single-observation distribution P0. We would then for-
mulate conditions for P0 (rather than restrict the model and assume it to be well-
specified) in order for the assertion of the theorem to hold. Ideally, these conditions
are satisfied not only by the model distributions but also by a large, non-parametric
set of other distributions, so that the misspecified theorem generalises its well spec-
ified version and describes in detail the consequences of misspecification.

5.1 Misspecification in smooth parametric models

In this chapter, which is based on Kleijn and van der Vaart (2012) [158], we address
the misspecification question in the particular, parametric case of the Bernstein-
von Mises theorem of chapter 4. The main conclusion we shall draw, is that in
the asymptotic limit, the posterior distribution of a parameter in misspecified LAN
parametric models is still approximated well by a random normal distribution, but
Bayesian credible sets cease to be valid as approximate confidence sets if the model
is misspecified. We obtain the result under conditions that are comparable to those
in the well-specified situation: uniform testability against fixed alternatives and suf-
ficient prior mass in neighbourhoods of the point of convergence. The rate of con-
vergence is considered in detail, with special attention for the existence and con-
struction of suitable test sequences.

We do not discuss the asymptotic behaviour of posterior distributions in mis-
specified non-parametric models; a discussion (of less specificity than that of the
Bernstein-von Mises theorem) is found in Kleijn (2004) [156] and Kleijn and
van der Vaart (2006) [157].

5.1.1 Misspecified maximum likelihood estimation

To appreciate the role of the likelihood function, we start with a review of an es-
timation method that generalises relatively easily to the misspecified situation, M-
estimation (see van de Geer (2000) [107] and van der Vaart (1998, 1996) [260, 259]).
Consider a smooth parametric model P = {Pθ : θ ∈Θ} of single-observation dis-
tributions for i.i.d. samples Xn = (X1, . . . ,Xn), n ≥ 1. We denote the true single-
observation distribution by P0 and we do not assume that P0 ∈P . An M-estimator
is a (near-)maximiser θ̂n of the function Mn : Θ → R with,

Mn(θ) =
1
n

n

∑
i=1

mθ (Xi),

for some P0-integrable mθ (x). Assuming that P is a dominated model with prob-
ability densities pθ , the maximum-likelihood estimator is the M-estimator for the
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choice mθ (x) = log pθ (x). Under certain, rather stringent conditions (see, for ex-
ample, [260], section 5.2), θ̂n converges to the maximum θ ∗ of the function θ 7→
P0mθ (X). In the maximum-likelihood case, the estimators θ̂n converge (in P0-
probability or P0-almost-surely) to the point θ ∗ ∈ Θ that minimises the so-called
Kullback-Leibler divergence of Pθ with respect to P0:

θ 7→ −P0 log
pθ

p0
, (5.2)

over the model Θ . (The P0-almost-sure existence and uniqueness of θ ∗ are non-
trivial conditions for the model P and true P0.) The fact that θ ∗ does not correspond
to the true distribution P0 directly is inconsequential: the maximum-likelihood pro-
cedure defines the ‘best’ approximation of P0 within P to be the point of min-
imal Kullback-Leibler divergence (note that other choices for x 7→ mθ (x) would
lead to different ways of ‘projecting’ P0 onto P). The asymptotic behaviour of the
maximum-likelihood procedure is postponed to lemmas 5.2.3 and 5.2.4, but we note
here that under regularity conditions (see [260], sections 5.3 and 5.5), maximum
likelihood estimators θ̂n converge to θ ∗ in an asymptotically normal way,

√
n(θ̂n−θ

∗)
P0-w.−−−→N0,V−1

θ∗ I
θ∗ V−1

θ∗
, (5.3)

where Vθ∗ is the second-order coefficient in the Taylor expansion of the Kullback-
Leibler divergence (assumed non-singular) and Iθ∗ = P0ℓ̇θ∗ ℓ̇

T
θ∗ denotes the Fisher

information at θ ∗ (see, for instance, Huber (1967) [135]). In the well-specified case,
Vθ∗ equals Iθ∗ and the asymptotic variance reduces to a single instance of the inverse
Fisher information, but that cancellation does not occur in the misspecified case.

5.1.2 The misspecified Bernstein-von Mises theorem

Consistency of posterior distributions and asymptotic normality of the posterior
mean under misspecification have been considered in Berk (1966, 1970) [21, 22]
and Bunke and Milhaud (1998) [53]. The behaviour of the full posterior distribution
was studied in Kleijn and van der Vaart (2004) [158]. Here we follow the latter and
derive the asymptotic normality of the full posterior distribution in the misspecified
situation under conditions comparable to those obtained in the well-specified case
of section 4.2. We focus on dominated models for i.i.d. data where the posterior
distribution follows (2.13) and we assume that the observations are sampled from a
density p0 that is not necessarily of the form pθ0 for some θ0. It is shown that the
Bernstein-von Mises assertion (4.1) can be extended to this situation, in the form,

sup
B

∣∣∣Π(ϑ ∈ B
∣∣ X1, . . . ,Xn

)
−N(θ̂n,(nVθ∗)

−1)(B)
∣∣∣ P0−→0, (5.4)
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where θ ∗ is the parameter value minimizing the Kullback-Leibler divergence θ 7→
P0 log(p0/pθ ), Vθ∗ is minus the second derivative matrix of this map, and θ̂n are
suitable estimators.

Remark 5.1.1. According to (5.3), maximum likelihood estimators in the misspeci-
fied model are asymptotically normal with mean zero and covariance matrix given
by Σθ∗ = Vθ∗(P0ℓ̇θ∗ ℓ̇

T
θ∗)
−1Vθ∗ . The corresponding Wald-type confidence sets (see

(4.4)) for the misspecified parameter take the form θ̂n +Σ
1/2
θ∗ C/

√
n for C a central

set in the Gaussian distribution. Because the covariance matrix Vθ∗ appearing in the
misspecified Bernstein-von Mises theorem is not the sandwich covariance matrix,
credible sets of posterior probability 1−α do not correspond to the misspecified
Wald sets. Although they are correctly centered, they may have the wrong width,
and are in general not 1−α-confidence sets. To make the consequences of the mis-
match between the asymptotic covariance matrix V−1

θ∗ P0(ℓ̇θ∗ ℓ̇
T
θ∗)V−1

θ∗ and limiting
covariance matrix V−1

θ∗ explicit, consider the following example.

Example 5.1.2. Let Pθ be the normal distribution with mean θ and variance 1, and
let the true distribution possess mean zero and variance σ2 > 0. Then θ ∗ = 0,
P0ℓ̇

2
θ∗ = σ2 and Vθ∗ = 1. It follows that the radius of the 1−α-Bayesian credible

set is zα/
√

n, whereas a 1−α-confidence set around the mean has radius zα σ/
√

n.
Depending on σ2 ≤ 1 or σ2 > 1, the credible set can have coverage arbitrarily close
to 0 or 1.

So credible sets may over- or under-cover as confidence sets, depending on the true
distribution of the observations and the model and to extreme amounts.

This chapter’s presentation is split into two parts: in section 5.2 we derive nor-
mality of the posterior given that it shrinks at a

√
n-rate of posterior convergence

(theorem 5.2.2). We actually state this result for the general situation of locally
asymptotically normal (LAN) models, and next specify to the i.i.d. case. Next in
section 5.3 we discuss results guaranteeing the desired rate of convergence, where
we first show sufficiency of existence of certain tests (theorem 5.3.1), and next con-
struct appropriate tests (theorem 5.3.5).

5.2 Posterior limit distribution

Throughout the presentation of the misspecified Bernstein-von Mises theorem and
its consequences, we denote the model parametrizations by θ 7→ P(n)

θ
and the cor-

responding random variables by X (n) (when possibly non-i.i.d.) and by θ 7→ Pn
θ

and
Xn (when i.i.d.), deviating from the notations θ 7→ Pθ ,n and Xn used elsewhere in
this book, for typographic reasons.
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5.2.1 Posterior asymptotic normality in smooth models

Let Θ be an open subset of Rk parametrizing statistical models {P(n)
θ

: θ ∈ Θ},
n≥ 1. For simplicity, we assume that, for each n, there exists a single measure that
dominates all measures P(n)

θ
as well as a “true measure” P(n)

0 , and we assume that

there exist densities p(n)
θ

and p(n)0 such that the maps (θ ,x) 7→ p(n)
θ
(x) are measur-

able. Generalizing definition 4.1.12, we consider models satisfying a smoothness
condition of the following type.

Definition 5.2.1. We say that a misspecified parametric model P is stochastically
LAN (sLAN) at an inner point θ ∗ ∈Θ and relative to a given rate δn → 0, if there
exist random vectors ∆n,θ∗ and non-singular matrices Vθ∗ such that the sequence
∆n,θ∗ is bounded in P0-probability and for every compact set K ⊂ Rk,

sup
h∈K

∣∣∣∣ log
p(n)

θ∗+δnh

p(n)
θ∗

(X (n))−hTVθ∗∆n,θ∗ +
1
2 hTVθ∗h

∣∣∣∣→ 0, (5.5)

in P(n)
0 -probability.

The prior measure Π on Θ is assumed to be a probability measure with Lebesgue-
density π , continuous and positive on a neighbourhood of a given point θ ∗. Priors
satisfying these criteria assign enough mass to (sufficiently small) balls around θ ∗

to allow for optimal rates of convergence of the posterior if certain regularity con-
ditions are met (see section 5.3). Like before, the posterior based on an observation
X (n) is denoted Π( · |X (n)): for every Borel set A,

Π
(

ϑ ∈ A
∣∣ X (n) )= ∫

A
p(n)

θ
(X (n))π(θ)dθ

/ ∫
Θ

p(n)
θ
(X (n))π(θ)dθ . (5.6)

We stress that both definition (5.5) and the assertion of theorem 5.2.2 below involve
convergence in P(n)

0 -probability, that is, with respect to the true distribution of the
data.

Theorem 5.2.2. Assume that definition 5.2.1 holds at some θ ∗ ∈Θ and let the prior
Π be Lebesgue absolutely continuous with a continuous density that is strictly pos-
itive in θ ∗. Furthermore, assume that for every sequence of constants Mn→ ∞,

P(n)
0 Π

(
∥ϑ −θ

∗∥> δnMn
∣∣ X (n) )→ 0. (5.7)

Then the sequence of posteriors converges to a sequence of normal distributions in
total variation:

sup
B

∣∣∣Π((ϑ −θ
∗)/δn ∈ B

∣∣ X (n) )−N
∆n,θ∗ ,V

−1
θ∗
(B)
∣∣∣ P0−→0. (5.8)

Proof. The proof is identical to that of theorem 4.2.1, with a few small changes: the
local parameter h is now defined with the help of the rate δn. Throughout the proof
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we denote the posterior for H =(ϑ−θ ∗)/δn given X (n) by Πn(·|X (n)) which follows
from that for θ by Πn(H ∈ B|X (n)) = Π((ϑ −θ ∗)/δn ∈ B|X (n)) for all Borel sets
B. Furthermore, we denote the normal distribution N

∆n,θ∗ ,V
−1
θ∗

by Φn. For a compact

subset K ⊂Rk such that Πn(H ∈K|X (n))> 0, we define a conditional version Π K
n of

Πn by Π K
n (B|X (n))=Πn(B∩K|X (n))/Πn(K|X (n)). Similarly we define a conditional

measure ΦK
n corresponding to Φn. Then, following the proof of theorem 4.2.1, it is

noted that,

log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)

= (gn−hn)
TVθ∗∆n,θ∗ +

1
2 hT

n Vθ∗hn− 1
2 gT

n Vθ∗gn +oP0(1)

− 1
2 (hn−∆n,θ∗)

TVθ∗(hn−∆n,θ∗)+
1
2 (gn−∆n,θ∗)

TVθ∗(gn−∆n,θ∗)

= oP0(1),

as n→ ∞. The rest of the proof is identical.

Condition (5.7) fixes the rate of convergence of the posterior distribution to be
that occuring in the LAN property. Sufficient conditions to satisfy (5.7) in the case
of i.i.d. observations are given in section 5.3.

5.2.2 Posterior asymptotic normality in the i.i.d. case

Consider the situation that the observation is a vector X (n) = (X1, . . . ,Xn) and the
model consists of n-fold product measures P(n)

θ
= Pn

θ
, where the components Pθ

have densities pθ such that ((θ ,x) 7→ pθ (x) is measurable and) θ 7→ pθ is smooth
(in the sense of lemma 5.2.3). Assume that the observations form an i.i.d. sample
from a distribution P0 with density p0 relative to a common dominating measure.
Assume that the Kullback-Leibler divergence of the model relative to P0 is finite
and minimized at θ ∗ ∈Θ , i.e.:

−P0 log
pθ∗

p0
= inf

θ∈Θ
−P0 log

pθ

p0
< ∞. (5.9)

In this situation we set δn = n−1/2 and use ∆n,θ∗ =
√

nV−1
θ∗ (Pn−P0)ℓ̇θ∗ as the cen-

tering sequence (where ℓ̇θ∗ denotes the score function of the model θ 7→ pθ at θ ∗).
Lemmas that establish the LAN expansion (5.5) usually assume a well-specified

model, whereas current interest requires local asymptotic normality in misspecified
situations. To that end we consider the following lemma which gives sufficient con-
ditions.

Lemma 5.2.3. If the function θ 7→ log pθ (X1) is differentiable at θ ∗ in P0-probability
with derivative ℓ̇θ∗(X1) and:
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(i) there is an open neighbourhood U of θ ∗ and a L2(P0)-function mθ∗ such that
for all θ1,θ2 ∈U: ∣∣∣∣ log

pθ1

pθ2

∣∣∣∣≤ mθ∗∥θ1−θ2∥, (P0−a.s.), (5.10)

(ii) the Kullback-Leibler divergence with respect to P0 has a 2nd-order Taylor-
expansion around θ ∗:

−P0 log
pθ

pθ∗
= 1

2 (θ −θ
∗)Vθ∗(θ −θ

∗)+o(∥θ −θ
∗∥2), (θ → θ

∗), (5.11)

where Vθ∗ is a positive-definite k× k-matrix,

then (5.5) holds with δn = n−1/2 and ∆n,θ∗ =
√

nV−1
θ∗ (Pn−P0)ℓ̇θ∗ . Furthermore, the

score function is bounded as follows:

∥ℓ̇θ∗(X)∥ ≤ mθ∗(X), (P0−a.s.). (5.12)

Finally, we have:

P0ℓ̇θ∗ =
∂

∂θ

[
P0 log pθ

]
θ=θ∗ = 0. (5.13)

Proof. Using lemma 19.31 in Van der Vaart (1998) [260] for ℓθ (X) = log pθ (X),
the conditions of which are satisfied by assumption, we see that for any sequence
(hn) that is bounded in P0-probability:

√
n(Pn−P0)

(√
n
(
ℓθ∗+(hn/

√
n)− ℓθ∗

)
−hT

n ℓ̇θ∗

)
P0−→0. (5.14)

Hence, we see that,

nPn log
pθ∗+hn/

√
n

pθ∗
−
√

nhT
n (Pn−P0)ℓ̇θ∗ −nP0 log

pθ∗+hn/
√

n

pθ∗
= oP0(1).

Using the second-order Taylor-expansion (5.11):

P0 log
pθ∗+hn/

√
n

pθ∗
− 1

2n
hT

n Vθ∗hn = oP0(1),

and substituting the log-likelihood product for the first term, we find (5.5).

Regarding the centering sequence ∆n,θ∗ and its relation to the maximum-likelihood
estimator, we note the following lemma concerning the limit distribution of maximum-
likelihood sequences.

Lemma 5.2.4. Assume that the model satisfies the conditions of lemma 5.2.3 with
non-singular Vθ∗ . Then a sequence of estimators θ̂n such that θ̂n converges to θ ∗ in
P0-probability and,

Pn log p
θ̂n
≥ sup

θ

Pn log pθ −oP0(n
−1),
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satisfies the asymptotic expansion:

√
n(θ̂n−θ

∗) =
1√
n

n

∑
i=1

V−1
θ∗ ℓ̇θ∗(Xi)+oP0(1). (5.15)

Proof. See van der Vaart (1998) [260], p. 54.

As noted earlier, lemma 5.2.4 implies that for consistent maximum-likelihood es-
timators the distribution of

√
n(θ̂n − θ ∗) has a normal limit with mean zero and

covariance,
Σ =V−1

θ∗ P0(ℓ̇θ∗ ℓ̇
T
θ∗)V−1

θ∗ .

More important for present purposes, however, is the fact that according to (5.15),
the differences between

√
n(θ̂n − θ ∗) and ∆n,θ∗ go to zero in probability. The

Bernstein-von Mises assertion (5.8) can also be formulated as in (5.4), which
demonstrates the usual interpretation of the Bernstein-von Mises theorem most
clearly: the sequence of posteriors resembles more-and-more closely a sequence of
“sharpening” normal distributions centred at the maximum-likelihood estimators.
More generally, any sequence of estimators satisfying (5.15) (any best-regular esti-
mator sequence) may be used to centre the normal limit sequence. The conditions
for lemma 5.2.4 are close to the conditions of the above Bernstein-von Mises theo-
rem. As we have seen, in the well-specified situation the Lipschitz condition (5.10)
can be replaced by the condition of differentiability in quadratic mean.

5.2.3 Asymptotic normality of point-estimators

Having discussed the posterior distributional limit, a natural question concerns the
asymptotic properties of point-estimators derived from the posterior, like the poste-
rior mean and median.

Based on the Bernstein-von Mises assertion (5.8) alone, one sees that any func-
tional f : P 7→ R, continuous relative to the total-variational norm, when applied
to the sequence of posterior laws, converges to f applied to the normal limit distri-
bution. Another general consideration follows from a generic construction of point-
estimates from posteriors and demonstrate that posterior consistency at rate δn im-
plies frequentist consistency at rate δn.

Theorem 5.2.5. Let X1, . . . ,Xn be distributed i.i.d.-P0 and let Π(·|X1, . . . ,Xn) de-
note a sequence of posterior distributions on Θ that satisfies (5.7). Then there exist
Bayesian point-estimators θ̂n such that:

δ
−1
n (θ̂n−θ

∗) = OP0(1), (5.16)

i.e. θ̂n is consistent and converges to θ ∗ at rate δn.

Proof. Define θ̂n to be the centre of a smallest ball that contains posterior mass at
least 1/2 (see remark 2.2.19). Because the ball around θ ∗ of radius δnMn contains
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posterior mass tending to 1, the radius of a smallest ball must be bounded by δnMn
and the smallest ball must intersect the ball of radius δnMn around θ ∗ with proba-
bility tending to 1. This shows that ∥θ̂n−θ ∗∥ ≤ 2δnMn with probability tending to
one.

This general point is more appropriate in non-parametric context and the above
existence theorem does not pertain directly to the most widely-used Bayesian point-
estimators, like the posterior mean or MAP-estimator. Asymptotic normality of the
posterior mean in a misspecified model has been analysed in Bunke and Milhaud
(1998) [53]; here, we generalize their discussion and prove asymptotic normality
and efficiency for a class of point-estimators defined by a general loss function,
which includes the posterior mean and median.

Let ℓ : Rk→ [0,∞) be a loss-function with the following properties: ℓ is continu-
ous and satisfies, for every M > 0,

sup
∥h∥≤M

ℓ(h)≤ inf
∥h∥>2M

ℓ(h),

with strict inequality for some M. Furthermore, we assume that ℓ is sub-polynomial,
i.e. for some p > 0,

ℓ(h)≤ 1+∥h∥p. (5.17)

Define the estimators θ̂n as the formal Bayes estimators (see definition 2.2.16) that
minimize,

t 7→
∫

ℓ
(√

n(t−θ)
)

dΠ(θ |X1, . . . ,Xn).

(For the validity of (5.8), we refer to the conditions of lemma 5.2.3 and theo-
rem 5.3.1.)

Theorem 5.2.6. Assume that (5.8) holds. Let ℓ : Rk→ [0,∞) be a loss-function with
the properties listed and assume that

∫
∥θ∥p dΠ(θ) < ∞. Then under P0, the se-

quence
√

n(θ̂n−θ ∗) converges weakly to the minimizer of,

t 7→ Z(t) =
∫

ℓ(t−h)dNX ,V−1
θ∗
(h),

where X ∼ N(0,V−1
θ∗ P0(ℓ̇θ∗ ℓ̇

T
θ∗)V−1

θ∗ ), provided that any two minimizers of this pro-
cess coincide almost-surely. In particular, if the loss function is sub-convex (e.g.
ℓ(x)= ∥x∥2 or ℓ(x)= ∥x∥, giving the posterior mean and median), then

√
n(θ̂n−θ ∗)

converges weakly to X under P0.

Proof. The theorem can be proved along the same lines as theorem 10.8 in [260].
The main difference is in proving that, for any Mn→ ∞,

Un :=
∫
∥h∥>Mn

∥h∥p dΠn(h|X1, . . . ,Xn)
P0−→0. (5.18)
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Here, abusing notation, we write dΠn(h|X1, . . . ,Xn) to denote integrals relative to the
posterior distribution of the local parameter h=

√
n(θ−θ ∗). Under misspecification

a new proof is required, for which we extend the proof of theorem 5.3.1 below.
Once (5.18) is established, the proof continues as follows. The variable ĥn =√

n(θ̂n−θ) is the maximizer of the process t 7→
∫
ℓ(t−h)dΠn(h|X1, . . . ,Xn). Then

ĥn = OP0(1). Fix some compact set K and for given M > 0 define the processes

t 7→ Zn,M(t) =
∫
∥h∥≤M

ℓ(t−h)dΠn(h|X1, . . . ,Xn)

t 7→Wn,M(t) =
∫
∥h∥≤M

ℓ(t−h)dN
∆n,V−1

θ∗
(h)

t 7→WM(t) =
∫
∥h∥≤M

ℓ(t−h)dNX ,V−1
θ∗
(h)

Since supt∈K,∥h∥≤M ℓ(t−h) < ∞, Zn,M−Wn,M = oP0(1) in ℓ∞(K) by theorem 5.2.2.
Since ∆n converges weakly to X under Pn

0 , the continuous mapping theorem implies

that Wn,M
P0-w.−−−→WM in ℓ∞(K). Because ℓ has sub-polynomial tails, integrable with

respect to NX ,V−1
θ∗

, WM
P0−→Z in ℓ∞(K) as M → ∞. Thus Zn,M

P0-w.−−−→WM in ℓ∞(K),

for every M > 0, and WM
P0−→Z as M→∞. We conclude that there exists a sequence

Mn→∞ such that Zn,Mn
P0-w.−−−→Z. The limit (5.18) implies that Zn,Mn−Zn = oP0(1) in

ℓ∞(K) and we conclude that Zn
P0-w.−−−→Z in ℓ∞(K). Due to the continuity of ℓ, t 7→ Z(t)

is continuous almost surely. This, together with the assumed unicity of maxima of
these sample paths, enables the argmax theorem (corollary 5.58 in [260]) and we

conclude that ĥn
P0-w.−−−→ ĥ, where ĥ is the minimizer of Z(t).

For the proof of (5.18) we adopt the notation of theorem 5.3.1. The tests ωn
employed there can be taken nonrandomized without loss of generality (otherwise
replace them for instance by 1ωn>1/2) and then Unωn tends to zero in probability
because ωn does so. Thus (5.18) is proved once it is established that, with εn =
Mn/
√

n, the sequences,

dn = Pn
0 (1−ωn)1Ω\Ξn

∫
εn≤∥θ−θ∗∥<ε

np/2∥θ −θ
∗∥p dΠ(θ

∣∣ X1, . . . ,Xn
)

d′n = Pn
0 (1−ωn)1Ω\Ωn

∫
∥θ−θ∗∥≥ε

np/2∥θ −θ
∗∥p dΠ(θ

∣∣ X1, . . . ,Xn
)

go to zero. We can use bounds as in the proof of theorem 5.3.1, but instead of (5.23),
we arrive at the bounds,

dn ≤
en(a2

n(1+C)−Dε2)

Π
(
B(an,θ ∗;P0)

)np/2
∫
∥θ −θ

∗∥p dΠ(θ),

d′n ≤ K′e−
1
2 nDε2

n
∞

∑
j=1

np/2( j+1)d+p
ε

p
n e−nD( j2−1)ε2

n ,
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both of which tend to zero. The last assertion of the theorem follows, because for
a sub-convex loss function the process Z is minimized uniquely by X , as a conse-
quence of lemma 4.1.19).

5.3 Rate of convergence

In a Bayesian context, the rate of convergence is defined as the maximal pace at
which balls around the point of convergence can be shrunk to radius zero while
still capturing a posterior mass that converges to one asymptotically (see defini-
tion 6.4.1). Current interest lies in the fact that the Bernstein-von Mises theorem of
the previous section formulates condition (5.7) (with δn = n−1/2),

Π
(
∥ϑ −θ

∗∥ ≥Mn/
√

n
∣∣ X1, . . . ,Xn

) P−→0,

for all Mn→ ∞. As we shall see in chapter 6, a convenient way of establishing the
above is through the condition that suitable test sequences exist. As was shown in
a well-specified context in Ghosal et al. (2000) [110] and under misspecification
in Kleijn and Van der Vaart (2006) [157], the most important requirement for con-
vergence of the posterior at a certain rate is the existence of a test-sequence that
separates the point of convergence from the complements of balls shrinking at said
rate. In chapters 6 and 7, we extend this point further.

This is also the approach we follow here: we show that the sequence of poste-
rior probabilities in the above display converges to zero in P0-probability if a test
sequence exists that is suitable in the sense given above (see the proof of theo-
rem 5.3.1). However, under the regularity conditions that were formulated to es-
tablish local asymptotic normality under misspecification in the previous section,
more can be said: not complements of shrinking balls, but fixed alternatives are to
be suitably testable against P0, thus relaxing the testing condition considerably. Lo-
cally, the construction relies on score-tests to separate the point of convergence from
complements of neighbourhoods shrinking at rate 1/

√
n, using Bernstein’s inequal-

ity to obtain exponential power. The tests for fixed alternatives are used to extend
those local tests to the full model.

In this section we prove that a prior mass condition and suitable test sequences
suffice to prove convergence at the rate required for the Bernstein-von Mises the-
orem formulated in section 5.2. The theorem that begins the next subsection sum-
marizes the conclusion. Throughout the section we consider the i.i.d. case, with
notation as in subsection 5.2.2.
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5.3.1 Posterior rate of convergence

With use of theorem 5.3.5, we formulate a theorem that ensures
√

n-rate of conver-
gence for the posterior distributions of smooth, testable models with sufficient prior
mass around the point of convergence. The testability condition is formulated using
measures Qθ , defined by,

Qθ (A) = P0

( pθ

pθ∗
1A

)
,

for all A∈A and all θ ∈Θ . Note that all Qθ are dominated by P0 and that Qθ∗ = P0.
Also note that if the model is well-specified, then Pθ∗ = P0 and Qθ = Pθ for all θ .
Therefore the use of Qθ instead of Pθ to formulate the testing condition is relevant
only in the misspecified situation (see Kleijn and Van der Vaart (2006) [157] for
more on this subject). The proof of theorem 5.3.1 makes use of Kullback-Leibler
neighbourhoods of θ ∗ of the form:

B(ε,θ ∗;P0) =
{

θ ∈Θ :−P0 log
pθ

pθ∗
≤ ε

2, P0

(
log

pθ

pθ∗

)2
≤ ε

2
}
, (5.19)

for some ε > 0.

Theorem 5.3.1. Assume that the model P satisfies the smoothness conditions of
lemma 5.2.3, where in addition, it is required that P0(pθ/pθ∗) < ∞ for all θ in
a neighbourhood of θ ∗ and P0(esmθ∗ ) < ∞ for some s > 0. Assume that the prior
possesses a density that is continuous and positive in a neighbourhood of θ ∗. Fur-
thermore, assume that P0(ℓ̇θ∗ ℓ̇

T
θ∗) is invertible and that for every ε > 0 there exists

a sequence of tests (φn) such that:

Pn
0 φn→ 0, sup

{θ :∥θ−θ∗∥≥ε}
Qn

θ (1−φn)→ 0. (5.20)

Then the posterior converges at rate 1/
√

n, i.e. for every sequence (Mn), Mn→ ∞:

Π
(

θ ∈Θ : ∥θ −θ
∗∥ ≥Mn/

√
n
∣∣ X1,X2, . . . ,Xn

) P0−→0.

Proof. Let (Mn) be given, and define the sequence (εn) by εn = Mn/
√

n. According
to theorem 5.3.5 there exists a sequence of tests (ωn) and constants D > 0 and ε > 0
such that (5.25) holds. We use these tests to split the Pn

0 -expectation of the posterior
measure as follows:

Pn
0 Π
(
∥ϑ −θ

∗∥ ≥ εn
∣∣ X1,X2, . . . ,Xn

)
≤ Pn

0 ωn +Pn
0 (1−ωn)Π

(
∥ϑ −θ

∗∥ ≥ εn
∣∣ X1,X2, . . . ,Xn

)
.

The first term is of order o(1) as n→ ∞ by (5.25). Given a constant ε > 0 (to be
specified later), the second term can be decomposed as:
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Pn
0 (1−ωn)Π

(
∥ϑ −θ

∗∥ ≥ εn
∣∣ X1,X2, . . . ,Xn

)
= Pn

0 (1−ωn)Π
(
∥ϑ −θ

∗∥ ≥ ε
∣∣ X1,X2, . . . ,Xn

)
+Pn

0 (1−ωn)Π
(
εn ≤ ∥ϑ −θ

∗∥< ε
∣∣ X1,X2, . . . ,Xn

)
.

(5.21)

Given two constants M,M′ > 0 (also to be specified at a later stage), we define the
sequences (an), an = M

√
logn/n and (bn), bn = M′εn. Based on an and bn, we

define two sequences of events:

Ξn =
{∫

Θ

n

∏
i=1

pθ

pθ∗
(Xi)dΠ(θ)≤Π

(
B(an,θ

∗;P0)
)
e−na2

n(1+C)
}
,

Ωn =
{∫

Θ

n

∏
i=1

pθ

pθ∗
(Xi)dΠ(θ)≤Π

(
B(bn,θ

∗;P0)
)
e−nb2

n(1+C)
}
.

The sequence (Ξn) is used to split the first term on the r.h.s. of (5.21) and estimate
it as follows:

Pn
0 (1−ωn)Π

(
∥ϑ −θ

∗∥ ≥ ε
∣∣ X1,X2, . . . ,Xn

)
≤ P0(Ξn)+Pn

0 (1−ωn)1Ω\Ξn Π
(
∥ϑ −θ

∗∥ ≥ ε
∣∣ X1,X2, . . . ,Xn

)
.

According to lemma 5.3.3, the first term is of order o(1) as n→∞. The second term
is estimated further with the use of lemmas 5.3.3, 5.3.4 and theorem 5.3.5: for some
C > 0,

Pn
0 (1−ωn)1Ω\Ξn Π

(
∥ϑ −θ

∗∥ ≥ ε
∣∣ X1,X2, . . . ,Xn

)
≤ ena2

n(1+C)

Π
(
B(an,θ ∗;P0)

) ∫
{θ :∥θ−θ∗∥≥ε}

Qn
θ (1−ωn)dΠ(θ)

≤ en(a2
n(1+C)−Dε2)

Π
(
B(an,θ ∗;P0)

)Π
(
∥ϑ −θ

∗∥ ≥ ε
)
.

(5.22)

Note that a2
n(1+C)−Dε2 ≤−a2

n(1+C) for large enough n, so that:

en(a2
n(1+C)−Dε2)

Π
(
B(an,θ ∗;P0)

) ≤ K−1e−na2
n(1+C)(an)

−k ≤ 1
Mk/2K

(logn)−k/2n−M2(1+C)+
k
2 ,

for large enough n, using (5.24). A large enough choice for the constant M then
ensures that the expression on the l.h.s. in the next-to-last display is of order o(1) as
n→ ∞.

The sequence (Ωn) is used to split the second term on the r.h.s. of (5.21) after
which we estimate it in a similar manner. Again the term that derives from 1Ωn is of
order o(1), and
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Pn
0 (1−ωn)1Ω\Ωn Π

(
εn ≤ ∥θ −θ

∗∥< ε
∣∣ X1,X2, . . . ,Xn

)
≤ enb2

n(1+C)

Π
(
B(bn,θ ∗;P0)

) J

∑
j=1

∫
An, j

Qn
θ (1−ωn)dΠ(θ),

where we have split the domain of integration into spherical shells An, j, (1≤ j ≤ J,
with J the smallest integer such that (J +1)εn > ε): An, j =

{
θ : jεn ≤ ∥θ −θ ∗∥ ≤(

( j+1)εn
)
∧ε
}

. Applying theorem 5.3.5 to each of the shells separately, we obtain:

Pn
0 (1−ωn)1Ω\Ωn Π

(
εn ≤ ∥ϑ −θ

∗∥< ε
∣∣ X1,X2, . . . ,Xn

)
=

J

∑
j=1

enb2
n(1+C) sup

θ∈An, j

Qn
θ (1−ωn)

Π(An, j)

Π
(
B(bn,θ ∗;P0)

)
≤

J

∑
j=1

enb2
n(1+C)−nD j2ε2

n
Π
(
∥ϑ −θ ∗∥ ≤ ( j+1)εn

)
Π
(
B(bn,θ ∗;P0)

) .

For a small enough ε and large enough n, the sets
{

θ : ∥θ−θ ∗∥≤ ( j+1)εn
}

all fall
within the neighbourhood U of θ ∗ on which the prior density π is continuous. Hence
π is uniformly bounded by a constant R > 0 and we see that: Π{θ : ∥θ − θ ∗∥ ≤
( j+1)εn } ≤ RVk( j+1)kεk

n , where Vk is the Lebesgue-volume of the k-dimensional
ball of unit radius. Combining this with (5.24), there exists a constant K′ > 0 such
that, with M′ <

√
D/2(1+C):

Pn
0 (1−ωn)1Ω\Ωn Π

(
εn ≤ ∥ϑ −θ

∗∥< ε
∣∣ X1, . . . ,Xn

)
≤ K′e−

1
2 nDε2

n
∞

∑
j=1

( j+1)ke−nD( j2−1)ε2
n ,

(5.23)

for large enough n. The series is convergent and we conclude that this term is also
of order o(1) as n→ ∞.

Consistent uniform testability of the type (5.20) is a relatively weak requirement,
inspired by Schwartz’ conditions for non-parametric consistency in well-specified
setting (see section 6.3). To demonstrate its usefulness, we show in the next theorem
that suitable tests exist as soon as the parameter set is compact and the model is
suitably continuous in the parameter.

Theorem 5.3.2. Assume that Θ is compact and that θ ∗ is a unique point of minimum
of θ 7→−P0 log pθ . Furthermore assume that P0(pθ/pθ∗)<∞ for all θ ∈Θ and that
the map,

θ 7→ P0

( pθ

ps
θ1

p1−s
θ∗

)
,

is continuous at θ1 for every s in a left neighbourhood of 1, for every θ1. Then there
exist tests φn satisfying (5.20). A sufficient condition is that for every θ1 ∈ Θ the
maps θ 7→ pθ/pθ1 and θ 7→ pθ/pθ∗ are continuous in L1(P0) at θ = θ1.

Proof. For given θ1 ̸= θ ∗ consider the tests,
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φn,θ1 = 1{Pn log(p0/qθ1)< 0}.

Because Pn log(p0/qθ1) → P0 log(p0/qθ1) in Pn
0 -probability by the law of large

numbers, and P0 log(p0/qθ1) = P0 log(pθ∗/pθ1) > 0 for θ1 ̸= θ ∗ by the definition
of θ ∗ we have that Pn

0 φn,θ1 → 0 as n→ ∞. By Markov’s inequality we have that,

Qn
θ (1−φn,θ1) = Qn

θ

(
esnPn log(p0/qθ1 ) > 1

)
≤ Qn

θ esnPn log(p0/qθ1 ) =
(

Qθ (p0/qθ1)
s
)n

= ρ(θ1,θ ,s)n,

for ρ(θ1,θ ,s) =
∫

ps
0q−s

θ1
qθ dµ . It is known [157] that the Hellinger transform (see

also [248] and [187]) s 7→ ρ(θ1,θ1,s) tends to P0(qθ1 > 0) =P0(pθ1 > 0) as s ↑ 1 and
has derivative from the left equal to P0 log(qθ1/p0)1qθ1>0 = P0 log(pθ1/pθ∗)1pθ1>0

at s= 1. We have that either P0(pθ1 > 0)< 1 or P0(pθ1 > 0)= 1 and P0 log(pθ1/pθ∗)1pθ1>0 =

P0 log(pθ1/pθ∗)< 0 (or both). In all cases there exists sθ1 < 1 arbitrarily close to 1
such that ρ(θ1,θ1,sθ1)< 1. By assumption the map θ 7→ ρ(θ1,θ ,sθ1) is continuous
at θ1. Therefore, for every θ1 there exists an open neighbourhood Gθ1 such that,

rθ1 = sup
θ∈Gθ1

ρ(θ1,θ ,sθ1)< 1.

The set {θ ∈Θ : ∥θ −θ ∗∥ ≥ ε} is compact and hence can be covered with finitely
many sets of the type Gθ1 , say Gθi for 1 = 1, . . . , l. We now define

φn = max
i=1,...,l

φn,θi .

This test satisfies

Pn
0 φn ≤

l

∑
i=1

Pn
0 φn,θi → 0,

Qn
θ (1−φn)≤

l
max
i=1

Qn
θ (1−φn,θi)≤

l
max
i=1

rn
θi
→ 0,

uniformly in θ ∈ ∪l
i=1Gθi . Therefore the tests φn satisfy the requirements. To prove

the last assertion we write ρ(θ1,θ ,s) = P0(pθ/pθ1)
s(pθ/pθ∗)

1−s. Continuity of the
maps θ 7→ (pθ/pθ1) and θ 7→ (pθ/pθ∗) in L1(P0) can be seen to imply the required
continuity of the map θ 7→ ρ(θ1,θ ,s).

Beyond compactness it appears impossible to give mere qualitative sufficient
conditions, like continuity, for consistent testability. For “natural” parametrizations
it ought to be true that distant parameters (outside a given compact) are the easy
ones to test for (and a test designed for a given compact ought to be consistent
even for points outside the compact), but this depends on the structure of the model.
Alternatively, many models allow either approximation by compacts from within,
or a suitable compactification in which the preceding result can be applied, but we
omit a discussion.
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In the proof of theorem 5.3.1, lower bounds in probability on the denominators
of posterior probabilities are needed, as provided by the following lemma.

Lemma 5.3.3. For given ε > 0 and θ ∗ ∈ Θ such that P0 log(p0/pθ∗) < ∞ define
B(ε,θ ∗;P0) by (5.19). Then for every C > 0 and probability measure Π on Θ :

Pn
0

(∫
Θ

n

∏
i=1

pθ

pθ∗
(Xi)dΠ(θ)≤Π

(
B(ε,θ ∗;P0)

)
e−nε2(1+C)

)
≤ 1

C2nε2 .

Proof. This lemma can be found as lemma 7.1 in Kleijn and Van der Vaart (2006)
[157], and follows essentially the same steps as lemma 6.4.5.

Moreover, the prior mass of the Kullback-Leibler neighbourhoods B(ε,θ ∗;P0) can
be lower-bounded if we make the regularity assumptions for the model used in
section 5.2 and the assumption that the prior has a Lebesgue density that is well-
behaved at θ ∗.

Lemma 5.3.4. Under the smoothness conditions of lemma 5.2.3 and assuming that
the prior density π is continuous and strictly positive in θ ∗, there exists a constant
K > 0 such that the prior mass of the Kullback-Leibler neighbourhoods B(ε,θ ∗;P0)
satisfies:

Π
(
B(ε,θ ∗;P0)

)
≥ Kε

k, (5.24)

for small enough ε > 0.

Proof. As a result of the smoothness conditions, we have, for some constants
c1,c2 > 0 and small enough ∥θ −θ ∗∥,

−P0 log(pθ/pθ∗)≤ c1∥θ −θ
∗∥2, P0(log(pθ/pθ∗))

2 ≤ c2∥θ −θ
∗∥2.

Defining c = (1/c1 ∧ 1/c2)
1/2, this implies that for small enough ε > 0, {θ ∈Θ :

∥θ −θ ∗∥ ≤ cε} ⊂ B(ε,θ ∗;P0). Since the Lebesgue-density π of the prior is contin-
uous and strictly positive in θ ∗, we see that there exists a δ ′ > 0 such that for all
0 < δ ≤ δ ′: Π

(
θ ∈Θ : ∥θ−θ ∗∥≤ δ

)
≥ 1

2Vkπ(θ ∗)δ k > 0. Hence, for small enough
ε , cε ≤ δ ′ and we obtain (5.24) upon combination.

5.3.2 Local testing with sequences of score tests

In this subsection we prove that the existence of test sequences (under misspecifica-
tion) of uniform exponential power for complements of shrinking balls around θ ∗

versus P0 (as needed in the proof of theorem 5.3.1), is guaranteed whenever asymp-
totically consistent test-sequences exist for complements of fixed balls around θ ∗

versus P0 and the conditions of lemmas 5.2.3 and 5.3.6 are met.

Theorem 5.3.5. Assume that the conditions of lemma 5.2.3 are satisfied, where in
addition, it is required that P0(pθ/pθ∗)< ∞ for all θ in a neighbourhood of θ ∗ and
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P0(esmθ∗ )< ∞ for some s > 0. Furthermore, suppose that P0ℓ̇θ∗ ℓ̇
T
θ∗ is invertible and

for every ε > 0 there exists a sequence of test functions (φn), such that:

Pn
0 φn→ 0, sup

{θ :∥θ−θ∗∥≥ε}
Qn

θ (1−φn)→ 0.

Then for every sequence (Mn) such that Mn → ∞ there exists a sequence of tests
(ωn) such that for some constants D > 0, ε > 0 and large enough n:

Pn
0 ωn→ 0, Qn

θ (1−ωn)≤ e−nD(∥θ−θ∗∥2∧ε2), (5.25)

for all θ ∈Θ such that ∥θ −θ ∗∥ ≥Mn/
√

n.

Proof. Let (Mn) be given. We construct two sequences of tests: one sequence to test
P0 versus {Qθ : θ ∈Θ1}with Θ1 = {θ ∈Θ : Mn/

√
n≤∥θ−θ ∗∥≤ ε}, and the other

to test P0 versus {Qθ : θ ∈Θ2} with Θ2 = {θ : ∥θ −θ ∗∥> ε}, both uniformly with
exponential power (for a suitable choice of ε). We combine these sequences to test
P0 versus {Qθ : ∥θ −θ ∗∥ ≥Mn/

√
n} uniformly with exponential power.

For the construction of the first sequence, a constant L > 0 is chosen to truncate
the score-function component-wise (i.e. for all 1≤ k ≤ d, (ℓ̇L

θ∗)k = 0 if |(ℓ̇θ∗)k| ≥ L
and (ℓ̇L

θ∗)k = (ℓ̇θ∗)k otherwise) and we define:

ω1,n = 1
{
∥(Pn−P0)ℓ̇

L
θ∗∥>

√
Mn/n

}
,

Because the function ℓ̇θ∗ is square-integrable, we can ensure that the matrices
P0(ℓ̇θ∗ ℓ̇

T
θ∗), P0(ℓ̇θ∗(ℓ̇

L
θ∗)

T ) and P0(ℓ̇
L
θ∗(ℓ̇

L
θ∗)

T ) are arbitrarily close (for instance in
operator norm) by a sufficiently large choice for the constant L. We fix such an L
throughout the proof.

By the central limit theorem Pn
0 ω1,n = Pn

0
(
∥
√

n(Pn−P0)ℓ̇
L
θ∗∥2 > Mn

)
→ 0. Turn-

ing to Qn
θ
(1−ω1,n) for θ ∈Θ1, we note that for all θ :

Qn
θ

(
∥(Pn−P0)ℓ̇

L
θ∗∥ ≤

√
Mn/n

)
= Qn

θ

(
sup
v∈S

vT (Pn−P0)ℓ̇
L
θ∗ ≤

√
Mn/n

)
≤ inf

v∈S
Qn

θ

(
vT (Pn−P0)ℓ̇

L
θ∗ ≤

√
Mn/n

)
,

where S is the sphere of unity in Rk. With the choice v = (θ −θ ∗)/∥θ −θ ∗∥ as an
upper bound for the r.h.s. in the above display, we note that:

Qn
θ

(
(θ −θ

∗)T (Pn−P0)ℓ̇
L
θ∗ ≤

√
Mn/n∥θ −θ

∗∥
)

= Qn
θ

(
(θ ∗−θ)T (Pn− Q̃θ )ℓ̇

L
θ∗ ≥ (θ −θ

∗)T (Q̃θ − Q̃θ∗)ℓ̇
L
θ∗ −

√
Mn/n∥θ −θ

∗∥
)
,

where we have used the notation (for all θ ∈Θ1 with small enough ε > 0) Q̃θ =
∥Qθ∥−1Qθ and the fact that P0 = Qθ∗ = Q̃θ∗ . By straightforward manipulation, we
find:
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(θ −θ
∗)T (Q̃θ − Q̃θ∗

)
ℓ̇L

θ∗

=
1

P0(pθ/pθ∗)
(θ −θ

∗)T
(

P0
(
(pθ/pθ∗ −1)ℓ̇L

θ∗
)
+
(
1−P0(pθ/pθ∗)

)
P0ℓ̇

L
θ∗

)
.

In view of lemma 5.3.6 and conditions (5.10), (5.11), (P0(pθ/pθ∗)−1) is of order
O(∥θ −θ ∗∥2) as (θ → θ ∗), which means that if we approximate the above display
up to order o(∥θ −θ ∗∥2), we can limit attention on the r.h.s. to the first term in the
last factor and equate the first factor to 1. Furthermore, using the differentiability of
θ 7→ log(pθ/pθ∗), condition (5.10) and lemma 5.3.6, we see that:

P0

∥∥∥( pθ

pθ∗
−1− (θ −θ

∗)T ℓ̇θ∗

)
ℓ̇L

θ∗

∥∥∥
≤ P0

∥∥∥( pθ

pθ∗
−1− log

pθ

pθ∗

)
ℓ̇L

θ∗

∥∥∥+P0

∥∥∥(log
pθ

pθ∗
− (θ −θ

∗)T ℓ̇θ∗

)
ℓ̇L

θ∗

∥∥∥,
which is o

(
∥θ −θ ∗∥

)
. Also note that since Mn→∞ and for all θ ∈Θ1, ∥θ −θ ∗∥ ≥

Mn/
√

n, −∥θ − θ ∗∥
√

Mn/n ≥ −∥θ − θ ∗∥2(Mn)
−1/2. Summarizing the above and

combining with the remark made at the beginning of the proof concerning the choice
of L, we find that for every δ > 0, there exist choices of ε > 0, L > 0 and N ≥ 1
such that for all n≥ N and all θ in Θ1:

(θ −θ
∗)T (Q̃θ − Q̃θ∗

)
ℓ̇L

θ∗ −
√

Mn/n∥θ −θ
∗∥

≥ (θ −θ
∗)T P0

(
ℓ̇θ∗ ℓ̇

T
θ∗
)
(θ −θ

∗)−δ∥θ −θ
∗∥2.

We denote ∆(θ) = (θ − θ ∗)T P0(ℓ̇θ∗ ℓ̇
T
θ∗)(θ − θ ∗) and since P0(ℓ̇θ∗ ℓ̇

T
θ∗) is strictly

positive definite by assumption, its smallest eigenvalue c is greater than zero. Hence,
−δ∥θ−θ ∗∥2≥−δ/c∆(θ). and there exists a constant r(δ ) (depending only on the
matrix P0(ℓ̇θ∗ ℓ̇

T
θ∗) and with the property that r(δ )→ 1 if δ → 0) such that:

Qn
θ (1−ω1,n)≤ Qn

θ

(
(θ ∗−θ)T (Pn− Q̃θ )ℓ̇

L
θ∗ ≥ r(δ )∆(θ)

)
,

for small enough ε , large enough L and large enough n, demonstrating that the type-
II error is bounded above by the (unnormalized) tail probability Qn

θ
(W̄n≥ r(δ )∆(θ))

of the mean of the variables Wi = (θ ∗−θ)T (ℓ̇L
θ∗(Xi)− Q̃θ ℓ̇

L
θ∗), (1 ≤ i ≤ n). so that

Q̃θWi = 0. The random variables Wi are independent and bounded since:

|Wi| ≤ ∥θ −θ
∗∥
(
∥ℓ̇L

θ∗(Xi)∥+∥Q̃θ ℓ̇
L
θ∗∥
)
≤ 2L

√
d∥θ −θ

∗∥.

The variance of Wi under Q̃θ is expressed as follows:

VarQ̃θ
Wi = (θ −θ

∗)T
(
)Q̃θ

(
ℓ̇L

θ∗(ℓ̇
L
θ∗)

T )− Q̃θ ℓ̇
L
θ∗Q̃θ (ℓ̇

L
θ∗)

T
)
(θ −θ

∗).

Using that P0ℓ̇θ∗ = 0 (see (5.13)), the above can be estimated like before, with the
result that there exists a constant s(δ ) (depending only on (the largest eigenvalue of)
the matrix P0ℓ̇θ∗ ℓ̇

T
θ∗ and with the property that s(δ )→ 1 as δ → 0) such that:
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VarQ̃θ
(Wi)≤ s(δ )∆(θ),

for small enough ε and large enough L. We apply Bernstein’s inequality to obtain:

Qn
θ (1−ω1,n) = ∥Qθ∥n Q̃n

θ

(
W1 + . . .+Wn ≥ nr(δ )∆(θ)

)
≤ ∥Qθ∥n exp

(
−1

2
r(δ )2 n∆(θ)

s(δ )+ 3
2 L
√

d∥θ −θ ∗∥r(δ )

)
.

(5.26)

The factor t(δ ) = r(δ )2(s(δ )+ 3
2 L
√

d∥θ−θ ∗∥r(δ ))−1 lies arbitrarily close to 1 for
sufficiently small choices of δ and ε . As for the n-th power of the norm of Qθ , we
use lemma 5.3.6, (5.10) and (5.11) to estimate the norm of Qθ as follows:

∥Qθ∥= 1+P0 log
pθ

pθ∗
+ 1

2 P0

(
log

pθ

pθ∗

)2
+o(∥θ −θ

∗∥2)

≤ 1+P0 log
pθ

pθ∗
+ 1

2 (θ −θ
∗)T P0

(
ℓ̇θ∗ ℓ̇

T
θ∗
)
(θ −θ

∗)+o(∥θ −θ
∗∥2)

≤ 1− 1
2 (θ −θ

∗)TVθ∗(θ −θ
∗)+ 1

2 u(δ )∆(θ),

(5.27)

for some constant u(δ ) such that u(δ )→ 1 if δ → 0. Because 1+ x ≤ ex for all
x ∈ R, we obtain, for sufficiently small ∥θ −θ ∗∥:

Qn
θ (1−ω1,n)≤ exp

(
−n

2
(θ −θ

∗)TVθ∗(θ −θ
∗)+

n
2
(
u(δ )− t(δ )

)
∆(θ)

)
. (5.28)

Note that u(δ )− t(δ )→ 0 as δ → 0 and ∆(θ) is upper bounded by a multiple of
∥θ − θ ∗∥2. Since Vθ∗ is assumed to be invertible, we conclude that there exists a
constant C > 0 such that for large enough L, small enough ε > 0 and large enough
n:

Qn
θ (1−ω1,n)≤ e−Cn∥θ−θ∗∥2 . (5.29)

Concerning the range ∥θ − θ ∗∥ > ε , an asymptotically consistent uniform test-
sequence of P0 versus Qθ exists by assumption, and it is shown in chapter 9 that
this implies the existence of tests ω2,n of uniformly exponential testing power. The
sequence (ψn) is defined as the maximum of the two sequences defined above:
ψn = ω1,n∨ω2,n for all n≥ 1, in which case Pn

0 ψn ≤ Pn
0 ω1,n +Pn

0 ω2,n→ 0 and:

sup
θ∈An

Qn
θ (1−ψn) = sup

θ∈Θ1

Qn
θ (1−ψn) ∨ sup

θ∈Θ2

Qn
θ (1−ψn)

≤ sup
θ∈Θ1

Qn
θ (1−ω1,n)∨ sup

θ∈Θ2

Qn
θ (1−ω2,n).

A suitable choice for the constant D > 0 lead to (5.25).

The following lemma is used in the proof of theorem 5.3.5 to control the be-
haviour of ∥Qθ∥ in neighbourhoods of θ ∗.

Lemma 5.3.6. Assume that P0(pθ/pθ∗) and−P0 log(pθ/p0) are finite for all θ in a
neighbourhood U ′ of θ ∗. Furthermore, assume that there exist a measurable func-
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tion m such that, ∣∣∣ log
pθ

pθ∗

∣∣∣≤ m∥θ −θ
∗∥, (P0−a.s.). (5.30)

for all θ ∈U ′ and such that P0(esm)< ∞ for some s > 0. Then,

P0

∣∣∣ pθ

pθ∗
−1− log

pθ

pθ∗
− 1

2

(
log

pθ

pθ∗

)2∣∣∣= o
(
∥θ −θ

∗∥2).
Proof. The function R(x) defined by ex = 1+ x+ 1

2 x2 + x2 R(x) increases from − 1
2

in the limit (x→−∞) to ∞ as (x→ ∞), with R(x)→ R(0) = 0 if (x→ 0). We also
have |R(−x)| ≤ R(x) ≤ ex/x2 for all x > 0. The l.h.s. of the assertion of the lemma
can be written as,

P0

(
log

pθ

pθ∗

)2∣∣∣R(log
pθ

pθ∗

)∣∣∣≤ ∥θ −θ
∗∥2P0

(
m2 R(m∥θ −θ

∗∥)
)
.

The expectation on the r.h.s. of the above display is bounded by P0m2
θ

R(εmθ ) if
∥θ −θ ∗∥ ≤ ε . The functions m2R(εm) are dominated by esm for sufficiently small
ε and converge pointwise to m2R(0) = 0 as ε ↓ 0. The lemma then follows from the
dominated convergence theorem, theorem B.3.8.

5.4 Model selection with the BIC criterion

5.5 Exercises [EMPTY]



Part II
Non-parametric Bayesian statistics





Chapter 6
Asymptotic posterior concentration

Although the subject matter of part I is almost exclusively parametric, the presenta-
tion is such that most of the definitions (and some of their consequences) generalize
to a setting where the parameter belongs to an infinite-dimensional space. In such
cases both prior and posterior measures are probability measures on a space Θ that
lacks a lot of structure we take for granted in subsets of Rk. Two differences play a
central role. Firstly, no locally finite translation-invariant measures exist on infinite-
dimensional spaces (see exercise 6.7.1), so there is no analogue of Lebesgue mea-
sure, and consequently, no canonical way of thinking about density functions for
priors and posteriors for infinite-dimensional parameters. Secondly, the topology on
Θ is not fixed by default, there is no ‘natural choice’ like that of the unique norm
topology for subspaces of Rk. Topology on infinite-dimensional spaces is far more
diverse and far more influential than in finite-dimensional setting. In many ways,
having to choose a topology is an advantage because we can choose a topology that
suits our statistical purposes the most naturally. For example, to formulate necessary
and sufficient conditions for consistent estimation, the Le Cam-Schwartz theorem
(see theorem 9.1.1) focusses on the choice of a topology stronger than the weak
topology but weaker than total-variation. But technically, variations in the refine-
ment level of the model topology complicate matters, especially if we choose to
equip the model with a strong topology (e.g. Hellinger/total-variation) and require
the posterior to concentrate accordingly (as we do in this chapter).

There are two direct ways in which the topology on Θ plays a role for Bayesian
procedures: firstly, the topology determines the Borel σ -algebra that usually de-
fines the domain for prior and posterior measures on infinite-dimensional spaces.
Secondly, we shall be interested in asymptotic posterior concentration: as argued
in subsection 4.1.1, statistical procedure are expected to become more-and-more
precise as the amount of data grows, and ideally, one would like full precision in
the limit where that amount goes to infinity. In the case of a posterior on a well-
specified model with parameter space Θ , precision means what we expect to find
posterior mass concentrating ‘around’ the true θ0 ∈Θ . The topology fixes what is
meant by the word ‘around’ and is of great influence regarding the strength of the
conclusion that the posterior concentrates around θ0 asymptotically.

169
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The theorems of this chapter concern i.i.d. data in the form of samples Xn =
(X1,X2, . . . ,Xn) drawn from Pn

0 and a model P of single-observation distributions.
We consider only metric models (P,d), almost exclusively with the metric d equal
to the Hellinger metric or a metric that is topologically equivalent. The main goal is
to establish three classical results regarding posterior concentration, namely Doob’s
theorem, Schwartz’s theorem and the Ghosh-Ghosal-van der Vaart theorem. More
complex dependence structures for the sample and more varied model topologies
are discussed in chapter 7.

6.1 Posterior concentration and model topology

Consistency is a first requirement for estimation procedures from the asymptotic,
frequentist point of view, but it is not free of controversy in Bayesian statistics.
Specifically, the subjectivist Bayesian point of view does not attach value to any
special point of convergence P0 because no ‘underlying’ or ‘true’ distribution for
the sample X1,X2, . . . is assumed within the subjectivist paradigm. The notion of
‘merging’ is perhaps closer to the subjectivist’s philosophy: given two different pri-
ors Π1 and Π2 on a model Θ , merging is said to occur if the total-variation distance
between the posterior predictive distributions goes to zero (see Blackwell and Du-
bins (1962) [37] and, for an overview, Ghosh and Ramamoorthi (2003) [115]). Re-
lations between merging and posterior consistency as defined below are discussed
in Diaconis and Freedman (1986) [73].

6.1.1 Posterior consistency

We start by defining what frequentist consistency means for a sequence of posterior
distributions. We consider sequentially observed data, non-dominated models and
priors or parameter spaces that may depend on the sample size

Definition 6.1.1. The posteriors Π( · |Xn) are consistent at θ ∈Θ if for every neigh-
bourhood U of θ ,

Π(U |Xn)
Pθ ,n−−→1. (6.1)

The posteriors are said to be consistent if this holds for all θ ∈Θ . A weaker form of
posterior convergence is Bayesian consistency, when (6.1) holds for Π -almost-all
θ ∈Θ . We say that the posterior is almost-surely consistent if convergence occurs
almost-surely with respect to some coupling for the sequence (Pθ0,n).

For example, in the common case of a metric model (P,d) of single-observation
distributions for i.i.d. data X1, . . . ,Xn ∼Pn

0 , consistency is equivalent to the condition
that for every ε > 0:

Π(d(P,P0)≥ ε |X1,X2, . . . ,Xn )
P0-a.s.−−−−→0, (6.2)
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since the above display is the complement of an open ball and every open neigh-
bourhood of P0 contains an open ball centred on P0.

Proposition 6.1.2. Assume that Θ is a completely regular space. The posterior is
consistent at θ0 ∈Θ , if and only if,∫

f (θ)dΠ(θ |Xn)
Pθ0 ,n−−−→ f (θ0), (6.3)

for every bounded, continuous f : Θ → R.

Proof. Assume (6.1). Let f : Θ → R be bounded and continuous (with M > 0 such
that | f | ≤ M). Let η > 0 be given and let U ⊂Θ be a neighbourhood of θ0 such
that | f (θ)− f (θ0)| < η for all θ ∈U . Integrate f with respect to the (assumed to
be regular and Pθ0,n-almost-surely well-defined) posterior and to δθ0 :∣∣∣∫ f (θ)dΠ(θ |Xn)− f (θ0)

∣∣∣
≤
∫

Θ\U
| f (θ)− f (θ0)|dΠ(θ |Xn)+

∫
U
| f (θ)− f (θ0)|dΠ(θ |Xn)

≤ 2M Π(Θ \U |Xn) + sup
θ∈U
| f (θ)− f (θ0)|Π(U |Xn)≤ η +oPθ0 ,n

(1),

as n→ ∞, so that (6.3) holds. Conversely, assume (6.3). Let U be an open neigh-
bourhood of θ0. Because Θ is completely regular (see definition C.2.3), there exists
a continuous f : Θ → [0,1] such that f = 1 at {θ0} and f = 0 on the closed set
Θ \U . Then,

Π(U |Xn)≥
∫

f (θ)dΠ(θ |Xn)
Pθ0 ,n−−−→

∫
f (θ)dδθ0(P) = 1.

Consequently, (6.1) holds.

Metrizable spaces are uniform spaces; a topological vector space is uniform, if and
only if, it is completely regular and subspaces of completely regular spaces are
completely regular. So the above implies the following corollary immediately.

Corollary 6.1.3. On a metric model (P,d) for i.i.d. data, (6.1), (6.2) and (6.3) are
equivalent.

As becomes clear in chapter 9 the most convenient choice here is not the canonical
one: both Prokhorov’s weak and the total-variational/Hellinger topologies are metric
and attractive intuitively, but the natural model topology for the study of frequentist
consistency in i.i.d. setting (see the Le Cam-Schwartz theorem, theorem 9.1.1 and
definition C.9.5) is a uniform topology T∞, stronger than Prokhorov’s but weaker
than total-variation. Without restrictions on the model P , the topology T∞ is non-
metrizable (note that it is not first-countable, in general). In such cases (6.2) does
not apply but (6.1) and (6.3) remain equivalent.
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6.1.2 Consistency of Bayesian point-estimators

Point-estimators derived from a consistent Bayesian procedure are consistent them-
selves under some mild conditions. We reiterate that the notion of a point-estimator
is not an entirely natural extension to the Bayesian framework: for example, if the
model is non-convex (and almost all models are), the posterior predictive distribu-
tion of definition 2.1.4 lies outside the model generically. Similarly, perfectly well-
defined posteriors may lead to ill-defined point-estimators due to integrability issues
or non-existence of maximisers, which become more severe as the model becomes
more complicated.

Here, we endow a single-observation model P (again, with data X1,X2, . . . taking
values in a measurable space (X ,B) that are distributed i.i.d.-P0) with the total-
variational topology and corresponding Borel σ -algebra.

Theorem 6.1.4. Assume that the Borel prior Π and underlying distribution P0 ∈P
are such that the sequence of posteriors is consistent (P0-almost-surely). Then
the posterior predictive distributions P̂n are (P0-almost-surely) consistent point-
estimators for P0 with respect to total-variation.

Proof. Note that the domain of definition of the map P 7→ ∥P−P0∥ extends to the
convex hull co(P) of P in M 1(X ,B). Since P 7→ ∥P−P0∥ is convex by virtue
of Jensen’s inequality (see, proposition B.4.8): the posterior mean P̂n satisfies,

∥P̂n−P0∥=
∥∥∥∫

P
PdΠ(P |X1, . . . ,Xn )−P0

∥∥∥≤ ∫
P
∥P−P0∥dΠ(P |X1, . . . ,Xn ).

Since the posteriors Π( · |X1, . . . ,Xn ) converge weakly to P0 (P0-almost-surely) and
the map P 7→ ∥P− P0∥ is bounded and continuous in the total-variational topol-
ogy, we conclude that the r.h.s. in the above display converges to the expectation of
∥P−P0∥ under the limit law δP0 (P0-almost-surely), which equals zero. Hence P̂n
converges to P0 in total variation (P0-almost-surely).

More generally, given an arbitrary convex metric d on the model P , theorem 6.1.4
can be proved if the metric d is convex and bounded on P . Similar arguments
demonstrate consistency for other classes of point estimators derived from a consis-
tent sequence of posterior distributions, for example the formal Bayes estimators of
subsection 2.2.3.

6.2 Doob’s consistency theorem

In this section, we concentrate on a sufficient condition for Bayesian consistency, a
form of posterior consistency that holds for all P0 ∈P except (perhaps) in a model
subset that is a null-set of the prior. The first and perhaps most famous consistency
theorem in Bayesian statistics is that given by Doob (1949) [82].
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Theorem 6.2.1. (Doob’s theorem)
For all n ≥ 1, let (X1,X2, . . . ,Xn) ∈X n be i.i.d., with a single-observation model
P . Suppose X and P are Polish spaces and that P 7→ P(A) is Borel measurable
for every Borel set A ⊂X . Then for any Borel prior Π the posterior is consistent
at P, P-almost-surely, for Π -almost-all P.

Proof. The proof of this theorem is an application of Doob’s martingale conver-
gence theorem. In chapter 9 we prove (a more general version of) this theorem,
proposition 9.5.3.

The measurability condition is also part of the minimal conditions of definition 8.1.4
and example 8.1.5 shows that any model topology that refines the weak topology is
fine enough. For the sample space X , the requirement of Polishness is not too strin-
gent, so let us focus on the requirement that P is Polish. First of all, for many mod-
els and parameter spaces, Polishness is easily achieved (e.g. as Gδ subsets of larger
Polish spaces (see theorem C.4.9), like Rk, separable Banach spaces, etcetera). More
generally, one notices that, although some statistical models are not complete met-
ric spaces, we may argue that we can replace P by its completion P̂ as long as we
define a prior Π̂ on the Borel σ -algebra of the completion as Π̂(B) = Π(B∩P),
making the difference P̂ \P a null-set of Π̂ . In order to argue like this, one has
to show that P is a measurable subset of P̂ for (the Π̂ -completion of) the Borel
σ -algebra.

Separability is a different matter. To relate to parametrizing spaces immediately
(indeed, theorem 6.2.1 is also true if P is a Souslin space), note that function
spaces like L1(µ)- and L∞(µ)-spaces for the Lebesgue measure on R, for example,
are closely related but the former is separable while the latter is not [84]. Sim-
ilarly, smoothness classes display diversity: while Sobolev spaces are separable,
the closely related Hölder spaces are not. Regarding the Hellinger/total-variational
topology on spaces of single-observation distributions, it is noted that P is sepa-
rable in the total-variational topology, if and only if, P is dominated (see proposi-
tion 8.6.5 and references there).

The above delineates the realm of applicability of Doob’s theorem more con-
cretely: we require a metric d on P that is strong enough to guarantee measura-
bility of P→ P(A), while not so strong as to ruin separability. One of the natural
formulations is in terms of families of densities, complete for the Hellinger or total-
variational metric, for data that takes its values in a Polish space.

Corollary 6.2.2. For all n ≥ 1, let X be Polish and let (X1,X2, . . . ,Xn) ∈X n be
i.i.d., with a single-observation model P that is dominated and endowed with the
Hellinger/total-variational topology. Assume that P is complete, or that P is a
Borel subset in its completion P̂ . Then for any Borel prior Π , the posterior is
consistent at P, P-almost-surely, for Π -almost-all P.

Proof. All functions P 7→ P(A) are continuous with respect to the Hellinger/total-
variational topology, so they are Borel measurable as functions on P . Then apply
theorem 6.2.1 to the Borel measure Π̂ .
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The other natural formulation is with the full model M1(X ) with the weak topology,
for data that takes values in a Polish space. It is noted that in chapter 8, priors of full
support with respect to the weak topology are constructed.

Corollary 6.2.3. For all n ≥ 1, let X be Polish and let (X1,X2, . . . ,Xn) ∈X n be
i.i.d., with the full single-observation model M1(X ), endowed with the weak topol-
ogy. Then for any Borel prior Π , the posterior is consistent at P, P-almost-surely,
for Π -almost-all P.

Proof. All functions P 7→ P(A) are measurable with respect to the Borel σ -algebra
associated with the weak topology. According to theorem C.8.9, Mb

+(X ) is a Polish
space; the space M1(X ) is a closed subset and hence Polish as well. Then apply
theorem 6.2.1.

For (most) Bayesians, Doob’s theorem is more than enough: cf. the last remarks
before example 2.1.18, for the Bayesian ‘the model’ is defined only up to prior
null-sets. To illustrate this point intuitively, we consider it first from the parametric
perspective: for an open Θ ⊂ Rk with continuous Θ →P : θ 7→ Pθ , and a prior
that dominates the Lebesgue measure on Θ , the above theorem leaves room for
posterior inconsistency only on subsets of Lebesgue measure zero. A popular view
is, that consistency theorems like the above show that “the data always overrides
prior beliefs asymptotically”.

However, this note of optimism relies heavily on finite-dimensional intuition and,
more particularly, Lebesgue measure. There is absolutely no implication that anal-
ogous expectations are justified in non-parametric context. Indeed, Doob’s theorem
becomes highly problematic in such models: the theorem stays true exactly as stated,
it simply means something else than what finite-dimensional intuition suggests.
Doob’s proof says nothing about specific points in the model, i.e. given a particular
P0 ∈P underlying the sample, Doob’s theorem does not give conditions that can be
checked to see whether the Bayesian procedure will be consistent at this particular
P0: it is always possible that P0 belongs to the null-set for which inconsistency oc-
curs. That such null-sets may be large, is clear from example 2.1.18 and that, indeed,
this may lead to grave problems in non-parametric situations, becomes apparent
when we consider the counterexamples given by Freedman (1963,1965) [101, 102]
(see subsection 6.6.1) and Diaconis and Freedman (1986) [73, 74]. Non-parametric
examples of inconsistency in Bayesian regression are found in Cox (1993) [61] and
Diaconis and Freedman (1998) [76]. Basically what is shown is that the null-set on
which inconsistency occurs in Doob’s theorem can be rather large in non-parametric
situations. In the past, some authors have been tempted to present the above as a
definitive demonstration of the inapplicability or unfitness of Bayesian methods for
non-parametric estimation problems. More precise is the statement that not every
choice of a non-parametric prior is suitable, raising the question that will entertain
us for the rest of this chapter and next: under which conditions on model and prior,
can we expect frequentist forms of consistency to hold?
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6.3 Schwartz’s posterior consistency theorem

Fortunately a theorem exists that provides sufficient conditions for consistency at a
specific point P0 ∈P . Requiring these conditions to hold for every P0 ∈P , makes
Schwartz’s theorem below a frequentist consistency guarantee for the posterior that
is valid whenever the data is i.i.d. and the model well-specified, both in parametric
and in non-parametric setting.

Theorem 6.3.1. (Schwartz (1965))
For all n≥ 1, let (X1,X2, . . . ,Xn) ∈X n be i.i.d.−P0, where P0 lies in a dominated
model P . Let U denote an open neighbourhood of P0 in P . If,

(i) there exist measurable φn : X n→ [0,1], such that,

Pn
0 φn = o(1), sup

{
Qn(1−φn) : Q ∈P \U

}
= o(1), (6.4)

(ii) Π is a Kullback-Leibler (KL-)prior, i.e. for all δ > 0,

Π

(
P ∈P : −P0 log

p
p0

(X)< δ

)
> 0, (6.5)

then Π(U |Xn)
P0-a.s.−−−−→1.

The condition of domination in the above theorem is strictly speaking redundant,
the theorem is true without it. (In the proof of subsection 6.3.1, replace p/p0 by
the Radon-Nikodym derivative dP/dP0 throughout and change the third equality
in (6.8) into less-or-equal.) However, the Kullback-Leibler divergence that plays
a role in the second condition, is very sensitive to mismatches in the supports of
model distributions (e.g. P0(p(X) = 0) > 0). So even though the theorem holds in
non-dominated models in principle, in practice non-dominated models involve sup-
port mismatches that complicate the lower bound on prior mass (see also, subsec-
tion 6.6.2). Historical counterexamples (see Diaconis and Freedman [73], for exam-
ple) also fail the lower bound for prior mass in Kullback-Leibler neighbourhoods of
the true distribution (see also Barron et al. (1999) [16]). In chapter 7, condition 6.5
is generalized to a weakened form of contiguity, relieving Schwartz’s theorem to
some extent of its sensitivity to problems of this type.

Comparing the test condition (6.4) to the topological notion of complete regular-
ity (definition C.2.3), one notices conceptually similar roles for continuous separat-
ing functions and sequences of test functions: the tests in (6.4) separate the singleton
{P0} from the closed alternative, as a stochastic uniform limit. Requiring existence
of such test sequences, is the condition that there must be some statistical procedure
that allows us to “separate” the true distribution of the data from the complement
of any open neighbourhood. This central testing condition of Schwartz’s theorem is
related directly to posterior asymptotic behaviour in chapter 7. It is also noted that
the choice of the topology on P can be adapted to the existence question for tests,
given the model. The latter possibility is considered explicitly in chapter 9.
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6.3.1 Proof of Schwartz’s theorem

Proof. Define V to be the complement of the open U around P0 in P . We start by
splitting the n-th posterior measure of V with the test function φn and taking the
limes superior:

limsup
n→∞

Π
(
V |X1, . . . ,Xn

)
≤ limsup

n→∞

Π
(
V |X1, . . . ,Xn

)
(1−φn)+ limsup

n→∞

Π
(
V |X1, . . . ,Xn

)
φn.

(6.6)

For given η > 0 (to be fixed at a later stage) we consider the subset Kη = {P ∈P :
−P0 log(p/p0)≤ η}. For every P ∈ Kη , the law of large numbers says that:∣∣∣Pn log

p
p0
−P0 log

p
p0

∣∣∣→ 0, (P0−a.s.).

Hence for every α > η and all P ∈ Kη , there exists an N ≥ 1 such that for all
n≥ N, ∏

n
i=1(p/p0)(Xi)≥ e−nα , Pn

0 -almost-surely. This can be used to lower-bound
the denominator in the expression for the posterior Pn

0 -almost-surely as follows:

liminf
n→∞

enα

∫
P

n

∏
i=1

p
p0

(Xi)dΠ(P)≥ liminf
n→∞

enα

∫
Kη

n

∏
i=1

p
p0

(Xi)dΠ(P)

≥
∫

Kη

liminf
n→∞

enα
n

∏
i=1

p
p0

(Xi)dΠ(P)≥Π(Kη),

where we use Fatou’s lemma (see lemma B.3.7) to obtain the second inequality.
Since by assumption, Π(Kη)> 0 we see that the first term on the r.h.s. of (6.6) can
be estimated as follows:

limsup
n→∞

Π(V |X1, . . . ,Xn)(1−φn)(X1, . . . ,Xn)

= limsup
n→∞

∫
V

n

∏
i=1

p
p0

(Xi)(1−φn)(X1, . . . ,Xn)dΠ(P)∫
P

n

∏
i=1

p
p0

(Xi)dΠ(P)

≤
limsup

n→∞

enα

∫
V

n

∏
i=1

p
p0

(Xi)(1−φn)(X1, . . . ,Xn)dΠ(P)

liminf
n→∞

enα

∫
P

n

∏
i=1

p
p0

(Xi)dΠ(P)

≤ 1
Π(Kη)

limsup
n→∞

fn(X1, . . . ,Xn),

(6.7)

where we use P∞
0 -almost-surely defined fn : X n→ [0,∞],
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fn(X1, . . . ,Xn) = enα

∫
V

n

∏
i=1

p
p0

(Xi)(1−φn)(X1, . . . ,Xn)dΠ(P).

Fubini’s theorem and the fact that the test-sequence can be assumed to be uniformly
exponential (see proposition 9.3.1) guarantee that there exists a constant β > 0 such
that for large enough n,

P∞
0 fn = Pn

0 fn = enα

∫
V

Pn
0

( n

∏
i=1

p
p0

(Xi)(1−φn)(X1, . . . ,Xn)

)
dΠ(P)

≤ enα

∫
V

Pn(1−φn)dΠ(P)≤ e−n(β−α).

(6.8)

We choose η strictly below β and can then choose α such that η <α < 1/2(β +η).
Markov’s inequality can be used to show that:

P∞
0
(

fn > e−
n
2 (β−η))≤ en(α− 1

2 (β+η)).

Hence the series ∑
∞
n=1 P∞

0 ( fn > exp− n
2 (β −η)) converges and the first Borel-

Cantelli lemma (lemma B.2.13) then leads to the conclusion that:

0 = P∞
0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2 (β−η)})≥ P∞

0

(
limsup

n→∞

(
fn− e−

n
2 (β−η))> 0

)
Since fn ≥ 0, we see that fn→ 0, (P0−a.s.), which we substitute in (6.7).

We estimate the last term on the r.h.s. of (6.6) with an argument similar to that
used above for the functions fn. Note that Pn

0 Π(V |X1, . . . ,Xn)φn ≤ Pn
0 φn ≤ e−nD for

some positive constant D, according to proposition 9.3.1. Markov’s inequality and
the first Borel-Cantelli lemma suffice to show that:

φn(X1, . . . ,Xn)Π
(
V |X1, . . . ,Xn

) P0-a.s.−−−−→0. (6.9)

Combination of (6.7) and (6.9) proves that (6.6) equals zero.

6.4 Posterior convergence in metric spaces

In metric spaces, consistency of a sequence of posterior distributions implies that
there exists a rate at which the ‘bulk’ of the posterior mass concentrates itself around
the truth.
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6.4.1 Posterior convergence at a rate

Recalling the formulation of posterior consistency for a metric model (P,d) given
in (6.2), we define the rate of convergence (with respect to the metric d) for a con-
sistent sequence of posteriors as the fastest rate εn with which we can let d-balls
B(P0,εn) shrink to radius zero, while still capturing posterior masses that converges
to one in the limit n→ ∞. We formalize this as follows.

Definition 6.4.1. Let P be a model with metric d and Borel prior Π . Assume that
X1,X2, . . . are i.i.d.-P0, for some P0 ∈P . Let the sequence εn be such that εn >
0 and εn ↓ 0. We say that the sequence of posterior measures Π( · |X1,X2, . . . ,Xn)
converges (at least) at rate εn at P0, if for all sequences Mn→ ∞:

Π
(

d(P,P0)≥Mnεn
∣∣ X1,X2, . . . ,Xn

) P0−→0, (6.10)

To demonstrate how this definition relates to the rate of convergence for derived
point-estimators like the posterior predictive distribution, assume that the sequence
of posteriors satisfies (6.10). With the sequence εn, we define moreover the point
estimators P̃n as (near-)maximisers in the model of the maps:

P 7→Π(B(P,εn) |X1, . . . ,Xn ).

Proposition 6.4.2. Assuming (6.10), for every sequence Mn→ ∞, the estimator se-
quence P̃n satisfies,

Pn
0
(

d(P̃n,P0)≤ 2Mnεn
)
→ 1. (6.11)

As a result P̃n converges to P0 with respect to d (at least) at rate εn.

Proof. Let P̃n like above be given. By definition of a near-maximiser:

Π(B(P̃n,Mnεn) |X1, . . . ,Xn )≥ sup
P∈P

Π(B(P,Mnεn) |X1, . . . ,Xn )−oP0(1)

≥Π(B(P0,Mnεn) |X1, . . . ,Xn )−oP0(1).

Because the first term on the r.h.s. of the above display converges to one (according
to (6.10)) and the second to zero in P0-probability, the l.h.s. converges to one in P0-
probability. Since B(P̃n,Mnεn)∩B(P0,Mnεn) =∅ if d(P̃n,P0)> 2Mnεn, the fact that
the total posterior mass of the model does not exceed one guarantees that d(P̃n,P0)≤
2Mnεn with P0-probability growing to one as n→ ∞, demonstrating that εn bounds
the rate of convergence.

A proof that does not differ in an essential way from the above can be given for
the centre point of the d-ball of minimal radius containing posterior mass p > 1/2
(see exercise 6.7.2). Note that, for any Mn → ∞, balls of radii 2Mnεn centred on
P̃n are asymptotically consistent confidence balls. (Compare the above proof with
corollary 2.3.13 and with theorem 2.3.14.)
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The possibility to construct point estimator sequences from posterior distribu-
tions converging at the same rate (e.g. P̃n above), implies that limitations on the rate
of convergence (arising in particular in non-parametric estimation problems, see
(6.20) below, for example) derived for point estimation, apply unabated to Bayesian
rates. This argument applies to other asymptotic performance criteria as well.

6.4.2 The Ghosal-Ghosh-van der Vaart theorem

With regard to sufficient conditions for the defining property (6.10) of posterior
rates of convergence, we note Le Cam (1973) [185] and Ibragimov and Has’minskii
(1981) [136], who prove that under regularity conditions, posteriors on parametric
models achieve

√
n-rate of convergence (mostly along the lines of the proof of the-

orem 5.3.1). Le Cam (1986) [187] considers rates of convergence of formal Bayes
estimators, based on unpublished work using what is now know as Le Cam’s in-
equality (inequality (7.4), see Le Cam (197X) [186]). Historically, the two main
references dealing with Bayesian rates of convergence in non-parametric models
are Ghosal, Ghosh and van der Vaart (2000) [110] and Shen and Wasserman (2001)
[243], and many examples have been collected in Ghosal and van der Vaart (2017)
[114]. We postpone further discussion of the literature to the introduction of sec-
tion 7.5.

Again, we assume a (non-parametric) model P with metric d and prior Π . To
formulate the main theorem of this subsection we define, for every ε > 0,

K(P0,ε) =
{

P ∈P :−P0 log
p
p0
≤ ε

2, P0

(
log

p
p0

)2
≤ ε

2
}
. (6.12)

This allows us to formulate a more specific version of Schwartz’s Kullback-Leibler
condition (6.5), in the form of (6.13).

Theorem 6.4.3. Suppose that for a sequence (εn) with εn > 0, εn ↓ 0 and nε2
n → ∞,

some P0 ∈P , and a sequence (Πn) of priors, the following two conditions hold:

(i) Πn is a Ghosal-Ghosh-van der Vaart (GGV-)prior i.e. there exists a constant
C > 0 such that:

Πn
(
K(P0,εn)

)
≥ e−nCε2

n . (6.13)

(ii) There exists a sequence φn of test-functions φn and a constant L > 0 such that:

Pn
0 φn→ 0, sup

P:d(P,P0)≥εn

Pn(1−φn)≤ e−nLε2
n . (6.14)

Then for a sufficiently large M > 0,

Pn
0 Π(d(P,P0)≥Mεn |X1, . . . ,Xn )→ 0. (6.15)



180 6 Asymptotic posterior concentration

(Note that the assertion establishes convergence in P0-expectation, which implies
convergence in P0-probability because the posterior is bounded.) The rate theorem
given here is a variation on theorem 2.1 in Ghosal, Ghosh and Van der Vaart (2000)
[110]; their version is different in two respects. First of all [110] expresses the test
condition through the model’s entropy numbers. We come back to this point in sub-
section 6.4.4. Secondly, they restrict attention to a sequence of models Pn that
grows in Πn-measure to the full model P sufficiently fast,

Πn
(
P \Pn

)
≤ e−nL′ε2

n . (6.16)

The submodels (Pn) are then used to express the entropy condition and referred to
as a sieve that approximates P quickly enough with growing n, cf. (6.16). This sepa-
ration between submodels of controlled entropy and complements of bounded prior
mass is due to Barron (1988) [9] and Barron et al. (1999) [12]. Further technical
refinements (particularly, conditions to ensure that logarithmic factors are avoided,
e.g. in the case of smooth parametric models) can be found in [114] (e.g. theo-
rem 8.11 therein).

In subsections 6.4.4 and 6.4.5, we analyse conditions (6.14) and (6.13) separately.
First, we prove theorem 6.4.3.

6.4.3 Proof of the Ghosal-Ghosh-van der Vaart theorem

Again we assume that P is dominated (although the proof continues to hold if we
replace fractions p/p0 by corresponding Radon-Nikodym derivatives).

Proof. Define, for every η > 0, A(η) = {P ∈P : d(P,P0)≥ η}. The expectation in
(6.15) can be decomposed using the tests φn; for every n ≥ 1 and every M > 1, we
have:

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
= Pn

0 φn(Xn)Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
+Pn

0 (1−φn)(Xn)Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
.

We estimate the terms on the right-hand side separately. Due to the first inequality
in (6.14), the first term converges to zero. To estimate the second term, we substitute
(2.14) to obtain,

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
(1−φn)(Xn)

= Pn
0

[∫
A(Mεn)

n

∏
i=1

p
p0

(Xi)dΠ(P)(1−φn)(Xn)
/ ∫

P

n

∏
i=1

p
p0

(Xi)dΠ(P)
] (6.17)

in which the denominator can be lower-bounded by application of lemma 6.4.5,
since by assumption (6.13), Π(K(P0,εn))> 0. Let Ωn be the subset in X n for which
the inequality between left- and right-hand sides in the following display holds:
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P

n

∏
i=1

p
p0

(Xi)dΠ(P)≥
∫

K(P0,εn)

n

∏
i=1

p
p0

(Xi)dΠ(P)≥ e−(1+L′)nε2
n Π(K(P0,εn)),

(6.18)
as in (6.25), with L′ > 0 as yet unspecified. Decomposing the Pn

0 -expectation in
(6.17) into separate integrals over Ωn and X n \Ωn, we find:

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
(1−φn)(Xn)

≤ Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
(1−φn)(Xn)1Ωn(X

n)+Pn
0 (X

n \Ωn).

Note that Pn
0 (X

n \Ωn) = o(1) as n→ ∞, according to (6.25). The first term is
estimated as follows:

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
(1−φn)(Xn)1Ωn(X

n)

≤ e(1+L′)nε2
n

Π(K(P0,εn))
Pn

0

(
(1−φn)(Xn)

∫
A(Mεn)

n

∏
i=1

p
p0

(Xi)dΠ(P)
)

≤ e(1+L′)nε2
n

Π(K(P0,εn))

∫
A(Mεn)

Pn(1−φn
)

dΠ(P)

≤ e(1+L′)nε2
n

Π(A(Mεn))

Π(K(P0,εn))
sup

P∈A(Mεn)

Pn(1−φn
)
,

(6.19)

where we have substituted (6.18) and used the positivity of the integrand, applied
Fubini’s theorem and bounded the integrand by its supremum over A(Mεn). Appli-
cation of the second inequality in (6.14) gives:

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
(1−φn)(Xn)≤ e(1+L′+C−M2L)nε2

n +o(1).

Hence, for all L′ > 0 there exists a constant M > 0 such that the above expression
converges to zero. This leads us to conclude that:

Pn
0 Π
(

A(Mεn)
∣∣ X1, . . . ,Xn

)
→ 0, (n→ ∞).

for sufficiently large M > 0.

6.4.4 Entropy numbers and uniform test sequences

Recall that the packing number D(ε,P,d) of a space P with metric d is defined as
the maximal number of points in P such that the d-distance between all pairs is at
least ε . This number is related to the so-called covering number N(ε,P,d) which is
defined as the minimal number of d-balls of radius ε needed to cover P , by the fol-
lowing inequalities: N(ε,P,d) ≤ D(ε,P,d) ≤ N(ε/2,P,d) (see exercise 6.7.3).
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Instead of condition (6.14), [243, 110] impose the following alternative condition in
terms of these so-called entropy numbers relative to the Hellinger metric H on the
models Pn.

(ii’) The ε-packing numbers D(ε,Pn,H) for the models Pn satisfy:

D(εn,Pn,H)≤ enε2
n , (6.20)

for large enough n, where εn is the rate sequence.

Entropy condition (6.20) implies the existence of a uniform sequence of test func-
tions (see Le Cam (1973,1986) [185, 187] and Birgé (1983,1984) [32, 33]), as is
shown below.

Recall that lemma 2.4.13 asserts the existence of minimax Hellinger tests be-
tween convex subsets separated by non-zero Hellinger distance. Let us consider
two Hellinger balls B,V in M 1(X ,B) (which are convex, see exercise 6.7.4) at
non-zero Hellinger distance in P . For for every n ≥ 1, there exists a test function
φn : Xn→ [0,1] such that,

sup
P∈B

Pn
φn + sup

Q∈V
Qn(1−φn)≤ e−nH2(B,V ). (6.21)

the minimax Hellinger tests. In the construction of tests suitable for theorem 6.4.3,
the role of B is taken by {P0}, but the complements of open neighbourhoods are not
convex. In order to apply the above anyway, we cover the alternative with Hellinger
balls (as first suggested in Le Cam (1973) [185]) and combine the individual tests
between those balls and {P0} into a single test for the non-convex alternative. The
number of balls needed in the cover (N below) then becomes a factor diminishing
the testing power.

Lemma 6.4.4. Fix n,N ≥ 1 and B,V1, . . . ,VN ⊂P and let V be any subset of ∪N
i=1Vi.

If there exist test functions φi, (1≤ i≤ N), such that (6.21) holds for all Vi, (1≤ i≤
N), then there exists a test function ψ such that,

sup
P∈B

Pn
ψ + sup

Q∈V
Qn(1−ψ)≤ N e−nmin{H2(B,Vi):1≤i≤N}. (6.22)

Proof. If the theorem holds for ∪N
i=1Vi, then it holds for any subset thereof; so with-

out loss of generality we assume that V = ∪N
i=1Vi. Define ψ = max{φi : 1≤ i≤ N},

then for any P ∈ B,

Pn
ψ ≤

N

∑
i=1

Pn
φi ≤ N max{Pn

φi : 1≤ i≤ N}

and for every Q ∈V ,
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Qn(1−ψ) = Qn{min(1−φi) : 1≤ i≤ N}

≤
N

∑
i=1

Qn(1−φi)≤ N max{Qn(1−φi) : 1≤ i≤ N}.

Combination leads to (6.22).

Now it is clear how the existence of test sequences (φn) as in (6.14) follows from
the entropy condition (6.20). For some M > 2, define Bn = {P0}, Vn = {P ∈Pn :
H(P,P0)≥Mεn} and N = N(εn,Vn,H)≤N(εn,Pn,H)≤D(εn,Pn,H)≤ enε2

. The
convex cover V1, . . . ,VN of Vn consists of Hellinger balls of radius εn centred in Vn,
each of which satisfies H(B,Vi) ≥ (M− 1)εn by virtue of the triangle inequality.
Lemma 6.4.4 then says there exits a test sequence (φn) such that, for every n≥ 1,

sup
P∈B

Pn
ψ + sup

Q∈Vn

Qn(1−ψ)≤ N e−n(M−1)ε2
n ≤ e−n(M−2)ε2

n ,

which is enough for (6.14). This way, rates of convergence εn are determined by
upper bounds on entropy numbers of the type (6.20).

The sufficient condition for existence of suitable tests that [110] employs, the
entropy condition (6.20), has to be proved in individual cases, however. To illus-
trate, if Pn = P does not change with growing sample size, then finiteness of all
Hellinger entropy numbers implies that P is totally bounded for the Hellinger met-
ric, implying relatively compactness for the Hellinger metric. Since many models
are not relatively Hellinger-compact (for example, the model of all normal distribu-
tions in R, centred on 0, is not relatively compact, see exercise ??), finiteness of all
Hellinger covering numbers poses a rather restrictive condition. To alleviate it, one
may generalize to models that are Hellinger σ -compact, with Hellinger covering
numbers that do not grow too fast, and Barron’s complements, cf. (6.16).

In certain infinite-dimensional spaces (like Sobolev balls, VC-classes or classes
of monotone functions [167, 259, 114]), entropy numbers have been calculated.
Suppose that we have a parametrized model Θ→P : θ→Pθ for single-observations
and Θ is one of these examples, a subspace of a normed space with norm ∥ ·∥, such
that, for some sequence ηn,

logN(ηn,Θ ,∥ · ∥)≤ nη
2
n , (6.23)

and also that there exist two constants K > 0, α > 0 such that for all θ1,θ2 ∈Θ that
are close enough, the Hellinger metric H is related to ∥ · ∥ through,

H(Pθ1 ,Pθ2)≤ K∥θ1−θ2∥α . (6.24)

Then ∥ · ∥-balls of radius η in Θ are mapped into H-balls of radius Kηα , so that P
has a cover of H-balls of radius ε of order (upper-bounded by) N((ε/K)1/α ,Θ ,∥·∥).
Therefore, condition (6.20) for the rate εn is determined by the entropy bound (6.23)
for the parametrizing space. So if the model has a parameter space of the special
kind for which entropy bounds can be calculated, and a relation of the type (6.24)
(or slightly more involved, see (10.26) in chapter 10, for example) applies, then the
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existence of uniform test sequences can be guaranteed. Unfortunately, the number
of examples of parameter spaces with known entropy bounds is somewhat limited
[259]. We come back to this point and alternatives in chapters 7 and 9.

6.4.5 Lower bounds on prior mass

To conclude this section we give the lemma needed in the proof of theorem 6.4.3
to lower-bound the denominator of the posterior in probability, leading to lower
bounds on prior mass locally around the true distribution of the data. This lemma
[243, 110], which is presently more a technical afterthought than an integral part of
the theory, will be drawn to the foreground when we discuss remote contiguity in
chapter 7.

Lemma 6.4.5. Let ε > 0 and P0 ∈P be given and let K(P0,ε) be defined as in
(6.12). If Π(K(P0,ε))> 0, then for every L > 0:

Pn
0

(∫
K(P0,ε)

n

∏
i=1

p
p0

(Xi)dΠ(P)≤ e−nε2(1+L)
Π(K(P0,ε))

)
≤ 1

nL2ε2 . (6.25)

Proof. Write Π ′ for Π(·|K(P0,ε)), the prior conditioned on K(P0,ε). By Jensen’s
inequality (see, proposition B.4.8),

log
∫ n

∏
i=1

p
p0

(Xi)dΠ
′(P)≥

n

∑
i=1

∫
log

p
p0

(Xi)dΠ
′(P).

Therefore, for any L > 0,

Pn
0

(∫ n

∏
i=1

p
p0

(Xi)dΠ
′(P)≤ e−nε2(1+L))

)
≤ Pn

0

(√
n
(
Pn−P0)

∫
log

p
p0

dΠ
′(P)

≤−
√

n(1+L)ε2−
√

nP0

∫
log

p
p0

dΠ
′(P)

)
.

(6.26)

With the help of Fubini’s theorem and the definition of K(P0,ε), we see that the
r.h.s. above is bounded by −

√
nLε2. Note that the variance of the integrated log-

likelihood is bounded with Jensen’s inequality (see, proposition B.4.8),

Var
(∫

log
p
p0

dΠ
′(P)

)
≤ P0

∫ (
log

p
p0

)2
dΠ
′(P), (6.27)

and Chebyshev’s inequality then implies that the r.h.s. of (6.26) is bounded by
(nL2ε2)−2 times the r.h.s. of (6.27). The definition of K(P0,ε) then shows that the
assertion holds.
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In this context, we mention a lemma from Wong and Shen (1995) [270] that plays
a central role in applications of the above, and has been extended on a model-by-
model basis in Ghosal and van der Vaart (2017) [114], lemma B.2.

Lemma 6.4.6. Let ε > 0 be given and let P,Q be two distributions such that
H(P,Q) < ε . Let p,q denote the densities of P,Q relative to a dominating measure
µ . Assume that for some δ > 0,

M2
δ
=
∫ ( p

q

)δ

dP < ∞.

Then there is a constant C ≥ 5 such that, for small enough ε ,

max
{
−P log

p
q
,P
(

log
p
q

)2
}
≤C

(
1+

1
δ

max
{

1, log(Mδ/ε)
})

ε
2.

When the assertion of the above lemma holds, the sets K(P,ε) of definition (6.12)
contain Hellinger balls of radii proportional to ε .

6.5 Alternative approaches to posterior consistency

The Kullback-Leibler criteria and entropy conditions of the previous section are dif-
ficult to approach in certain models; in section 6.6 we shall see several very simple
examples of models in which Kullback-Leibler criteria are problematic, mostly due
to domain mismatches (cf. the remarks following theorem 6.3.1). The goal of this
section is, to extend the range of criteria on the prior for posterior consistency and
convergence at a rate, showing asymptotic suitability for a wider range of priors.
From the outset, we accept that this may go at the expense of additional model
conditions.

The main result of Kleijn and Zhao (2019) [162] can be summarized as follows.
We consider a fixed model subset V (e.g. the complement of a fixed neighbourhood
of P0) for which we want to demonstrate asymptotically vanishing posterior mass.
Following the ideas of [238, 185, 32, 33] the set V is covered by a finite collection
of subsets V1, . . . ,VN to be tested against P0 separately with the help of the minimax
theorem: each Vi is matched with a model subset Bi (which can be thought of as a
‘neighbourhood’ of P0 if the model is well-specified) such that Π(Bi) > 0 and in-
equality (6.29) below is satisfied. The Bi are often chosen as Kullback-Leibler neigh-
bourhoods (as in Schwartz’s theorem), but under moment conditions for likelihood
ratios, larger neighbourhoods can act as alternatives (compare with lemma 6.4.6).

Below we assume that the model is dominated. Let co(V ) denote the convex hull
of V . Furthermore, for given α ∈ [0,1], model subsets B,W and a given distribution
P0, define,

πP0(W,B;α) = sup
P∈W

sup
Q∈B

P0

( dP
dQ

)α

, (6.28)
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(and πP0(W,B) = infα∈[0,1] πP0(W,B;α)). Below we provide only an overview and
refer to [162] for more, including proofs of the results.

Theorem 6.5.1. Let the model P be given and let X1,X2, . . . be i.i.d.-P0 distributed.
Assume that Pn

0 ≪ PΠ
n for all n ≥ 1. For some N ≥ 1 let V1, . . . ,VN be measurable

model subsets. If there exist measurable model subsets B1, . . . ,BN such that for every
1≤ i≤ N,

πP0(co(Vi), Bi )< 1, (6.29)

Π(Bi)> 0 and supQ∈Bi
P0(dP/dQ)< ∞ for all P ∈Vi, then,

Π(V |X1, . . . ,Xn )
P0-a.s.−−−−→0, (6.30)

for any V ⊂
⋃

1≤i≤N Vi.

Note that P0 is not required to be in the model P , so theorem 6.5.1 applies both to
well- and to misspecified models in the form stated. Furthermore, condition (6.29)
is equivalent in quite some generality to separation of Bi and co(Vi) in Kullback-
Leibler divergence.

Lemma 6.5.2. Let P0 ∈ B ⊂P and W ⊂P be given and assume that there exists
an α ∈ (0,1) such that for all Q ∈ B and P ∈W, P0(dP/dQ)α < ∞. Then,

πP0(W,B)< 1, (6.31)

if and only if,

sup
Q∈B
−P0 log

dQ
dP0

< inf
P∈W
−P0 log

dP
dP0

. (6.32)

This lemma underlines the fundamental nature of condition (6.5). But even with this
equivalence in mind, the theorem is uncommitted regarding the nature of the Vi, and,
more importantly, we may use any Bi that (i) allow uniform control of P0(p/q)α , and
(ii) allow convenient choice of a prior such that Π(Bi)> 0. The two requirements on
Bi leave room for trade-offs between being ‘small enough’ to satisfy (i), but ‘large
enough’ to enable a choice for Π that leads to (ii). The freedom to choose B’s and
Π lends this alternative method the desired flexibility.

For example, it is possible to prove consistency in Kullback-Leibler divergence
quite easily.

Theorem 6.5.3. Let P0 and the model be such that for some Kullback-Leibler neigh-
bourhood B of P0, supQ∈B P0(dP/dQ) < ∞ for all P ∈P . Let Π be a Kullback-
Leibler prior. For any ε > 0, assume that {P :−P0 log(dP/dP0)≥ ε} is covered by
a finite number N ≥ 1 of model subsets V1, . . . ,VN such that,

inf
P∈co(Vi)

−P0 log
dP
dP0

> 0, (6.33)

for all 1≤ i≤ N. Then for i.i.d.-P0 distributed X1,X2, . . .,

Π
(

P ∈P : −P0 log(dP/dP0)< ε
∣∣ X1, . . . ,Xn

) P0-a.s.−−−−→1. (6.34)
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It is also possible to express all consistency requirements in terms of Hellinger met-
ric quantities.

Theorem 6.5.4. Assume the model P has finite Hellinger metric entropy numbers,
and that there exists a constant L > 0 and a Hellinger ball B′ centred on P0 such
that for all P ∈P and Q ∈ B′,∥∥∥ p

q

∥∥∥
2,Q

=
(∫ p2

q
dµ

)1/2
< L. (6.35)

Finally assume that for any Hellinger neighbourhood B of P0, Π(B) > 0. Then the
posterior is Hellinger consistent, P0-almost-surely.

So there is great variety possible in the level of refinement of the posterior con-
vergence statement (see exercise 6.7.5), depending on the validity of integrability
conditions for likelihood ratios.

Walker (2004) [264] proposes an approach to posterior convergence that does not
depend on finite covers, but combines a summability condition for prior masses of
a countable cover with the Kullback-Leibler condition (6.5). In terms of the above
formulation, we can also choose to rely on a condition of Walker’s type.

Theorem 6.5.5. Let P and Π be given and assume that Pn
0 ≪ PΠ

n for all n ≥ 1.
Let V be a model subset, with a countable cover V1,V2, . . .. and a B⊂P such that
Π(B) > 0 and for all i ≥ 1, P ∈ Vi, supQ∈B P0(dP/dQ) < ∞. Furthermore, assume
that,

sup
i≥1

sup
P∈co(Vi)

sup
Q∈B

P0

( dP
dQ

)1/2
< 1.

If the prior satisfies the summability condition,

∑
i≥1

Π(Vi)
1/2 < ∞,

then the posterior satisfies, Π(V |X1, . . . ,Xn)
P0-a.s.−−−−→0.

Alternatively we can stay closer to Walker’s original formulation involving a Kullback-
Leibler prior (see corollary 4.5 in Kleijn and Zhao (2019) [162]). (For another per-
spective on Walker’s summability condition, see exercises 8.11–8.12 in [114].)

Finally it is possible to formulate a theorem that establishes a posterior rate of
convergence with an n-dependent version of the Kullback-Leibler condition (6.5),
rather than involving higher powers of the logarithm, as in definition (6.12) and
condition (6.13).

Theorem 6.5.6. Let X1,X2, . . . be i.i.d.-P0 for some P0 ∈P . Specify that the metric
on P is the Hellinger metric H; define (εn) with εn ↓ 0 and nε2

n →∞, and take Vn =
{P∈P : H(P0,P)>Mεn}, for M > 0, and Bn = {Q∈P :−P0 log(dQ/dP0)< ε2

n}.
Assume that for n large enough and all P ∈Vn, sup{P0(dP/dQ) : Q ∈ Bn}< ∞. If,

(i) there is an L > 0, such that for large enough n≥ 1, N(εn,P,H)≤ eLnε2
n ;
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(ii) there is a K > 0, such that for large enough n≥ 1

Π

(
P ∈P : −P0 log

dP
dP0

< ε
2
n

)
≥ e−Knε2

n , (6.36)

then Π(P ∈P : H(P,P0)> Mεn |X1, . . . ,Xn )
P0−→0, for M large enough.

The conclusion of this section is, that the framework based on Schwartz’s theorem
has more flexibility than sections 6.3 and 6.4 suggest. Particularly, the involvement
of a set B around the point of convergence in the testing condition is an idea that
plays a central role in chapter 7.

6.6 Frequentist counterexamples

To demonstrate that the assertion of Doob’s Bayesian consistency theorem can
be much weaker than expected in non-parametric setting, first Schwartz and then
Freedman constructed counterexamples in the early 1960’s which are illustrated in
subsection 6.6.1. In their time, Freedman’s counterexamples and subsequent exam-
ples of posterior inconsistency established a widespread conviction that Bayesian
methods were unfit for frequentist non-parametric purposes: examples of prob-
lematic posterior behaviour in non-parametric setting continued to captivate [73,
74, 61, 75, 76, 104, 105], while Schwartz’s theorem received only limited (but
steadily growing) amounts of attention [109]: subsequent frequentist theorems (e.g.
by Barron (1988) [9], Barron-Schervish-Wasserman (1999) [12], Ghosal-Ghosh-
van der Vaart (2000) [110], Shen-Wasserman (2001) [243], Walker (2004) [264]
and Walker-Lijoi-Prünster (2007) [267], Kleijn-Zhao (2019) [162], Kleijn (2021)
[163] and many others) have extended the applicability of theorem 6.3.1 but not its
essence, the combination of a testing (or sufficient entropy) condition with a lower
bound for local prior mass around the true distribution for the data.

Regarding the material of sections 6.3 and 6.4, finding counterexamples is
straightforward: certainly Schwartz’s classical theorem and the work of Ghosal,
Ghosh and van der Vaart have been very influential and form the frequentist back-
bone for the literature on frequentist non-parametric Bayesian statistics since 2000;
but, as demonstrated in subsection 6.6.2, there are very simple parametric models
in which the Kullback-Leibler priors of Schwartz or their more specific Ghosal-
Ghosh-van der Vaart variations do not exist. The fact that posterior consistency ob-
tains without problems in those examples, serves as one of the motivations for the
generalizations we discuss in chapter 7.
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6.6.1 Freedman’s counterexamples

The first examples of unexpected posterior inconsistency are due to Schwartz (1961)
[237], but it was Freedman (1963) [101] who made the point famous with a sim-
ple non-parametric counterexample, discussed in detail as example 6.6.1 below. In
Freedman (1965) [102] it was even shown that, without further conditions on the
prior, inconsistency is generic in a topological sense (see theorem 6.6.2).

Example 6.6.1. (Freedman (1963) [101])
Consider a sample X1,X2, . . . of random positive integers. Denote the space of all
probability distributions on N by Λ and assume that the sample is i.i.d.-P0, for some
P0 ∈ Λ . For any P ∈ Λ , write p(i) = P({X = i}) for all i ≥ 1. The total-variational
and weak topologies on Λ are equivalent (defined, P→ Q if p(i)→ q(i) for all
i≥ 1). Let Q ∈Λ \{P0} be given. To arrive at a prior with P0 in its support, leading
to a posterior that concentrates on Q, we consider sequences (Pm) and (Qn) such
that Qm→ Q and Pm→ P0 as m→ ∞. The prior Π places masses αm > 0 at Pm and
βm > 0 at Qm (m≥ 1), so that P0 lies in the support of Π . A careful construction of
the distributions Qm that involves P0, guarantees that the posterior satisfies,

Π({Qm}|Xn)

Π({Qm+1}|Xn)

P0-a.s.−−−−→0,

that is, posterior mass is shifted further out into the tail as n grows to infinity, forcing
all posterior mass that resides in {Qm : m≥ 1} into arbitrarily small neighbourhoods
of Q. In a second step, the distributions Pm and prior weights αm are chosen such
that the likelihood at Pm grows large for high values of m and small for lower values
as n increases, so that the posterior mass in {Pm : m ≥ 1} also accumulates in the
tail. However, the prior weights αm may be chosen to decrease very fast with m, in
such a way that,

Π({Pm : m≥ 1}|Xn)

Π({Qm : m≥ 1}|Xn)

P0-a.s.−−−−→0,

thus forcing all posterior mass into {Qm : m ≥ 1} as n grows. Combination of the
previous two displays leads to the conclusion that for every neighbourhood UQ of
Q,

Π(UQ|Xn)
P0-a.s.−−−−→1,

so the posterior is inconsistent. Other choices of the weights αm that place more
prior mass in the tail do lead to consistent posterior distributions.

Some objected to Freedman’s counterexample, because knowledge of P0 is required
to construct the prior that causes inconsistency. So it was possible to argue that
Freedman’s counterexample amounted to nothing more than a demonstration that
unfortunate circumstances could be created, probably not a fact of great concern in
any generic sense.

To strengthen Freedman’s point one would need to construct a prior of full sup-
port without explicit knowledge of P0. In the setting of example 6.6.1, denote the
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space of all distributions on Λ by M1(Λ). Note that since Λ is Polish, so is M1(Λ)
and so is the product Λ ×M1(Λ).

Theorem 6.6.2. (Freedman’s posterior inconsistency theorem)
Let X1,X2, . . . form an sample of i.i.d.-P0 random integers, let Λ denote the space
of all distributions on N and let M1(Λ) denote the space of all Borel probability
measures on Λ , both in Prohorov’s weak topology. The set of pairs (P0,Π) ∈ Λ ×
M1(Λ) such that for all open U ⊂Λ ,

limsup
n→∞

Pn
0 Π(U |Xn) = 1,

is residual.

Proof. See Freedman (1965) [102] and Le Cam (1986) [187].

And so, the set of pairs (P0,Π) ∈ Λ ×M1(Λ) for which the limiting behaviour of
the posterior is acceptable to the frequentist, is meagre in Λ ×M1(Λ). The proof is
based on example 2.1.18. The question arises, what is the conclusion we draw from
Freedman’s objections of inconsistency? (See [73, 74, 76, 104, 105] and Le Cam’s
comment [188]). Leaving constructions with intentional pathology aside, it is theo-
rem 6.6.2 that poses the real challenge to non-parametric Bayesian statistics. How-
ever, its message is quite encouraging when interpreted correctly: meagreness in
the sense of theorem 6.6.2 means that there is a condition missing. Not all priors
are fit for frequentist purpose, indeed a (topologically large) subset of priors are
not. The remaining priors, those that are useful to the frequentist, form a (topolog-
ically small) subset, characterized by a property. Freedman failed to recognize that
his result was indicative of the next step in the theoretical development: Schwartz’s
Kullback-Leibler condition (6.5) provides exactly such a property (which may ex-
plain the tone of [188]).

6.6.2 Counterexamples: Schwartz and GGV conditions

In this subsection, it is shown that there exist very simple parametric models in
which no prior satisfies Schwartz’s Kullback-Leibler condition (6.5), and similarly,
that there are very simple parametric models in which Schwartz’s Kullback-Leibler
condition may be satisfied, but no prior satisfies the Ghosal-Ghosh-van der Vaart
condition (6.13).

Example 6.6.3. Consider X1,X2, . . . that are i.i.d.-P0 with Lebesgue density p0 :
R→ R supported on an interval of known width (say, 1) but unknown location.
Parametrize in terms of a continuous density η on [0,1] with η(x) > 0 for all
x ∈ [0,1] and a location θ ∈R: pθ ,η(x) = η(x−θ)1[θ ,θ+1](x). A moment’s thought
makes clear that if θ ̸= θ ′,

−Pθ ,η log
pθ ′,η ′

pθ ,η
= ∞,
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for all η ,η ′. Therefore Kullback-Leibler neighbourhoods do not have any extent in
the θ -direction and no prior is a Kullback-Leibler prior in this model.

Example 6.6.4. Consider an i.i.d. sample of integers X1,X2, . . . from a heavy-tailed
distribution Pa, (a≥ 1), defined by,

pa(k) = Pa(X = k) =
1
Za

1
ka(logk)3 (6.37)

for all k ≥ 2, with Za = ∑k≥2 k−a(logk)−3 < ∞. As it turns out (see exercise 6.7.6),
for a = 1, b > 1,

−Pa log
pb

pa
< ∞, Pa

(
log

pb

pa

)2
= ∞. (6.38)

Therefore, Schwartz’s KL-condition (6.5) for the prior for the parameter a can be
satisfied but there exists no prior such that (6.13) is satisfied for all P0 in the model,
that is, there is no Ghosal-Ghosh-van der Vaart prior. In fact, if we change the
third power of the log-factor in the denominator of (6.37) to a square, Schwartz’s
KL-priors also do not exist.

Nonetheless, in chapter 7 it is shown that with generic choices for the priors, the
posteriors of both examples 6.6.3 and 6.6.4 are appropriately consistent.

Simple as the above examples are, they are indicative of a more general problem
that is clearly difficult to contain through the choice of priors on non-parametric
models and explains the multitudes of sufficient conditions that non-parametric ap-
plications of Schwartz’s theorem and the GGV-theorem to specific models often
entail: for any P0 it is possible to find distributions P with density ratios p/p0 that
vary ‘wildly enough’ to cause log-likelihood ratios log p/p0 to lose integrability or
square-integrability. Originating in early analyses of posterior inconsistency [73],
the phenomenon of data-tracking [266] sketches a similar qualitative picture of sit-
uations where posterior consistency fails. The notion of remote contiguity of chap-
ter 7 defines a precise way in which variations of p/p0 may be bounded to guarantee
consistency, which also covers examples like 6.6.3 and 6.6.4.

6.7 Exercises

6.7.1. Let Θ be an infinite-dimensional normed space. Show that the only translation-
invariant Borel measure that is also locally finite, is the zero measure (µ(A) = 0, for
all Borel sets A). Hint: let B be any open ball in Θ . Inside B there is a smaller open
ball B′ (of one-third the radius of B), such that B′ can be translated to a disjoint set
B′′, without leaving B: B′′ = B′+ t, B′′ ⊂ B, B′∩B′′ =∅. In an infinite-dimensional
space such translations are possible over a countably infinite number of vectors t,
and all translates are disjoint. Conclude that unless µ(B′) = 0, µ(B) = ∞.

6.7.2. Assuming (6.10), show that for every sequence Mn→ ∞, the centre point P̃′n
of the d-ball of minimal radius containing posterior mass p > 1/2 satisfies,
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Pn
0
(

d(P̃′n,P0)≤ 2Mnεn
)
→ 1. (6.39)

As a result P̃′n converges to P0 with respect to d (at least) at rate εn.

6.7.3. Let (P,d) be a metric model. Prove that packing and covering numbers sat-
isfy,

N(ε,P,d)≤ D(ε,P,d)≤ N(ε/2,P,d),

for all ε > 0.

6.7.4. Although the word ‘ball’ is associated with convexity intuitively, the metric
balls that play such a prominent role in this chapter and elsewhere are not guaran-
teed to be convex.

a. Let (X ,B) be a measurable space. Show that a Hellinger ball in M 1(X ,B)
is convex. Hint: consider H2(P,Q). See lemma 3 of section 16.4 of [187].

b. Give an example of a convex metric space (X ,d) with metric balls that are not
convex.

6.7.5. Let P be a model, which we view as a metric space in several ways. Let
H denote the Hellinger metric; let ∥ · ∥TV denote the total-variational norm; let
K(P,Q) denote the Kullback-Leibler divergence of Q with respect to P. Recall from
proposition 1.1.5 that the total-variational distance between two probability mea-
sures equals half the integrated difference between their density functions. For any
P ∈P and r > 0, denote,

B(P,r;G) =
{

Q ∈P : G(P,Q)< r
}
,

with G(P,Q) equal to ∥P−Q∥TV , H(P,Q) or K(P,Q).

a. Show that H(P,Q)2 ≤ ∥P−Q∥TV , for any probability measures P,Q.
b. Show that,

∥P−Q∥TV ≤ H(P,Q)(2−H(P,Q))1/2,

for any probability measures P,Q.
c. Deduce the following two inclusions,

B
(
P,r2;∥ · ∥TV

)
⊂ B(P,r;H),⊂ B

(
P,
√

2r;∥ · ∥TV
)
. (6.40)

Accordingly the metric topologies associated with the total-variational and Hellinger
metrics are equivalent.

d. Which two relations between entropy numbers for P , relative to Hellinger and
total-variational metrics respectively, does (6.40) imply?

It is not essential that the quantities involved are metrics; any relationship of the
form of parts a. and b. gives rise to consequences like parts c. and d..

e. Prove that,
B(P,2r2;K)⊂ B(P,r;H),

for all P ∈P and r > 0.
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In chapter 10, we make extensive use of arguments of this type, based on (Lipschitz)
inequalities involving metrics on parametrizing spaces.

6.7.6. In example 6.6.4, prove that (6.38) holds. Also show that if we change the
third power of the log-factor in the denominator of (6.37) to a square, KL-priors
also do not exist.





Chapter 7
Frequentist validity of Bayesian limits

The material presented in this chapter extends the analysis in [163], which re-
develops the Bayesian theory of non-parametric statistics of the previous chap-
ter from the ground up. The calculations presented in chapter 6 are adequate if
one is willing to restrict attention to the “traditional” setting for examples in non-
parametric statistics, where the data forms an i.i.d. sample from a distribution in a
model of Hellinger entropy with known upper-bound, following the path set out in
subsections 6.4.4 and 6.4.5.

But the setting for modern non-parametric statistical challenges is more general:
data in the computer age is not only of very large scale, it is often of much more com-
plex structure. Particularly, dependence among data points is much more common,
occurring not only in stochastic processes like time-series in financial markets, but
also in examples like random walks and branching processes on graphs, e.g. world-
wide-web sampling techniques. Non-parametric models for complex data like those
that arise from questions in machine learning and network science are usually not
compatible with the technical formulation of subsections 6.4.4 and 6.4.5. The it-
erated maps of so-called deep neural networks and the highly dependent prefer-
ential attachment model for randomly growing graphs are further examples where
model and data do not conform to traditional statistical assumptions, and so is the
community-detection problem of chapter 11.

Below we re-examine for which priors Bayesian limits are also valid in the
frequentist sense: is Schwartz’s Kullback-Leibler condition a manifestation of a
more general notion? The counterexamples of subsection 6.6.2 (demonstrating that
Kullback-Leibler- and GGV-priors do not always exist) suggest that generalization
is in order. The analysis given below leads to further questions for which insight-
ful answers have been elusive: why is Doob’s theorem completely different from
Schwartz’s? Why does weak consistency in the full non-parametric model (e.g. with
the Dirichlet process prior [98], or more modern variations [66]) reside in a corner
of its own (with tailfreeness [102, 95] as sufficient property of the prior), appar-
ently unrelated to posterior consistency in either Doob’s or Schwartz’s views? And
to extend the scope further, what can be said about hypothesis testing, classification,
model selection, etcetera? Given that the Bernstein-von Mises theorem cannot be

195



196 7 Frequentist validity of Bayesian limits

expected to hold in any generality outside parametric setting [61, 105], what rela-
tionship exists between credible sets and confidence sets?

To generalize, this chapter introduces a property called remote contiguity, de-
fined in section 7.2, that enables frequentist interpretation of posterior asymptotics.
Remote contiguity expresses a weakened form of Le Cam’s contiguity (see ap-
pendix C.10), relating the true distribution of the data to localized prior predic-
tive distributions. Where Schwartz’s Kullback-Leibler neighbourhoods represent a
choice for the localization appropriate when the sample is i.i.d., remote contigu-
ity sidesteps the counterexamples of subsection 6.6.2 and generalises to non-i.i.d.
samples and sample-size-dependent model/prior pairs.

The second change we propose concerns weakening of Schwartz’s testing con-
dition: instead of requiring the existence of uniform test sequences [238, 110], we
restrict the sum of type-I and type-II error probabilities of tests when averaged with
the prior. We show that these so-called Bayesian tests exist, if and only if, the pos-
terior displays prior-almost-sure convergence [82] (rendering our understanding of
Doob’s consistency compatible with the occurrence of tests in Schwartz’s theorem).
Bayesian tests involve the prior in the testing condition, a property that is especially
important in model-selection questions and is in line with non-locality of priors, as
in [143].

The most significant practical implication concerns frequentist uncertainty quan-
tification: theorem 7.7.6 shows that if the priors induce remote contiguity, se-
quences of credible sets can be enlarged to form sequences of confidence sets with
asymptotic coverage one. Compare this with the main inferential conclusion of the
Bernstein-von Mises theorem (asymptotic validity of credible sets as confidence
sets in smooth parametric models [191]). In practice, a frequentist can calculate,
simulate or approximate the posterior, construct associated credible sets and ‘en-
large’ them to obtain asymptotic confidence sets, provided his prior induces remote
contiguity.

In section 7.1 we concentrate on an inequality that relates testing to posterior
concentration and indicates the relation with Le Cam’s inequality. Section 7.2 in-
troduces remote contiguity and the analogue of Le Cam’s First Lemma. In sec-
tion 7.4, frequentist theorems on the asymptotic behaviour of posterior distributions
are proved, on posterior consistency, on rates of convergence, on model selection
with posterior odds and on the conversion of credible sets to confidence sets. The
theory of this chapter is applied to a testing problem with (dependent) random-walk
data in section 7.8. The central condition of testability is analysed further in chap-
ter 9. Application to community detection in random graphs follows in chapter 11.

7.1 Posterior concentration and asymptotic tests

First we consider a lemma that relates concentration of posterior mass in certain
model subsets to the existence of test sequences that distinguish between those sub-
sets. More precisely, it is shown that the expected posterior mass outside a model
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subset V with respect to the local prior predictive distribution over a model subset
B, is upper bounded (roughly) by the testing power of any statistical test for the hy-
potheses B versus V : if a test sequence exists, the posterior will concentrate its mass
appropriately.

7.1.1 Bayesian test sequences

We define test sequences immediately in Bayesian context by involving priors from
the outset. We consider sequentially observed, (possibly non-i.i.d.) samples Xn, dis-
tributed according to Pθ0,n for some θ0 ∈Θ within the model θ → Pθ ,n. (More gen-
erally, we refer to appendix A for the notation and conventions assumed through
this chapter.)

Definition 7.1.1. Given priors (Πn) on the measurable space (Θ ,G ), model subsets
(Bn),(Vn) ⊂ G and an ↓ 0, a sequence of Bn-measurable maps φn : Xn → [0,1] is
called a Bayesian test sequence for Bn versus Vn (under Πn) of power an, if,∫

Bn

Pθ ,nφn dΠn(θ)+
∫

Vn

Pθ ,n(1−φn)dΠn(θ) = o(an). (7.1)

We say that (φn) is a Bayesian test sequence for Bn versus Vn (under Πn) if (7.1)
holds for some an ↓ 0.

Note that if we have sequences (Cn) and (Wn) such that Cn ⊂ Bn and Wn ⊂Vn for all
n≥ 1, then a Bayesian test sequence for (Bn) versus (Vn) of power an is a Bayesian
test sequence for (Cn) versus (Wn) of power (at least) an.

Lemma 7.1.2. For any B,V ∈ G and any measurable φ : X → [0,1],∫
B

Pθ Π(V |X)dΠ(θ)≤
∫

B
Pθ φ dΠ(θ)+

∫
V

Pθ (1−φ)dΠ(θ). (7.2)

Proof. Due to Bayes’s Rule (2.4),∫
(1−φ(X))Π(V |X)dPΠ =

∫
V

Pθ (1−φ(X))dΠ(θ).

Accordingly,∫
B

Pθ (1−φ)Π(V |X)dΠ(θ)≤
∫
(1−φ)Π(V |X)dPΠ =

∫
V

Pθ (1−φ)dΠ(θ).

Inequality (7.2) follows from the fact that Π(V |X)≤ 1.

So the mere existence of a Bayesian test sequence is enough to guarantee posterior
concentration, a fact expressed in n-dependent form through the following proposi-
tion.
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Proposition 7.1.3. Let (Xn,Bn), (Θn,Gn), (Pn) and (Πn) be given. Given se-
quences (Bn),(Vn)⊂Gn and (an),(bn),(cn) such that an = o(bn∧cn) and, Πn(Bn) =
bn > 0, Πn(Vn) = cn > 0. If, there exists a Bayesian test sequence for Bn versus Vn
of composite power an, then, conditionally, expected posterior weights vanish,

PΠn|Bn
n Π(Vn|Xn) = o(an b−1

n ), PΠn|Vn
n Π(Bn|Xn) = o(an c−1

n ). (7.3)

If Θn = Bn∪Vn for all n≥ 1, then (7.3) also implies the existence of a Bayesian test
sequence for Bn versus Vn of composite power an.

Proof. Assume there exists a Bayesian test sequence for Bn versus Vn of composite
power an. Then,

PΠn|Bn
n Π(Vn|Xn) = b−1

n

∫
Bn

Pθ ,nΠ(Vn|Xn)dΠn(θ) = o(anb−1
n ),

(and analogously for Vn). Assume (7.3) with Bn ∪Vn = Θn. Define maps φn(Xn) =
Π(Vn|Xn), then,

bn PΠn|Bn
n Π(Vn|Xn)+ cn PΠn|Vn

n Π(Bn|Xn) = o(an),

so (φn) defines a Bayesian test sequence for Bn versus Vn of composite power an.

We come back to the equivalence of Bayesian test existence and posterior concentra-
tion in subsection 7.1.2, as well as in section 7.4. To illustrate how proposition 7.1.3
relates to frequentist posterior concentration and how this involves remote contigu-
ity, consider model subsets Vn =V that are all equal to the complement of a neigh-
bourhood U of P0. The subsets Bn =B are thought of as being even closer to the P0,n,
in such a way that the expectations of the random variables Xn 7→ Π(V |Xn) under
PΠn|Bn

n “dominate” their expectations under P0,n in a suitable way. Then sufficiency
of prior mass bn given testing power an, is enough to assert that P0,nΠ(V |Xn)→ 0.
Remote contiguity, as defined in definition 7.2.1, makes this notion of domination
precise.

To conclude this subsection, we note that one way of guaranteeing that the expec-
tations of Xn 7→ Π(V |Xn) under PΠ |Bn

n approximate those under P0,n, is to choose
Bn = {θ ∈Θ : ∥Pθ ,n−Pθ0,n∥ ≤ δn}, for some sequence δn→ 0, because in that case,
|P0,nψ−PΠ |Bn

n ψ| ≤ ∥P0,n−PΠ |Bn
n ∥ ≤ δn, for any random variable ψ : Xn→ [0,1].

Without fixing the definition of the sets Bn, one may use this step to specify inequal-
ity (7.2) further:

P0,nΠ(Vn|X)≤
∥∥P0,n−PΠ |Bn

n
∥∥

+
∫

Pθ ,nφn dΠn(θ |Bn)+
Πn(Vn)

Πn(Bn)

∫
Pθ ,n(1−φn)dΠn(θ |Vn),

(7.4)

for Bn and Vn such that Πn(Bn)> 0 and Πn(Vn)> 0. Le Cam’s inequality (7.4) can be
used, for example, in the proof of the Bernstein-von Mises theorem, see lemma 2 in
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section 8.4 of [191]. A less successful application pertains to non-parametric pos-
terior rates of convergence for i.i.d. data, in an unpublished paper [186]. Rates of
convergence obtained in this way are suboptimal: Le Cam qualifies the first term on
the right-hand side of (7.4) as a “considerable nuisance” and concludes that “it is
unclear at the time of this writing what general features, besides the metric struc-
ture, could be used to refine the results” [187, section 16.6]. In [271], Le Cam relates
the posterior question to dimensionality restrictions [185, 243, 110] and reiterates,
“And for Bayes risk, I know that just the metric structure does not catch everything,
but I don’t know what else to look at, except calculations.”

7.1.2 Existence of Bayesian test sequences

Lemma 7.1.2 and proposition 7.1.3 require the existence of test sequences of the
Bayesian type. That question is unfamiliar, frequentists are used to test sequences
for pointwise or uniform testing, e.g. those of subsections 2.4.3 and 6.4.4. Another
example is formed by complements of weak neighbourhoods, which are testable
uniformly as we shall see in chapter 9.

Requiring the existence of a Bayesian test sequence cf. (7.1) is quite different.
We shall illustrate this point in various ways below. First of all the existence of a
Bayesian test sequence is linked directly to behaviour of the posterior itself.

Theorem 7.1.4. Let (Θ ,G ,Π) be given and assume that there is a coupling X ∈ X∞

with distribution Pθ and marginals Xn ∼ Pθ ,n for every θ ∈Θ and n ≥ 1. For any
B,V ∈ G with Π(B)> 0,Π(V )> 0, the following are equivalent:

(i) there are Bn-msb. φn : Xn→ [0,1] such that for Π -almost-all θ ∈ B,θ ′ ∈V ,

φn(Xn)
Pθ -a.s.−−−−→0, φn(Xn)

P
θ ′ -a.s.
−−−−→1,

(ii) there are Bn-msb. φn : Xn→ [0,1] such that for Π -almost-all θ ∈ B,θ ′ ∈V ,

Pθ ,nφn→ 0, Pθ ′,n(1−φn)→ 0,

(iii) there are Bn-msb. φn : Xn→ [0,1] such that,∫
B

Pθ ,nφn dΠ(θ)+
∫

V
Pθ ,n(1−φn)dΠ(θ)→ 0,

(iv) for Π -almost-all θ ∈ B, θ ′ ∈V ,

Π(V |Xn)
Pθ ,n-a.s.
−−−−−→0, Π(B|Xn)

P
θ ′,n-a.s.
−−−−−→0.

Proof. Condition (i) implies (ii) trivially and (ii) implies (iii) by dominated conver-
gence. Assume (iii) and note that by lemma 7.1.2,
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Pθ ,nΠ(V |Xn)dΠ(θ |B)→ 0.

With the coupling X of the observations Xn, martingale convergence in L1(X ∞×Θ)
(relative to the probability measure Π ∗ defined by Π ∗(A×B) =

∫
B Pθ (A)dΠ(θ) for

measurable A⊂X ∞ and B⊂Θ ), shows there is a measurable g : X ∞→ [0,1] such
that, ∫

Pθ

∣∣Π(V |Xn)−g(X)
∣∣dΠ(θ |B)→ 0.

So
∫

Pθ g(X)dΠ(θ |B) = 0, implying that g = 0, Pθ -almost-surely for Π -almost-
all θ ∈ B. Using martingale convergence again (now in L∞(X ∞×Θ)), conclude
Π(V |Xn)→ 0, Pθ -almost-surely for Π -almost-all θ ∈ B, from which (iv) follows.
Choose φ(Xn) = Π(V |Xn) to conclude that (i) follows from (iv).

The interpretation of this theorem is gratifying to supporters of the likelihood prin-
ciple and pure Bayesians: distinctions between model subsets are Bayesian testable,
if and only if, they are picked up by the posterior asymptotically, if and only if,
there exists a pointwise test for B versus V that is Π -almost-surely consistent. There
is also a constructivist interpretation: where the mathematical existence of test se-
quences to separate model subsets is fully abstract, posteriors can in principle be
calculated and actually perform said separation concretely.

For a second, more frequentist way to illustrate how basic the existence of a
Bayesian test sequences is, consider a parameter space (Θ ,d) which is a metric
space with fixed Borel prior Π and d-consistent estimators θ̂n : Xn→Θ for θ . Then
for every θ0 ∈Θ and ε > 0, there exists a pointwise test sequence (and hence, by
dominated convergence, also a Bayesian test sequence) for B = {θ ∈Θ : d(θ ,θ0)<
1
2 ε} versus V = {θ ∈Θ : d(θ ,θ0)> ε}. This approach is followed in section 7.8 on
random walks, see the definition of the test following inequality (7.30).

A third perspective on the existence of Bayesian tests arises from Doob’s argu-
ment (see [82], as well as Section 17.7, Propositions 1 and 2 in [187]): if Θ is Polish
(more precisely, a Borel subset of a Hausdorff space with a prior that has the Radon
property, cf. definition C.8.1), there exists a Borel measurable ϑ : X ∞ →Θ such
that Pθ (ϑ(X) = θ) = 1, for Π -almost-all θ ∈Θ . (For a proof of proposition 7.1.5,
see proposition 9.5.3.)

Proposition 7.1.5. Consider a model P of single-observation distributions P for
i.i.d. data (X1,X2, . . . ,Xn) ∼ Pn, (n ≥ 1). Assume that P is a Polish space with
Borel prior Π . For any Borel set V there is a Bayesian test sequence for V versus
P \V under Π .

Doob’s theorem is recovered when we let V be the complement of any open neigh-
bourhood U of P0. Comparing with conditions for the existence of uniform tests,
Bayesian tests are quite abundant: whereas uniform testing relies on the minimax
theorem (forcing convexity, compactness and continuity requirements into the pic-
ture), Bayesian tests exist quite generally (at least, for Polish parameters with i.i.d.
data).

The fourth perspective on the existence of Bayesian tests concerns a direct way
to construct a Bayesian test sequence of optimal power, based on the fact that we are
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really only testing barycentres against each other: let priors (Πn) and G -measurable
model subsets Bn,Vn be given. For given tests (φn) and power sequence an, write
(7.1) as follows:

Πn(Bn)PΠn|Bn
n φn(Xn)+Πn(Vn)PΠn|Vn

n (1−φn(Xn)) = o(an),

and note that what is required here, is a (weighted) test of (PΠn|Bn
n ) versus (PΠn|Vn

n ).
The likelihood-ratio test of example 2.4.9 (denote the density for PΠn|Bn

n with respect
to µn = PΠn|Bn

n +PΠn|Vn
n by pBn,n, and similar for PΠn|Vn

n ),

φn(Xn) = 1{Πn(Vn) pVn ,n(Xn)>Πn(Bn) pBn,n(Xn)},

is optimal and has power ∥Πn(Bn)PΠn|Bn
n ∧Πn(Vn)PΠn|Bn

n ∥. This establishes the fol-
lowing useful proposition that expresses power in terms of the Hellinger transform
(see Remark 1 of section 16.4 in Le Cam (1986) [187]).

Proposition 7.1.6. Fix n ≥ 1 and let a prior (Πn) and measurable model subsets
Bn,Vn be given. There exists a test function φn : Xn→ [0,1] such that,∫

Bn

Pθ ,nφn dΠn(θ)+
∫

Vn

Pθ ,n(1−φn)dΠn(θ)

≤
∫ (

Πn(Bn) pBn,n(x)
)α(

Πn(Vn) pVn,n(x)
)1−α

dµn(x),
(7.5)

for any 0≤ α ≤ 1.

Proposition 7.1.6 generalises proposition 7.1.5 and makes Bayesian tests available
with a sharp bound on the power under fully general conditions. For the connection
with minimax tests, we note the following. If {Pθ ,n : θ ∈ Bn} and {Pθ ,n : θ ∈Vn} are
convex sets (and the Πn are Radon measures, e.g. in Polish parameter spaces), then,

H
(
PΠn|Bn

n ,PΠn|Vn
n

)
≥ inf{H(Pθ ,n,Pθ ′,n) : θ ∈ Bn,θ

′ ∈Vn}.

Combination with (7.5) for α = 1/2, implies that the minimax upper bound in i.i.d.
cases (cf. lemma 2.4.13) remains valid (see exercise 7.9.1):∫

Bn

Pn
φn dΠn(P)+

∫
Vn

Qn(1−φn)dΠn(Q)≤
√

Πn(Bn)Πn(Vn)e−nε2
n , (7.6)

where εn = inf{H(P,Q) : P ∈ Bn,Q ∈ Vn}. Given an ↓ 0, any pointwise test φn that
satisfies (7.1) for all probability measures Πn on Θ , is a (weighted) minimax test for
Bn versus Vn of power an.

Note that the above enhances the role that the prior plays in the frequentist dis-
cussion of the asymptotic behaviour of posteriors: the prior is not only important
in requirements like (6.5), but is also of influence in the testing condition: where
testing power is relatively weak, prior mass should be scarce to compensate and
where testing power is strong, prior mass can be plentiful. In practice one imposes
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upper bounds on prior mass in certain hard-to-test subsets of the model (as opposed
to lower bounds like (6.5)). See section 7.8, where this observation is used in an
example involving random-walk data (particularly, see conditions (ii.) and (iii.) of
proposition 7.8.2). In the Hellinger-geometric view, the prior determines whether
the local prior predictive distributions PΠn|Bn

n and PΠn|Vn
n lie close together or not in

Hellinger distance, and thus to the r.h.s. of (7.5) for α = 1/2.

7.2 Remote contiguity

Le Cam’s notion of contiguity (see Le Cam (1960) [182]) describes an asymptotic
version of absolute continuity, applicable to sequences of probability measures in a
limiting sense. A condensed overview of the most basic characterizations of conti-
guity is found in appendix C.10. In this section we weaken the property of conti-
guity in a way that is suitable to promote Π -almost-everywhere Bayesian limits to
frequentist limits that hold everywhere.

7.2.1 Definition and criteria for remote contiguity

The notion of “domination” left undefined in the argument following proposi-
tion 7.1.3 is made rigorous here.

Definition 7.2.1. Given measurable spaces (Xn,Bn), n ≥ 1 with two sequences
(Pn) and (Qn) of probability measures and a sequence ρn ↓ 0, we say that Qn is
ρn-remotely contiguous with respect to Pn, notation Qn◁ρ−1

n Pn, if,

Pnφn(Xn) = o(ρn) ⇒ Qnφn(Xn) = o(1), (7.7)

for every sequence of Bn-measurable φn : Xn→ [0,1].

Note that for a sequence (Qn) that is an-remotely contiguous with respect to (Pn),
there exists no test sequence that distinguishes between Pn and Qn with power of
order o(an). Note also that given two sequences (Pn) and (Qn), contiguity Pn◁Qn is
equivalent to remote contiguity Pn◁a−1

n Qn for all an ↓ 0. Given sequences an,bn ↓ 0
with an = O(bn), bn-remote contiguity implies an-remote contiguity of (Pn) with
respect to (Qn).

Example 7.2.2. Let P be a model for the distribution of a single-observation in i.i.d.
samples Xn = (X1, . . . ,Xn). Let P0,P and ε > 0 be such that −P0 log(dP/dP0)< ε2.
The law of large numbers implies that for large enough n,

dPn

dPn
0
(Xn)≥ e−

n
2 ε2

, (7.8)
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with Pn
0 -probability one. Consequently, for large enough n and for any Bn-measurable

sequence ψn : Xn→ [0,1],

Pn
ψn ≥ e−

1
2 nε2

Pn
0 ψn. (7.9)

Therefore, if Pnφn = o(exp(− 1
2 nε2)) then Pn

0 φn = o(1). Conclude that for every
ε > 0, the Kullback-Leibler neighbourhood {P : −P0 log(dP/dP0) < ε2} consists
of model distributions for which the sequence (Pn

0 ) of product distributions are
exp(− 1

2 nε2)-remotely contiguous with respect to (Pn).

Criteria for remote contiguity are given in the lemma below; here, we give suffi-
cient conditions, rather than necessary and sufficient, as in Le Cam’s First Lemma,
lemma C.10.2. (For the Qn-almost-sure definition of (dPn/dQn)

−1, see appendix A.)

Lemma 7.2.3. Given probability measures (Pn), (Qn) on measurable spaces (Xn,Bn)
and an ↓ 0, Qn◁a−1

n Pn, if any of the following hold:

(i) for any bounded, Bn-measurable Tn : Xn→ [0,1], a−1
n Tn

Pn−→0 implies Tn
Qn−−→0,

(ii) for any ε > 0, there is a δ > 0 such that Qn(dPn/dQn < δ an) < ε , for large
enough n,

(iii) there is a b > 0 such that liminfn ba−1
n Pn(dQn/dPn > ba−1

n ) = 1,
(iv) for any ε > 0, there is a constant c > 0 such that ∥Qn−Qn∧ ca−1

n Pn∥< ε , for
large enough n,

(v) under Qn every subsequence of (an(dPn/dQn)
−1) has a weakly convergent sub-

sequence.

Remark 7.2.4. The proof of this lemma actually shows that ((i) or (iv)) implies re-
mote contiguity; that ((ii) or (iii)) implies (iv) and that (v) is equivalent to (ii).

Proof. Assume (i). Let φn : Xn → [0,1] be given and assume that Pnφn = o(an).
By Markov’s inequality, for every ε > 0, Pn(a−1

n φn > ε) = o(1). By assumption, it
now follows that φn0 goes to zero in Qn-probability. Because 0 ≤ φn ≤ 1 the latter
conclusion is equivalent to Qnφn = o(1). Conclude that Qn◁a−1

n Pn. Next, assume
(iv). Let ε > 0 and φn : Xn→ [0,1] be given. There exist c > 0 and N ≥ 1 such that
for all n≥ N,

Qnφn < ca−1
n Pnφn +

ε

2
.

If we assume that Pnφn = o(an) then there is a N′ ≥ N such that ca−1
n Pnφn < ε/2 for

all n≥ N′. Consequently, for every ε > 0, there exists an N′ ≥ 1 such that Qnφn < ε

for all n≥ N′. Conclude that Qn◁a−1
n Pn. To show that (ii)⇒ (iv), let µn = Pn +Qn

and denote µn-densities for Pn,Qn by pn,qn : Xn→ R. Then, for any n≥ 1, c > 0,∥∥Qn−Qn∧ ca−1
n Pn

∥∥≤ sup
A∈Bn

∫
A
(qn−qn∧ ca−1

n pn)dµn

=
∫

1{qn > ca−1
n pn}(qn− ca−1

n pn)dµn.

(7.10)
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Note that the right-hand side of (7.10) is bounded above by Qn(dPn/dQn < c−1an).
To show that (iii)⇒ (iv), it is noted that, for all c > 0 and n≥ 1,

0≤
∫

ca−1
n Pn(qn > ca−1

n pn)≤ Qn(qn > ca−1
n pn)≤ 1,

so (7.10) goes to zero if liminfn→∞ ca−1
n Pn(dQn/dPn > ca−1

n ) = 1. To prove that (v)
⇔ (ii), note that Prohorov’s theorem says that weak convergence of a subsequence
within any subsequence of an(dPn/dQn)

−1 under Qn (see appendix A) is equivalent
to the asymptotic tightness of (an(dPn/dQn)

−1 : n≥ 1) under Qn, i.e. for every ε > 0
there exists an M > 0 such that Qn(an(dPn/dQn)

−1 > M)< ε for all n≥ 1. This is
equivalent to (ii).

To conclude this section, we specify the definition of remote contiguity slightly
further.

Definition 7.2.5. Given measurable spaces (Xn,Bn), (n ≥ 1) with two sequences
(Pn) and (Qn) of probability measures and sequences ρn,σn > 0, ρn,σn→ 0, we say
that Qn is ρn-to-σn remotely contiguous with respect to Pn, notation σ−1

n Qn◁ρ−1
n Pn,

if,
Pnφn(Xn) = o(ρn) ⇒ Qnφn(Xn) = o(σn),

for every sequence of Bn-measurable φn : Xn→ [0,1].

Like definition 7.2.1, definition 7.2.5 allows for reformulation similar to lemma 7.2.3,
e.g. if for some sequences ρn,σn like in definition 7.2.5,∥∥Qn−Qn∧σn ρ

−1
n Pn

∥∥= o(σn),

then σ−1
n Qn◁ρ−1

n Pn. We leave the formulation of other sufficient conditions to the
reader.

Example 7.2.6. Inequality (7.9) in example 7.2.2 implies that b−1
n Pn

0 ◁a−1
n Pn, for

any an ≤ exp(−nα2) with α2 > 1
2 ε2 and bn = exp(−n(α2− 1

2 ε2)). It is noted that

this implies that φn(Xn)
Qn-a.s.−−−−→0 for any φn : Xn→ [0,1] such that Pnφn(Xn)= o(ρn)

(more generally, this holds whenever ∑n σn < ∞, as a consequence of the first Borel-
Cantelli lemma (see lemma B.2.13) and exercise 7.9.3).

7.3 Remote contiguity for Bayesian limits

The relevant applications in the context of Bayesian limit theorems concern remote
contiguity of the sequence of true distributions Pθ0,n with respect to local prior pre-
dictive distributions PΠn|Bn

n , where the sets Bn ⊂Θ are such that,

Pθ0,n ◁a−1
n PΠn|Bn

n , (7.11)
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for some rate an ↓ 0. In the case of i.i.d. data, Barron [9] introduces strong and weak
notions of merging of Pθ0,n with (non-local) prior predictive distributions PΠ

n . The
weak version imposes condition (ii) of lemma 7.2.3 for all exponential rates simul-
taneously. Strong merging (or matching [8]) coincides with Schwartz’s almost-sure
limit, while Weak merging (and weak matching) are viewed as limits in probability.

By contrast, if we have a specific rate an in mind, the relevant stochastic mode
of convergence for remote contiguity is not almost-sure convergence or even con-
vergence in probability, but convergence with respect to the weak topology: namely,
according to lemma 7.2.3-(v), (7.11) holds if inverse likelihood ratios Zn have a
weak limit Z when re-scaled by an,

Zn = (dPΠn|Bn
n /dPθ0,n)

−1(Xn), an Zn
Pθ0 ,n-w.
−−−−→Z.

But condition (7.11) can also be written out, for example to the requirement that for
some constant δ > 0,

Pθ0,n

(∫ dPθ ,n

dPθ0,n
(Xn)dΠn(θ |Bn)< δ an

)
→ 0,

with the help of lemma 7.2.3-(ii). Let us first demonstrate how Schwartz’s KL-priors
induce remote contiguity.

Example 7.3.1. Let P be a model for i.i.d. samples Xn as in Example 7.2.2. Fix
P0 and ε > 0, define K(ε) = {P ∈P : −P0 log(dP/dP0) < ε2} and recall that a
KL-prior Π satisfies, Π(K(ε)) > 0 for every ε > 0. The exponential lower bound
(7.8) implies that liminfn exp( 1

2 nε2)(dPn/dPn
0 )(X

n) ≥ 1 with P∞
0 -probability one

for every P ∈ K(ε). With Fatou’s lemma,

liminf
n→∞

e
1
2 nε2

Π(K(ε))

∫
K(ε)

dPn
θ

dPn
θ0

(Xn)dΠ(θ)≥ 1,

with P∞
θ0

-probability one, showing that sufficient condition (ii) of Lemma 7.2.3
holds. Conclude that,

Pn
0 ◁ e

1
2 nε2

PΠ |K(ε)
n .

A version of the form b−1
n Pn

0 ◁a−1
n Pn based on Example ?? is also possible.

The above also allows us to reformulate lemma 6.4.5 for the rate-specific KL-
neighbourhoods. (For the proof of the next proposition, see lemma 7.5.2 below.)

Proposition 7.3.2. Consider a model P of single-observation distributions P for
i.i.d. data (X1,X2, . . . ,Xn) ∼ Pn, (n ≥ 1), with priors (Πn). Let εn > 0, εn ↓ 0 and
P0 ∈P be given and let Bn = B(εn;P0) be defined as in (6.12). Assuming Πn(Bn)>
0, we have,

Pn
0 ◁ e−nε2

n (1+δ )PΠn|Bn
n

for any δ > 0.
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Remote contiguity also applies in more irregular situations: Example 6.6.3 does not
admit KL priors, but satisfies the requirement of remote contiguity.

Example 7.3.3. Consider again Example 6.6.3 in the case of an i.i.d. sample from
a uniform distribution on [θ ,θ + 1], for unknown θ ∈ R. Model distributions Pθ

have Lebesgue densities pθ (x) = 1[θ ,θ+1](x), for θ ∈ Θ = R. Pick a prior Π on
Θ with a continuous and strictly positive Lebesgue density π : R → R and, for
some rate δn ↓ 0, choose Bn = (θ0,θ0 + δn). For any α > 0, (1− α)π(θ0)δn ≤
Π(Bn)≤ (1+α)π(θ0)δn for large enough n. Note that for any θ ∈ Bn and Xn ∼ Pn

θ0
,

dPn
θ
/dPn

θ0
(Xn) = 1{X(1) ≥ θ}, and correspondingly,

dPΠ |Bn
n

dPn
θ0

(Xn) = Πn(Bn)
−1
∫

θ0+δn

θ0

1{X(1) ≥ θ}dΠ(θ)

≥ 1−α

1+α

δn∧ (X(1)−θ0)

δn
,

for large enough n. As a consequence, for every δ > 0 and all an ↓ 0,

Pn
θ0

(
dPΠ |Bn

n

dPn
θ0

(Xn)< δ an

)
≤ Pn

θ0

(
δ
−1
n (X(1)−θ0)< (1+α)δ an

)
,

for large enough n ≥ 1. Since n(X(1) − θ0) has an exponential weak limit under
Pn

θ0
, we choose δn = n−1, so that the r.h.s. in the above display goes to zero. So

Pθ0,n ◁ a−1
n PΠn|Bn

n , for any an ↓ 0. Conclude that with these choices for Π and Bn,
(7.11) holds, for any an.

Example 7.3.3 emphasizes the role of weak convergence of likelihood ratios (which
also plays the central role in Le Cam’s limits of experiments [183, 187, 254]). To
emphasize this relation further, consider the following proposition. This should be
viewed in light of Le Cam and Yang (1988) [189], which considers properties like
contiguity, convergence of experiments and local asymptotic normality in situations
of statistical information loss. To make the present case compatible, we think of
(remote) contiguity for probability measures that arise as marginals for the data Xn

when information concerning the (Bayesian random) parameter ϑ is unavailable.

Proposition 7.3.4. Let θ0 ∈Θ and priors Πn : G → [0,1], n≥ 1 be given. Let (Bn)
be a sequence of measurable subsets of Θn such that Πn(Bn) > 0 for all n ≥ 1.
Assume that for some an ↓ 0, the family,{

an

( dPθ ,n

dPθ0,n

)−1
(Xn) : n≥ 1,θ ∈ Bn

}
,

is uniformly tight under Pθ0,n. Then Pθ0,n ◁a−1
n PΠn|Bn

n .

Proof. For every ε > 0, there exists a constant δ > 0 such that,
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Pθ0,n

(
an

( dPθ ,n

dPθ0,n

)−1
(Xn)>

1
δ

)
< ε,

for all n≥ 1, θ ∈ Bn. For this choice of δ , condition (ii) of Lemma 7.2.3 is satisfied
for all θ ∈ Bn simultaneously, and according to the proof of said lemma, for given
ε > 0, there exists a c > 0 such that,

∥Pθ0,n−Pθ0,n∧ ca−1
n Pθ ,n∥< ε, (7.12)

for all n≥ 1, θ ∈ Bn. Now note that for any A ∈Bn,

0≤ Pθ0,n(A)−Pθ0,n(A)∧ ca−1
n PΠn|Bn

n (A)

≤
∫ (

Pθ0,n(A)−Pθ0,n(A)∧ ca−1
n Pθ ,n(A)

)
dΠn(θ |Bn).

Taking the supremum with respect to A, we find the following inequality in terms of
total variational norms,∥∥Pθ0,n−Pθ0,n∧ ca−1

n PΠn|Bn
n

∥∥≤ ∫ ∥∥Pθ0,n−Pθ0,n∧ ca−1
n Pθ ,n

∥∥dΠn(θ |Bn).

Based on (7.12), condition (iv) of Lemma 7.2.3 is satisfied.

If we think of Proposition 7.3.4 in the context of density estimation, one sees that
remote contiguity benefits from model distributions that have heavier tails than the
true distribution of the data. This rhymes with experience in example models (see,
for example, Theorem 3.1 in [?]) and holds true more generally: if model distribu-
tions are ‘not concentrated enough’ in regions of sample spaces where the true data-
generating mechanism assigns ‘too much probability mass’, then posteriors may
display instances of inconsistency. Remote contiguity makes precise what heuristic
notions like ‘not concentrated enough’ and ‘too much mass’ mean.

To re-establish contact with the notion of merging [9], note the following. If
remote contiguity of the type (7.11) can be achieved for a sequence of subsets (Bn),
then it also holds for any sequence of sets (e.g. all equal to Θ , in Barron’s case) that
contain the Bn but at a rate that differs proportionally to the fraction of prior masses.

Lemma 7.3.5. For all n≥ 1, let Bn ⊂Θ be such that Πn(Bn)> 0 and Cn such that
Bn ⊂Cn with cn = Πn(Bn)/Πn(Cn) ↓ 0, then,

PΠn|Bn
n ◁ c−1

n PΠn|Cn
n .

Also, if for some sequence (Pn), Pn ◁a−1
n PΠn|Bn

n then Pn ◁a−1
n c−1

n PΠn|Cn
n .

Proof. Fix n≥ 1. Because Bn ⊂Cn, for every A ∈Bn, we have,∫
Bn

Pθ ,n(A)dΠ(θ)≤
∫

Cn

Pθ ,n(A)dΠ(θ),
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so PΠn|Bn
n (A) ≤ Πn(Cn)/Πn(Bn)PΠn|Cn

n (A). So if for some sequence φn : Xn →
[0,1], we have PΠn|Cn

n φn(Xn) = o(Πn(Bn)/Πn(Cn)), then the PΠn|Bn
n -expectations of

φn(Xn) are o(1), proving the first claim. If PΠn|Cn
n φn(Xn) = o(anΠn(Bn)/Πn(Cn)),

then PΠn|Bn
n φn(Xn) = o(an) and, hence, Pnφn(Xn) = o(1).

So when considering possible choices for the sequence (Bn), smaller choices lead to
rates an that go to zero more slowly, rendering (7.7) applicable to more sequences
of test functions. This advantage is to be balanced against later requirements that
Πn(Bn) may not decrease too fast.

7.3.1 Comparison of contiguity and remote contiguity

To compare contiguity and its remote analogue in parametric and non-parametric
context, consider the following standard example.

Let F denote a class of functions X → R, where X is a compact, convex
subset of Rd . We consider samples Xn = ((X1,Y1), . . . ,(Xn,Yn)), (n≥ 1) of points in
X ×R, assumed to be related through,

Yi = f0(Xi)+ ei,

for some unknown f0 ∈F , where the errors are i.i.d. standard normal e1, . . . ,en ∼
N(0,1)n and independent of the i.i.d. covariates X1, . . . ,Xn ∼ Pn, for some ancillary
distribution P on R. Assume that F ⊂ L2(P) and that P f (X) = 0 for all f ∈ F .
We distinguish two cases: (a) the case of linear regression, F = { fθ : X ⊂ R→
R : θ ∈Θ}, where θ = (a,b) ∈Θ = R2 and fθ (x) = ax+ b; (b) the case of non-
parametric regression (to maintain concreteness, we keep in mind the special case
F =Cα

1 (X ), the collection of all α-smooth functions on X with Hölder-α-norm
∥ · ∥α bounded by 1).

For (ρn) to be fixed later, define an = exp(− 1
2 nρ2

n ). A bit of manipulation casts
the an-rescaled likelihood ratio for f0, f ∈F in the following form,

a−1
n

dPf ,n

dPf0,n
(Xn) = e−

1
2 ∑

n
i=1(2ei( f− f0)(Xi)+( f− f0)2(Xi)−nρ2

n), (7.13)

for Xn ∼ Pf0,n.

Example 7.3.6. In the parametric case, expression (7.13) can be written in terms of
a local parameter h ∈ R2 which, for given θ0 and n ≥ 1, is related to θ by θ =
θ0 +n−1/2h. For h ∈ R2, we write Ph,n = P

θ0+n−1/2h,n, P0,n = Pθ0,n and write,

dPh,n

dP0,n
(Xn) = e

1√
n ∑

n
i=1 h·ℓθ0 (Xi,Yi)− 1

2 h·Iθ0 ·h+oPθ0 ,n
(1)
, (7.14)

where ℓθ0 : R2→ R2 : (x,y) 7→ (y−a0x−b0)(x,1) is the score function for θ at θ0,
Iθ0 = Pθ0,1ℓθ0ℓ

T
θ0

is the Fisher information matrix. Assume Iθ0 is non-singular and
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note the central limit,

1√
n

n

∑
i=1

ℓθ0(Xi,Yi)
Pθ0 ,n-w.
−−−−→N2(0, Iθ0),

which expresses local asymptotic normality of the model and implies that for any
fixed h ∈ R2, Ph,n ◁P0,n. It is well-known that contiguity extends to n−1/2-localized
prior averages (see Lemma 3, Section 8.4 in [191]):

Pθ0,n ◁PΠ |Bn
n , (7.15)

(where Bn = {θ ∈Θ : ∥θ − θ0∥ ≤ M n−1/2}, for any M > 0) provided Π(Bn) > 0
for all n.

Example 7.3.7. In the non-parametric case, define B(ρ) = { f ∈F : ∥ f − f0∥< ρ}
(where ∥ · ∥ denotes the L2(Pn)-norm, with Pn the empirical distribution of ob-
served design points [259]). Theorem 3.4.1 and, more specifically, Subsection 3.4.3
of [259] prove that the (outer) expectation of the supremum of the empirical process
for scores satisfies the maximal inequality,

Pf0,n sup
f∈B(ρ)

∣∣∣ 1√
n

n

∑
i=1

ei( f − f0)(Xi)
∣∣∣≤ φn(ρ),

for all ρ > 0, where φn(ρ) is a bracketing integral. If we choose ρn > 0 such that
nρ2

n → ∞ and ρ−2
n φn(ρn) = βn with βn = o(

√
n), then Markov’s inequality shows

that, for any ε > 0,

Pf0,n

(
sup

f∈B(ρn)

∣∣∣ n

∑
i=1

ei( f − f0)(Xi)
∣∣∣> nρ2

n βn

ε

)
≤ ε. (7.16)

If the ancillary distribution P is such that {( f − f0)
2 : f ∈ B(ρn)} satisfy the

Glivenko-Cantelli-like requirement that:

sup
f∈B(ρn)

∣∣∣∣1n n

∑
i=1

( f − f0)
2(Xi)−∥ f − f0∥2

P,2

∣∣∣∣ P∞-a.s.−−−−→0.

then for any δ ,δ ′ > 0, using (7.16) and assuming that Πn(B(ρn))> 0,

Pf0,n

(
1

Πn(B(ρn))

∫
B(ρn)

dPf ,n

dPf0,n
(Xn)dΠn( f )< δ an

)

≤ Pf0,n

(
inf

f∈B(ρn)
a−1

n
dPf ,n

dPf0,n
(Xn)< δ

)

≤ Pf0,n

(
inf

f∈B(ρn)
−

n

∑
i=1

ei( f − f0)(Xi)+
1
2 nρ

2
n < logδ −δ

′
)
≤ ε,
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for large enough n. Conclude that,

Pf0,n ◁ e
1
2 nρ2

n PΠ |B(ρn)
n . (7.17)

A similar proof based on Proposition 7.3.4 is also possible. For a smoothness
class F = Cα

1 (X ) (and provided certain technical conditions are met, see Sub-
section 3.4.3.2 in [259]), rates ρn that solve ρ−2

n φn(ρn) = o(n1/2) exist arbitrarily
close to n−α/(2α+2d), the minimax L2(P)-rate of estimation of f . Note that the ar-
gument extends to other sequences (Qn) that approximate (Pf0,n) well enough. (For
example, if we define (Qn) by substitution of estimators f̂n that are L2(P)-consistent

at rate ρn, and we can show that Pf̂n,n(An) = o(e
1
2 nρ2

n ), then also Pf0,n(An) = o(1).)

The analogy between (7.15) and (7.17) establishes in this regression example (and
many others that allow the same empirical-process argument), that remote contiguity
has the potential to provide sequential approximations in non-parametric statistics,
analogous to approximation by contiguous sequences in parametric setting [121].
More examples of sequential approximation by remote contiguity are provided in
[96, 215, 216].

7.4 Posterior concentration

In this section new frequentist theorems are formulated involving the convergence of
posterior distributions. First we give a basic proof for posterior consistency assum-
ing existence of suitable test sequences and remote contiguity of true distributions
(Pθ0,n) with respect to local prior predictive distributions. Then it is not difficult to
extend the proof to the case of posterior rates of convergence in metric topologies.
With the same methodology it is possible to address questions in Bayesian hypoth-
esis testing and model selection: if a Bayesian test to distinguish between two hy-
potheses exists and remote contiguity applies, frequentist consistency of the Bayes
Factor can be guaranteed. We conclude with a theorem that uses remote contiguity
to describe a general relation that exists between credible sets and confidence sets,
provided the prior induces remotely-contiguous local prior predictive distributions.

We start with posterior consistency, cf. definition 6.1.1 and proposition 6.1.2.
The formulation is has the generality of remark A.0.1 and the theorem applies to
non-i.i.d. data, and with n-dependent models and priors.

Theorem 7.4.1. Assume that for all n≥ 1, the data Xn ∼ Pθ0,n for some θ0 ∈Θ . Fix
a prior Π : G → [0,1] and assume that for given B,V ∈ G with Π(B)> 0 and an ↓ 0,

(i) there exist Bayesian tests φn for B versus V ,∫
B

Pθ ,nφn dΠ(θ)+
∫

V
Pθ ′,n(1−φn)dΠ(θ ′) = o(an), (7.18)

(ii) the sequence Pθ0,n satisfies Pθ0,n ◁ a−1
n PΠ |B

n .
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Then Π(V |Xn)
Pθ0 ,n−−−→0.

Proof. Choose Bn = B, Vn = V and use proposition 7.1.3 to see that PΠ |B
n Π(V |Xn)

is upper bounded by Π(B)−1 times the l.h.s. of (7.18) and, hence, is of order
o(an). Condition (ii) then implies that Pθ0,nΠ(V |Xn) = o(1), which is equivalent

to Π(V |Xn)
Pθ0 ,n−−−→0 since 0≤Π(V |Xn)≤ 1, Pθ0,n-almost-surely, for all n≥ 1.

These conditions may be interpreted as follows: theorem 7.1.4 lends condition (i) a
distinctly Bayesian interpretation: it requires a Bayesian test to set V apart from B
with testing power an. Lemma 7.1.2 translates this into the (still Bayesian) statement
that the posteriors for V go to zero in PΠ |B

n -expectation. Condition (ii) is there to
promote this Bayesian assertion to a frequentist one through (7.7).

One of the first questions we have, is how Freedman’s inconsistent posteriors of
subsection 6.6.1 relate to the above. Since test sequences of exponential power ex-
ist to separate complements of weak neighbourhoods, cf. proposition A.0.6, Freed-
man’s inconsistencies must violate the requirement of remote contiguity in theo-
rem 7.4.1.

Example 7.4.2. As noted already, the space Λ of examples 1.1.4, 2.1.18 and 6.6.1
is a Polish space; in particular Λ is metric and second countable, so the subspace
N contains a countable dense subset D. For Q ∈ D, let V be the set of all prior
probability measures on Λ with finite support, of which one point is Q and the
remaining points lie in Λ0. The proof of the theorem in [102] that asserts that the set
of consistent pairs (P0,Π) is of the first category in Λ ×M1(Λ), departs from the
observation that if P0 lies in N and we use a prior from V , then,

Π({Q}|Xn)
P0-a.s.−−−−→1,

(in fact, as is shown below, with P∞
0 -probability one there exists an N ≥ 1 such that

Π({Q}|Xn) = 1 for all n ≥ N). The proof continues to assert that V lies dense in
M1(Λ), and, through sequences of continuous extensions involving D, that posterior
inconsistency for elements of V implies posterior inconsistency for all Π in M1(Λ)
with the possible exception of a set of the first category.

From the present perspective it is interesting to view the inconsistency of ele-
ments of V in light of the conditions of theorem 7.4.1. Define, for some bounded
f : N→ R and ε > 0, two subsets of Λ ,

B = {P : |P f −P0 f |< 1
2 ε}, V = {P : |P f −P0 f | ≥ ε}.

Proposition A.0.6 asserts the existence of a uniform test sequence for B versus V of
exponential power. With regard to remote contiguity, for an element Π of V with
support of order M+1, write,

Π = βδQ +
M

∑
m=1

αmδPm ,
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where β +∑m αm = 1 and Pm ∈Λ0 (1≤m≤M). Without loss of generality, assume
that ε and f are such that Q does not lie in B. Consider,

dPΠ |B
n

dPn
0

(Xn) =
1

Π(B)

∫
B

dPn

dPn
0
(Xn)dΠ(P)≤ 1

Π(B)

M

∑
m=1

αm
dPn

m

dPn
0
(Xn).

For every 1 ≤ m ≤ M, there exists a k(m) such that Pm(X = k(m)) = 0, and the
probability of the event En that none of the X1, . . . ,Xn equal k(m) is (1−P0(X =
k(m)))n. Note that En is also the event that dPn

m/dPn
0 (X

n)> 0.
Hence for every 1 ≤ m ≤ M and all X in an event of P∞

0 -probability one, there
exists an Nm ≥ 1 such that dPn

m/dPn
0 (X

n) = 0 for all n≥Nm. Consequently, for all X
in an event of P∞

0 -probability one, there exists an N ≥ 1 such that dPΠ |B
n /dPn

0 (X
n) =

0 for all n ≥ N. Therefore, condition (ii) of lemma 7.2.3 is not satisfied for any
sequence an ↓ 0. A direct proof that (7.7) does not hold for any an is also possible:
given the prior Π ∈V , define,

φn(Xn) =
M

∏
m=1

1{∃1≤i≤n:Xi=k(m)}.

Then the expectation of φn with respect to the local prior predictive distribution
equals zero, so PΠ |B

n φn = o(an) for any an ↓ 0. However, Pn
0 φn(Xn)→ 1, so the prior

Π does not give rise to a sequence of prior predictive distributions (PΠ |B
n ) with

respect to which (Pn
0 ) is remotely contiguous, for any an ↓ 0.

A proof of a theorem very close to Schwartz’s theorem is now possible. Con-
sider condition (i) of theorem 6.3.1: a well-known argument based on Hoeffding’s
inequality guarantees the existence of a uniform test sequence of exponential power
whenever a uniform test sequence test sequence exists, so Schwartz equivalently
assumes that there exists a D > 0 such that,

Pn
0 φn + sup

Q∈P\U
Qn(1−φn) = o(e−nD). (7.19)

We vary slightly and assume the existence of a Bayesian test sequence of expo-
nential power. In the following theorem, let P denote a Hausdorff space of single-
observation distributions on (X ,B) with Borel prior Π .

Corollary 7.4.3. For all n≥ 1, let (X1,X2, . . . ,Xn)∼ Pn
0 for some P0 ∈P . Let U de-

note an open neighbourhood of P0 and define K(ε) = {P ∈P :−P0 log(dP/dP0)<
ε2}. If,

(i) there exist ε > 0, D > 0 and a sequence of measurable ψn : X n→ [0,1], such
that, ∫

K(ε)
Pn

ψn dΠ(P)+
∫

P\U
Qn(1−ψn)dΠ(Q) = o(e−nD),

(ii) and Π(K(ε))> 0 for all ε > 0,
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then Π(U |Xn)
P0-a.s.−−−−→1.

Proof. A prior Π satisfying condition (ii) guarantees that Pn
0 ≪ PΠ

n for all n≥ 1, cf.
the remark preceding proposition A.0.7. Choose ε such that ε2 < D. Recall that for
every P ∈ K(ε), the exponential lower bound (7.8) for likelihood ratios of dPn/dPn

0
exists. Hence the limes inferior of exp( 1

2 nε2)(dPn/dPn
0 )(X

n) is greater than or equal
to one with P∞

0 -probability one. Then, with the use of Fatou’s lemma and the as-
sumption that Π(K(ε))> 0,

liminf
n→∞

enD

Π(K(ε))

∫
K(ε)

dPn
θ

dPn
θ0

(Xn)dΠ(θ)≥ 1,

with P∞
θ0

-probability one, showing that sufficient condition (ii) of lemma 7.2.3 holds.
Conclude that,

Pn
0 ◁ enD PΠ |K(ε)

n ,

and use theorem 7.4.1 to see that Π(U |Xn)
Pθ0 ,n−−−→1.

Example 7.4.4. As an example of the tests required under condition (i) of corol-
lary 7.4.3, consider P in the Hellinger topology, assuming totally-boundedness.
Let U be the Hellinger-ball of radius 4ε around Pθ0 of example 7.4.5 and let
V be its complement. The Hellinger ball B(ε) in equation (7.24) contains the
set K(ε). Alternatively we may consider the model in any of the weak topolo-
gies Tn: let ε > 0 be given and let U denote a weak neighbourhood of the form
{P ∈P : |(Pn−Pn

0 ) f | ≥ 2ε}, for some bounded measurable f : Xn → [0,1], as
in proposition A.0.6. The set B of proposition A.0.6 contains a set K(δ ), for some
δ > 0. Both these applications were noted by Schwartz in [238].

7.4.1 Posterior concentration and Hellinger entropy

Imposing the model P to be of bounded entropy with respect to the Hellinger
metric allows construction of minimax tests (for sequences of shrinking) Hellinger
balls versus their complements, as discussed in subsection 6.4.4. Below, we ap-
ply constructions for the uniform tests in Schwartz’s theorem to the construction of
Bayesian tests. Due to relations that exist between metrics for model parameters and
the Hellinger metric in many examples and applications, the material covered here
is widely applicable in (non-parametric) models for i.i.d. data.

Example 7.4.5. Consider a model P of distributions P for i.i.d. data Xn ∼ Pn, (n≥
1) and, in addition, suppose that P is totally bounded with respect to the Hellinger
distance. Let P0 ∈P and ε > 0 be given, denote V (ε) = {P ∈P : H(P0,P)≥ 4ε},
B(ε) = {P ∈P : H(P0,P) < ε}. There exists an N(ε) ≥ 1 and a cover of V (ε) by
H-balls V1, . . . ,VN(ε) of radius ε and for any point Q in any Vi and any P ∈ B(ε),
H(Q,P) > 2ε . According to proposition 7.1.6 with α = 1/2 and (7.6), for each
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1≤ i≤N(ε) there exists a Bayesian test sequence (φi,n) for B(ε) versus Vi of power
(upper bounded by) exp(−2nε2). Then, for any subset B′ ⊂ B(ε),

PΠ |B′
n Π(V |Xn)≤

N(ε)

∑
i=1

PΠ |B′
n Π(Vi|Xn)

≤ 1
Π(B′)

N(ε)

∑
i=1

(∫
B′

Pn
φn dΠ(P)+

∫
Vi

Pn(1−φn)dΠ(P)
)

≤
N(ε)

∑
i=1

√
Π(Vi)

Π(B′)
exp(−2nε

2),

(7.20)

which is smaller than or equal to e−nε2
for large enough n.

To balance entropy and prior mass differently in Hellinger separable models,
Barron (1988) [9] and Barron et al. (1999) [12] formulate an alternative condition
that is based on the Radon property that any prior on a Polish space has.

Example 7.4.6. Consider a model P of distributions P for i.i.d. data Xn ∼ Pn, (n≥
1), with priors (Πn). Assume that the model P is Polish in the Hellinger topology.
Let P0 ∈P and ε > 0 be given; for a fixed M > 1, define V = {P ∈P : H(P0,P)≥
Mε}, B = {P ∈P : H(P0,P) < ε}. For any sequence δm ↓ 0, there exist compacta
Km ⊂P such that Π(Km)≥ 1−δm for all m≥ 1. For each m≥ 1, Km is Hellinger
totally bounded so there exists a Bayesian test sequence φm,n for B(ε)∩Km versus
V (ε)∩Km. Since,∫

B
Pn

φn dΠ(P)+
∫

V
Qn(1−φn)dΠ(Q)

≤
∫

B∩Km

Pn
φm,n dΠ(P) +

∫
V∩Km

Qn(1−φm,n)dΠ(Q)+δm,

and all three terms go to zero, a diagonalization argument confirms the existence of
a Bayesian test for B versus V . To control the power of this test and to generalise to
the case where ε = εn is n-dependent, more is required: as we increase m with n, the
prior mass δm(n) outside of Kn = Km(n) must decrease fast enough, while the order
of the cover must be bounded: if Πn(Kn) ≥ 1− exp(−L1nε2

n ) and the Hellinger
entropy of Kn satisfies logN(εn,Kn,H) ≤ L2nε2

n for some L1,L2 > 0, there exist
M > 1, L > 0, and a sequence of tests (φn) such that,∫

B(εn)
Pn

φn dΠ(P)+
∫

V (εn)
Qn(1−φn)dΠ(Q)≤ e−Lnε2

n ,

for large enough n. (For related constructions, see Barron (1988) [9], Barron et al.
(1999) [12] and Ghosal, Ghosh and van der Vaart (2000) [110].)
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7.5 Rates of posterior concentration

A significant extension to the theory on posterior convergence is formed by re-
sults concerning posterior convergence in metric spaces at a rate. Minimax rates of
convergence for (estimators based on) posterior distributions were considered more
or less simultaneously in Ghosal-Ghosh-van der Vaart [110] and Shen-Wasserman
[243]. Both propose an extension of Schwartz’s theorem to posterior rates of con-
vergence [110, 243], applying Barron’s sieve with a well-known entropy argument
[32, 33] to a shrinking sequence of Hellinger neighbourhoods and employs a more
specific, rate-related version of the Kullback-Leibler condition (6.5) for the prior.
Both appear to be inspired by contemporary results regarding Hellinger rates of con-
vergence for sieve MLE’s, as well as on Barron-Schervish-Wasserman [12], which
concerns posterior consistency based on controlled bracketing entropy for a sieve,
up to subsets of negligible prior mass, following ideas that were first laid down in
[9]. It is remarked already in [12] that their main theorem is easily re-formulated as
a rate-of-convergence theorem, with reference to [243]. More recently, Walker, Lijoi
and Prünster [267] have added to these considerations with a theorem for Hellinger
rates of posterior concentration in models that are separable for the Hellinger metric,
with a central condition that calls for summability of square-roots of prior masses
of covers of the model by Hellinger balls, based on analogous consistency results in
Walker [264]. More recent is [162], which shows that alternative, less stringent ver-
sions of the prior conditions of [110, 243] exist, if one is willing to be more specific
about model conditions (see, e.g., theorem 6.5.1).

Here we apply Bayesian testability and remote contiguity conditions to prove
(frequentist) posterior convergence at a rate.

Theorem 7.5.1. Assume that for all n≥ 1, the data Xn ∼ Pθ0,n for some θ0 ∈Θ . Fix
priors Πn : G → [0,1] and assume that for given Bn,Vn ∈ G with Πn(Bn) > 0 and
an,bn ↓ 0 such that an = o(bn),

(i) there are Bayesian tests φn : Xn→ [0,1] such that,∫
Bn

Pθ ,nφn dΠn(θ)+
∫

Vn

Pθ ,n(1−φn)dΠn(θ) = o(an), (7.21)

(ii) The prior mass of Bn is lower-bounded, Πn(Bn)≥ bn,
(iii) The sequence Pθ0,n satisfies Pθ0,n ◁ bna−1

n PΠn|Bn
n .

Then Π(Vn|Xn)
Pθ0 ,n−−−→0.

Proof. Proposition 7.1.3 says that PΠn|Bn
n Π(Vn|Xn) is of order o(b−1

n an). Condition

(iii) then implies that Pθ0,nΠ(Vn|Xn)= o(1), which is equivalent to Π(Vn|Xn)
Pθ0 ,n−−−→0

since 0≤Π(Vn|Xn)≤ 1, Pθ0,n-almost-surely for all n≥ 1.

To connect with the literature we interpret lower bounds for local quantities of prior
mass again, reformulating lemma 6.4.5 as a statement of remote contiguity.



216 7 Frequentist validity of Bayesian limits

Lemma 7.5.2. For all n≥ 1, assume that (X1,X2, . . . ,Xn)∈X n ∼ Pn
0 for some P0 ∈

P and let εn ↓ 0 be given. Let Bn be as in example 7.5.4. Then, for any priors Πn
such that Πn(Bn)> 0,

Pθ0,n

(∫ dPn
θ

dPn
θ0

(Xn)dΠn(θ |Bn)< e−cnε2
n

)
→ 0,

for any constant c > 1.

Example 7.5.3. To apply theorem 7.5.1, consider again the situation of a uniform
distribution with an unknown location, as in examples 6.6.3 and 7.3.3. Take Vn equal
to {θ : θ −θ0 > εn} respectively, with εn = Mn/n for any Mn→ ∞. It is noted that,
for every 0 < c < 1, the likelihood ratio test,

φn(Xn) = 1{dPθ0+εn,n/dPθ0,n(X
n)> c}= 1{X(1) > θ0 + εn},

satisfies Pn
θ
(1−φn)(Xn)= 0 for all θ ∈Vn, and if we choose δn = 1/2 and εn =Mn/n

for some Mn→ ∞, Pn
θ

φn ≤ e−Mn+1 for all θ ∈ Bn, so that,∫
Bn

Pn
θ φn(dΠ(θ)+

∫
Vn

Pn
θ (1−φn)dΠ(θ)≤Π(Bn)e−Mn+1,

Using lemma 7.1.2, we see that PΠ |Bn
n Π(Vn|Xn)≤ e−Mn+1. Based on the conclusion

of example 7.3.3 above, (remote) contiguity implies that Pn
θ0

Π(Vn|Xn)→ 0. Treating
the case θ < θ0− εn similarly, we conclude that the posterior is consistent at (any
εn slower than) rate 1/n.

Example 7.5.4. Let εn ↓ 0 such that nε2
n →∞ denote a Hellinger rate of convergence,

let M > 1 be some constant and define,

Vn = {P ∈P : H(P,P0)≥Mεn},
Bn = {P ∈P :−P0 logdP/dP0 < ε

2
n , P0 log2 dP/dP0 < ε

2
n}.

We repeat the argument in example 7.4.6 for every n, with ε = εn, εn ↓ 0 and nε2
n →

∞. If we require Barron’s δ -contribution to be of nε2
n -exponentially small order,

Π(P \Pn)≤ exp(−nMε
2
n ),

and the sieve of (relatively) compact Pn has Hellinger entropies that are upper-
bounded (see [185, 32]),

N(εn,Pn,H)≤ eKnε2
n ,

for some K > 0, then the minimax construction extends to tests that separate Vn =
{P∈P : H(P0,P)≥ 4εn} from Bn = {P∈P : H(P0,P)< εn} asymptotically, with
composite power exp(−nLε2

n ) for some L > 0.
Note that Bn is contained in the Hellinger ball of radius εn around P0, so (7.21)

holds. Remote contiguity therefore requires that for some C > 0,
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Πn(Bn)≥ e−Cnε2
n . (7.22)

We note Lemma 8.1 in [110], which says that if (7.22) is satisfied then Lemma 7.2.3-
(ii) holds, so that,

Pn
0 ◁ ecnε2

n PΠ |Bn
n , (7.23)

for any c > 1. For large enough M, Theorem 7.5.1 then reproduces the GGV-result,
i.e. the posterior is Hellinger consistent at rate εn. Due to relations that exist between
metrics for model parameters and the Hellinger metric in many examples and appli-
cations, the material covered here is widely applicable in (non-parametric) models
for i.i.d. data. (For much more on this and many similar constructions, see [114].)

Experience teaches that the sharpest results on posterior concentration are achieved
when the alternatives Vn are split into pieces, each according to the strength of
the optimal test versus Bn. Combination of the tests per piece and re-summation
weighted by prior masses can often be employed to arrive at sharp results.

Example 7.5.5. Consider a model P of distributions P for i.i.d. data Xn ∼ Pn,
(n ≥ 1) and suppose that P is separable for the total-variational/Hellinger metric
topology. Let P0 ∈P and εn→ 0 be given, denote V (ε) = {P∈P : H(P0,P)≥ 4ε},
B(ε) = {P ∈P : H(P0,P) < ε} for all ε > 0. There exist N(εn) ≥ 1 (possibly in-
finite) and a cover of V (εn) by N(εn) Hellinger balls Vn,1,Vn,2, . . . of radius εn and
for any point Q in any Vn,i and any P ∈ B(εn), H(Q,P) > εi,n. According to propo-
sition 7.1.6 with α = 1/2 and (7.6), for each 1≤ i≤ N(εn) there exists a Bayesian
test sequence (φn,i) for B(εn) versus Vn,i of composite power exp(− 1

2 nε2
i,n). Then,

for any subsets B′n ⊂ B(εn),

PΠ |B′n
n Π(V (εn)|Xn)≤

N(εn)

∑
i=1

PΠ |B′n
n Π(Vn,i|Xn)

≤ 1
Π(B′n)

N(εn)

∑
i=1

(∫
B′n

Pn
φn,i dΠ(P)+

∫
Vn,i

Pn(1−φn,i)dΠ(P)
)

≤
N(εn)

∑
i=1

√
Π(Vn,i)

Π(B′n)
exp(− 1

2 nε
2
i,n).

(7.24)

The requirement that the above upper bound converges to zero leads directly to
the summability requirements for square-root prior masses of Hellinger covers of
separable models posed by [264, 267].

Summability of this type leads [185] to define the so-called Le Cam dimension of the
model, as well as to various subtle results on posterior behaviour in non-parametric
applications, and also explains the sharpness of the posterior concentration results
of [162]. We emphasize that (7.24) makes explicit the balancing of prior masses and
composite power, as intended by the remark that closes Subsection 7.1.2.
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7.5.1 Remote contiguity and local asymptotic normality

To conclude the section on estimation, we consider remote contiguity under the
condition that the model is LAN (see definition 4.1.12 and [182]).

Lemma 7.5.6. Assume that the model satisfies LAN condition (4.5) with non-singular
Iθ0 and that the prior Π for θ has a Lebesgue-density π : Rd → R that is con-
tinuous and strictly positive in all of Θ . For given H > 0, define the subsets
Bn = {θ ∈Θ : θ = θ0 +n−1/2h,∥h∥ ≤ H}. Then,

P0,n ◁ c−1
n PΠ |Bn

n , (7.25)

for any cn ↓ 0.

Proof. According to lemma 3 in section 8.4 of Le Cam and Yang (1990) [191], Pθ0,n

is contiguous with respect to PΠ |Bn
n , which implies the assertion.

Note that for some K > 0, Π(Bn)≥ bn :=K(H/
√

n)d . Assume again the existence of
Bayesian tests for V = {θ ∈Θ : ∥θ−θ0∥> ρ} (for some ρ > 0) versus Bn (or some
B such that Bn ⊂ B), of power an = exp(− 1

2 nτ2) (for some τ > 0). Then anb−1
n =

o(1), and, assuming (7.25), theorem 7.5.1 implies that Π(∥θ−θ0∥> ρ|Xn)
Pθ0 ,n−−−→0,

so consistency is straightforwardly demonstrated.
The case becomes somewhat more complicated if we are interested in optimal-

ity of parametric rates: following the above, a logarithmic correction arises from
the lower bound Π(Bn) ≥ K(H/

√
n)d when combined in the application of theo-

rem 7.5.1. To alleviate this, we adapt the construction somewhat: define Vn = {θ ∈
Θ : ∥θ−θ0∥ ≤Mn n−1/2} for some Mn→∞ and Bn like above. Under the condition
that there exists a uniform test sequence for any fixed V = {θ ∈Θ : ∥θ −θ0∥> ρ}
versus Bn (see, for example, theorem 5.3.1), uniform test sequences for Vn versus
Bn of power e−K′M2

n exist, for some k′ > 0. Alternatively, assume that the Hellinger
distance and the norm on Θ are related through inequalities of the form,

K1∥θ −θ
′∥ ≤ H(Pθ ,Pθ ′)≤ K2∥θ −θ

′∥,

for some constants K1,K2 > 0. Then cover Vn with rings,

Vn,k =

{
θ ∈Vn :

(Mn + k−1)√
n

≤ ∥θ −θ0∥ ≤
(Mn + k)√

n

}
,

for k ≥ 1 and cover each ring with balls Vn,k,l of radius n−1/2, where 1 ≤ l ≤ Ln,k

and Ln,k the minimal number of radius-n−1/2 balls needed to cover Vn,k, related to
the Le Cam dimension [185]. With the Bn defined like above, and the inequality,
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Pθ ,nΠ(Vn,k,l |Xn)dΠn(θ |Bn)

≤ sup
θ∈Bn

Pθ ,nφn,k,l +
Πn(Vn,k,l)

Πn(Bn)
sup

θ∈Vn,k,l

Pθ ,n(1−φn,k,l),

where the φn,k,l are the uniform minimax tests for Bn versus Vn,k,l of lemma 2.4.13,
of power exp(−K′(Mn+k−1)2) for some K′ > 0. We define φn,k = max{φn,k,l : 1≤
l ≤ Ln,k} for Vn,k versus Bn and note,∫

Pθ ,nΠ(Vn,k|Xn)dΠn(θ |Bn)≤
(

Ln,k +
Πn(Vn,k)

Πn(Bn)

)
e−K(Mn+k−1)2

,

where the numbers Ln,k are upper bounded by a multiple of (Mn + k)d and the frac-
tion of prior masses Πn(Vn,k)/Πn(Bn) can be controlled without logarithmic correc-
tions when summing over k next.

7.6 Consistent hypothesis testing with posterior odds

Model selection describes all statistical methods that attempt to determine from the
data which model to use for further inferential statistical analysis (for an overview,
see [253]). For example, consider projection of a high-dimensional vector of co-
variates onto a sparse subset for subsequent regression analysis, or the selection of
a directed a-cyclical graph to formulate a graphical model. Model selection also
makes an appearance in very high-dimensional models, which often leave room for
over-fitting, requiring regularization [34, 35, 52]. Frequentist methods for model
selection vary widely, ranging from very simple rules-of-thumb (like those of sec-
tion 5.4), to cross-validation and penalization of the likelihood function.

Here we propose to conduct the frequentist analysis with the help of the pos-
terior [13]: when faced with a (dichotomous) model choice, we let posterior odds
determine our preference. An (objective) Bayesian perspective on model selection
is provided in [269]. Recall (see definition 2.4.15) that for hypotheses B,V ⊂Θ and
any n≥ 1, posterior odds Gn are defined as,

Gn(Xn) =
Π(B|Xn)

Π(V |Xn)
.

for B versus V . Analysing the question first from a purely Bayesian perspective, we
see that for a fixed prior Π , Theorem 7.1.4 says that the posterior gives rise to con-
sistent posterior odds Gn for B versus V in a Bayesian (that is, Π -almost-sure) way,
if and only if a Bayesian test sequence for B versus V exists. Proposition 7.1.5 says
that in Polish models, any Borel set V is Bayesian testable versus its complement.
So basically, for the Bayesian, measurable distinctions are consistently testable with
posterior odds. In fact we show in chapter 9 (see proposition 9.6.2) that posterior
odds are optimal in the sense that φn(Xn) = 1{Xn ∈Xn : Π(B|Xn) > Π(V |Xn)}
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satisfies, ∫
B

Pθ ,nφn(Xn)dΠ(θ)+
∫

V
Pθ ,n(1−φn(Xn))dΠ(θ)

= inf
ψ

∫
B

Pθ ,nψ(Xn)dΠ(θ)+
∫

V
Pθ ,n(1−ψ(Xn))dΠ(θ),

where the infimum runs over all measurable ψn : Xn→ [0,1].
However, for the frequentist prior-almost-sure convergence is not enough, con-

vergence in all points of the model is required.

Definition 7.6.1. For all n≥ 1, let the model be parametrized by maps θ 7→ Pθ ,n on
a parameter space (Θ ,G ) with priors Πn : G → [0,1]. Consider disjoint, measurable
B,V ⊂Θ . Posterior odds Gn are frequentist consistent for testing B versus V , if,

Gn
Pθ ,n−−→0, Gn

P
θ ′,n−−−→∞,

for all θ ∈V , and all θ ′ ∈ B.

We rely again on remote contiguity to bridge the gap between Bayesian and fre-
quentist formulations. The proof of the theorem below is immediate.

Theorem 7.6.2. For all n≥ 1, let the model be a measurable space (P,G ) with pri-
ors Πn : G → [0,1]. Consider disjoint, measurable B,V ⊂P with Πn(B),Πn(V )> 0
such that,

i. There exist Bayesian tests for B versus V of power an ↓ 0,∫
B

Pn
φn dΠn(P)+

∫
V

Qn(1−φn)dΠn(Q) = o(an),

ii. For every P ∈ B, Pn ◁a−1
n PΠn|B

n , and for every Q ∈V , Qn ◁a−1
n PΠn|V

n .

Then posterior odds for B versus V are frequentist consistent.

Note that the second condition of theorem 7.6.2 can be replaced by a local condition:
if, for every θ ∈ B, there exists a sequence Bn(θ)⊂ B such that Πn(Bn(θ))≥ bn and
Pθ ,n ◁a−1

n bnPΠn|Bn(θ)
n , then Pθ ,n ◁a−1

n PΠn|Bn(θ)
n .

This device for model selection is used in the random-walk application of sec-
tion 7.8: it is shown that for stationary Markov chains, the transition kernel for a
random walk Xn can be subjected to a goodness-of-fit test inspired by Pearson’s χ2-
test, based on a finite partition of the state-space. Proposition 7.8.2 emphasizes the
enhancement of the role of the prior, as intended by the remark that closes Subsec-
tion 7.1.2: where the test is less powerful, prior mass should be scarce to compensate
and where the test is more powerful, prior mass can be plentiful. In model selection,
alternative hypotheses often ‘touch’ and a continuous power function leads to prob-
lems with testing power in the vicinity of the boundary separating them: in such
cases, prior mass is upper-bounded in model subsets near that boundary, in line with
non-locality of priors as in [143]. It is even possible that alternative hypotheses are



7.7 Confidence sets from credible sets 221

so densely interwoven that they ‘touch’ in every point of B∪V . In such cases, model
selection is as difficult as estimation without prior model selection, and model se-
lection is not sensible [165].

7.7 Confidence sets from credible sets

The Bernstein-von Mises theorem of chapter 4 asserts that the posterior for a
smooth, finite-dimensional parameter converges in total variation to a normal distri-
bution centred on an efficient estimate with the inverse Fisher information as its
covariance, if the prior has full support. The methodological implication is that
Bayesian credible sets derived from such a posterior can be reinterpreted as asymp-
totically efficient confidence sets. This parametric fact begs for the exploration of
possible non-parametric extensions but Freedman discourages us [105] with coun-
terexamples (see also [61]) and concludes that: “The sad lesson for inference is this.
If frequentist coverage probabilities are wanted in an infinite-dimensional problem,
then frequentist coverage probabilities must be computed.”

Nonetheless, much effort has gone into calculations that address the question
whether non-parametric credible sets can play the role of confidence sets. The focus
lies on well-controlled examples in which both model and prior are Gaussian so
that the posterior is conjugate and analyse posterior expectation and variance to
determine whether credible metric balls have asymptotic frequentist coverage (for
examples, see [251] and references therein). Below, we change the question slightly
and do not seek to justify the use of credible sets as confidence sets; from the present
perspective it appears more natural to ask in which particular fashion a credible set
has to be transformed in order to guarantee the transform is a confidence set in the
large-sample limit.

Recall the definition of a Bayesian credible set, definition 2.3.7, which we re-
formulate here in parametrization-independent way.

Definition 7.7.1. Let (P,G ) be a measurable model for data X ∈X , with prior
distribution Π , and let D ⊂ G be a collection of measurable subsets of P . Choose
a credible level α ∈ (0,1). Let D : X →D describe a data-dependent model subset.
Then D(X) is a credible set for the distribution P of credible level 1−α if it solves
the equation,

Π
(

P ∈ D(X)
∣∣ X
)
≥ 1−α,

almost-surely.

Recall definition 2.3.8, also repeated here in parametrization-independent way.

Definition 7.7.2. Let (P,G ) be a measurable model with prior distribution Π for
sequentially observed data Xn from measurable spaces (Xn,Bn), and let D ⊂ G
be a collection of measurable subsets of P . Credible sets Dn : Xn → D of levels
1−αn, are said to be (asymptotically) consistent if αn→ 0.
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Recall the definition of a frequentist confidence set, definition 2.3.1, also given here
in parametrization-independent way.

Definition 7.7.3. Let P be a model for data X from (X ,B), and let C be a collec-
tion of subsets of P . Choose a confidence level α ∈ (0,1). Let C : X →C describe
data-dependent subsets in C . Then C(X) is a confidence set for the distribution P
of confidence level 1−α , if {x ∈X : P ∈C(x)} is B-measurable for every P ∈P
and C solves the equation,

P
(
P ∈C(X)

)
≥ 1−α,

for all P ∈P .

To also extend this notion to asymptotic setting, we specialize definition 2.3.4 to just
the α = 0 case.

Definition 7.7.4. Let P describe a model for sequentially observed data Xn from
measurable spaces (Xn,Bn), and let C be a collection of subsets of P . Confidence
sets Cn : Xn→ C in C of confidence levels 1−αn, are said to be (asymptotically)
consistent if αn→ 0.

The frequentist inferential goal, here, is to somehow use credible sets to define con-
fidence sets. Practical (non-asymptotic) experience with the direct interpretation of
credible sets as confidence sets, appears to confirm time and again that credible sets
undercover as confidence sets. Below, we reach the complementary conclusion that
credible sets have to be enlarged to obtain confidence sets, based on Bayes’s Rule.

Definition 7.7.5. Let D(X) be a credible set in a model P and let B = {B(P) :
P ∈P} denote a collection of model subsets such that P ∈ B(P) for all P ∈P . A
model subset C′(X) is said to be a confidence set associated with D(X) under B, if
for all P ∈P \C′(X), B(P)∩D(X) = ∅. The intersection C(X) of all C′(X) like
above equals {P ∈P : B(P)∩D(X) ̸=∅} and is called the minimal confidence set
associated with D(X) under B (see Fig 7.1).

Example 7.7.9 makes this construction explicit in uniform spaces and specializes to
metric context. Below we give a theorem that asserts asymptotic consistency of con-
fidence sets associated with credible sets under B based on remote contiguity and on
Bayes’s Rule (2.4), as in subsection 2.3.3. The model is represented in parametrized
form with parameter θ ∈Θ .

Theorem 7.7.6. Let θ0 ∈Θ and 0 ≤ an ≤ 1, bn > 0 such that an = o(bn) be given.
Choose priors Πn and let Dn(Xn) denote level-(1−an) credible sets. Furthermore,
for all θ ∈Θ , let Bn = {Bn(θ) ∈ G : θ ∈Θ} denote a sequence such that,

(i) Πn(Bn(θ0))≥ bn,
(ii) Pθ0,n ◁bna−1

n PΠn|Bn(θ0)
n .

Then any confidence sets Cn(Xn) associated with the credible sets Dn(Xn) under Bn
are asymptotically consistent, i.e. for all θ0 ∈Θ ,

Pθ0,n
(

θ0 ∈Cn(Xn)
)
→ 1. (7.26)
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Proof. Fix n≥ 1 and let Dn(Xn) denote a credible set of level 1−o(an), defined for
all x∈ Fn ⊂Xn such that PΠn

n (Fn) = 1. For any x∈ Fn, let Cn(x) denote a confidence
set associated with Dn(x) under B. Due to definition 7.7.5, θ0 ∈Θ \Cn(x) implies
that Bn(θ0)∩Dn(x) =∅. Hence the posterior mass of B(θ0) satisfies Π(Bn(θ0)|x) =
o(an). Consequently, the function x 7→ 1{θ0 ∈Θ \Cn(x)}Π(B(θ0)|x) is o(an) for all
x ∈ Fn. Integrating with respect to the n-th prior predictive distribution and dividing
by the prior mass of Bn(θ0), one obtains,

1
Πn(Bn(θ0))

∫
1{θ0 ∈Θ \Cn}Π(Bn(θ0)|Xn)dPΠn

n ≤ an

bn
.

Applying Bayes’s rule in the form (2.4), we see that,

PΠn|Bn(θ0)
n

(
θ0 ∈Θ \Cn(Xn)

)
=
∫

Pθ ,n
(
θ0 ∈Θ \Cn(Xn)

)
dΠn(θ |Bn)≤

an

bn
.

By the definition of remote contiguity, this implies asymptotic coverage cf. (7.26).

P

B(P)

D(X)

C(X)

Fig. 7.1 The relation between a credible set D(X) and its associated min-
imal confidence set C(X) under B in Venn diagrams: the extra points P in
the associated confidence set C(X) not included in the credible set D(X)
are characterized by non-empty intersection B(P)∩D ̸=∅.

This refutes Freedman’s lesson, showing that the asymptotic identification of credi-
ble sets and confidence sets in smooth parametric models (the main inferential impli-
cation of the Bernstein-von Mises theorem) generalises to the above form of asymp-
totic congruence in non-parametric models. The fact that this statement holds in full
generality implies very practical ways to obtain confidence sets from posteriors,
calculated, simulated or approximated. A second remark concerns the confidence
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levels of associated confidence sets. In order for the assertion of theorem 7.7.6 to
be specific regarding the confidence level (rather than just resulting in asymptotic
coverage), we re-write the last condition of theorem 7.7.6 as follows,

(ii’) c−1
n Pθ0,n ◁bna−1

n PΠn|Bn(θ0)
n ,

so that the last step in the proof of theorem 7.7.6 is more specific; particularly,
assertion (7.26) becomes,

Pθ0,n
(

θ ∈Cn(Xn)
)
= o(cn).

The following corollary that specializes to the i.i.d. situation is immediate (see
also example 7.7.10 below). Let P denote a model of single-observation distribu-
tions, endowed with the Hellinger or total-variational topology. Below, Hellinger
enlargement is defined in definition 2.3.12.

Corollary 7.7.7. For n ≥ 1 assume that (X1,X2, . . . ,Xn) ∈ X n ∼ Pn
0 for some

P0 ∈ P . Let Πn denote Borel priors on P , with constant C > 0 and rate se-
quence εn ↓ 0 such that (7.22) is satisfied. Denote by Dn(Xn) credible sets of level
1−exp(−C′nε2

n ), for some C′ >C. Then the confidence sets Cn(Xn) associated with
Dn(Xn) under radius-εn Hellinger-enlargement are asymptotically consistent.

Proof. Define an = exp(−C′nε2
n ), bn = exp(−Cnε2

n ), so that the Dn are credible sets
of level 1−o(an), the sets Bn of example 7.5.4 satisfy condition (i) of theorem 7.7.6
and bna−1

n = exp(cnε2
n ) for some c > 0. By (7.23), we see that condition (ii) of

theorem 7.7.6 is satisfied.

Note that in the above corollary,

diamH(Cn(Xn)) = diamH(Dn(Xn))+2εn,

Pn
0 -almost surely. If, in addition to the conditions in the above corollary, tests satis-

fying (7.21) with an = exp(−C′nε2
n ) exist, the posterior is consistent at rate εn and

sets Dn(Xn) have diameters decreasing as εn, cf. theorem 7.5.1. In the case εn is
the minimax rate of convergence for the problem, the confidence sets Cn(Xn) attain
rate-optimality [195]. Rate-adaptivity [130, 54, 251] is not possible like this because
a definite, non-data-dependent choice for the Bn is required.

7.7.1 Credible/confidence sets in metric spaces

Next, we specialize to parameter spaces that are metric. First we note theorem 11.5.2
(see also [164]), showing that posterior convergence at a rate ensures coverage of
enlarged minimal-radius credible balls.

Theorem 7.7.8. Suppose that (Θ ,d) with Borel priors (Πn) parametrizes models
Θ →Pn : θ 7→ Pθ ,n for data Xn distributed according to Pθ0,n for some θ0 ∈ Θ .
Assume that posteriors concentrate in metric balls of radii rn:
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Π
(

d(θ ,θ0)≤ rn
∣∣ Xn ) Pθ0 ,n−−−→1.

Given Xn and some 0 < ε < 1, let D̂n = Bn(θ̂n, r̂n) be level-1− ε credible balls
of minimal radii. With high Pθ0,n-probability, r̂n ≤ rn and the sequence Cn(Xn) =

B(θ̂n, r̂n + rn)⊂ B(θ̂n,2rn) is asymptotically consistent,

Pθ0,n
(

θ0,n ∈Cn(Xn)
)
→ 1,

However, posterior convergence at a known rate is a relatively strong condition and,
in practice, one may not be able to guarantee it. For that reason, we also explore the
direct method of Theorem 7.7.6 in metric spaces.

When enlarging credible sets to confidence sets using a collection of subsets B
as in Definition 7.7.5, measurability of confidence sets is guaranteed if B(θ) is open
in Θ for all θ ∈ Θ . It is worth recalling that KL-divergence is not automatically
continuous with respect to Hellinger distance (for specifics, see theorem 5 of [270]).

Example 7.7.9. Let G be the Borel σ -algebra for a topology induced by a uniformity
on P , like the weak, polar and metric topologies of appendix C. Let W denote a
symmetric entourage and, for every P∈P , define B(P) = {Q∈P : (P,Q)∈W}, a
neighbourhood of P. Let D(Xn) denote any credible set. A confidence set associated
with D(Xn) under B is any set C′(Xn) such that the complement of D(Xn) contains
the W -enlargement of the complement of C′(Xn). Equivalently (by the symmetry of
W ), the W -enlargement of D(Xn) does not meet the complement of C′(Xn). Then
the minimal confidence set C(Xn) associated with D(Xn) is the W -enlargement of
D(Xn). If the B(P) are all open neighbourhoods (e.g. whenever W is a symmet-
ric entourage from a fundamental system for the uniformity on P), the minimal
confidence set associated with D(Xn) is open. The most common examples include
(Hellinger or total-variational) metric uniformities, leading to enlargement like in
definition 2.3.12, but weak topologies like Prohorov’s or Tn-topologies topologies
are induced by a uniformity too.

Example 7.7.10. To illustrate Example 7.7.9 with a customary situation, consider a
parameter space Θ with parametrization θ 7→ Pn

θ
, to define a model for i.i.d. data

Xn = (X1, . . . ,Xn) ∼ Pn
θ0

, for some θ0 ∈Θ . Let D be the class of all pre-images of
Hellinger balls, i.e. sets D(θ ,ε)⊂Θ of the form,

D(θ ,ε) =
{

θ
′ ∈Θ : H(Pθ ,Pθ ′)< ε

}
,

for any θ ∈Θ and ε > 0. After choice of a Kullback-Leibler prior Π for θ and cal-
culation of the posteriors, choose Dn equal to the pre-image D(θ̂n, ε̂n) of a minimal-
radius Hellinger ball with credible level 1−o(an), an = exp(−nα2) for some α > 0.
Assume, now, that for some 0 < ε < α , the W of Example 7.7.9 is the Hellinger
entourage W = {(θ ,θ ′) : H(Pθ ,Pθ ′)< ε}. Since Kullback-Leibler neighbourhoods
are contained in Hellinger balls, the sets D(θ̂n, ε̂n + ε) (associated with Dn under
the entourage W ), is a sequence of asymptotically consistent confidence sets, pro-
vided the prior satisfies Schwartz’s KL condition. If we make ε vary with n, like
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before, Cn(Xn) = D(θ̂n, ε̂n + εn) are asymptotic confidence sets, provided that the
prior satisfies (7.22).

In the case εn is the minimax rate of convergence for the problem, the confidence sets
Cn(Xn) attain rate-optimality [195]. Rate-adaptivity [130, 116, 251] is not possible
with Theorem 7.7.6 because a definite, non-data-dependent choice for the Bn is
required. An interesting option concerns the exploration of data-driven choices for
priors Πn and Bn, as in [251].

7.8 Application: testing with Markov-chain data

Consider the asymptotic consistency of goodness-of-fit tests for the transition ker-
nel of a Markov chain with posterior odds. Bayesian analyses of Markov chains
on a finite state space are found in [249] and references therein. Consistency re-
sults cf. [264] for random walk data are found in [112]. Large-deviation results for
posterior distributions are derived in [217, 91]. The examples below are based on
ergodicity for remote contiguity and Hoeffding’s inequality for uniformly ergodic
Markov chains [201, 118] to construct suitable tests. We first prove the analogue of
Schwartz’s construction in the case of an ergodic random walk.

Let (S,S ) denote a measurable state space for a discrete-time, stationary Markov
process P describing a random walk Xn = {Xi ∈ S : 0 ≤ i ≤ n} of length n ≥ 1
(conditional on a starting position X0). The chain has a Markov transition kernel
P(·|·) : S ×S→ [0,1] that describes Xi|Xi−1 for all i≥ 1.

Led by Pearson’s approach to goodness-of-fit testing, we choose a finite partition
α = {A1, . . . ,AN} of S and ‘bin the data’ in the sense that we switch to a new process
Zn taking values in the finite state space Sα = {e j : 1 ≤ j ≤ N} (where e j denotes
the j-th standard basis vector in Rn), defined by Zn = {Zi ∈ Sα : 0 ≤ i ≤ n}, with
Zi = (1{Xi ∈ A1}, . . . ,1{Xi ∈ AN}). The process Zn forms a stationary Markov chain
on Sα with distribution Pα,n. The model is parametrized in terms of the convex set
Θ of N×N Markov transition matrices pα on the finite state space Sα ,

pα(k|l) = Pα,n(Zi = ek|Zi−1 = el) = P(Xi ∈ Ak|Xi−1 ∈ Al), (7.27)

for all 0 ≤ i ≤ n and 1 ≤ k, l ≤ N. We assume that Pα,n is ergodic with equilibrium
distribution that we denote by πα , and πα(k) := πα(Z = k). We are interested in the
asymptotics of posterior odds for goodness-of-fit type questions, given a parameter
space consisting of transition matrices.

Example 7.8.1. Assume that the true transition kernel P0 gives rise to a matrix p0 ∈
Θ that generates an ergodic Markov chain Zn. Denote the true distribution of Zn

by P0,n and the equilibrium distribution by π0 (with π0(k) := π0(Z = k)). For given
ε > 0, define,

B′ =
{

pα ∈Θ :
N

∑
k,l=1
−p0(l|k)π0(k) log

pα(l|k)
p0(l|k)

< ε
2
}
.
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Assume that Π(B′)> 0. According to the ergodic theorem, for every pα ∈ B′,

1
n

n

∑
i=1

log
pα(Zi|Zi−1)

p0(Zi|Zi−1)

P0,n-a.s.
−−−−→

N

∑
k,l=1

p0(l|k)π0(k) log
p(l|k)
p0(l|k)

,

(compare with the rate-function in the large-deviation results in [217, 91]) so that,
for large enough n,

dPα,n

dP0,n
(Zn) =

n

∏
i=1

pα(Zi|Zi−1)

p0(Zi|Zi−1)
≥ e−

n
2 ε2

,

P0,n-almost-surely. Just like in Schwartz’s proof [238], the assumption Π(B′) > 0
and Fatou’s lemma imply remote contiguity because,

P0,n

(∫ dPα,n

dP0,n
(Zn)dΠ(pα |B′)< e−

n
2 ε2
)
→ 0.

So lemma 7.2.3 says that P0,n◁exp( n
2 ε2)PΠ |B′

n .

However, exponential remote contiguity will turn out not to be enough for goodness-
of-fit tests below, unless we impose stringent model conditions. Instead, we shall
resort to local asymptotic normality for a sharper result.

We formulate goodness-of-fit hypotheses in terms of the joint distribution for two
consecutive steps in the random walk. Like Pearson, we fix some such distribution
P0 and consider hypotheses based on differences of ‘bin probabilities’ pα(k, l) =
pα(k|l)πα(l),

H0 : max
1≤k,l≤N

∣∣pα(k, l)− p0(k, l)
∣∣< ε,

H1 : max
1≤k,l≤N

∣∣pα(k, l)− p0(k, l)
∣∣≥ ε,

(7.28)

for some fixed ε > 0. The sets B and V are defined as the sets of transition matrices
pα ∈Θ that satisfy hypotheses H0 and H1 respectively. We assume that the prior is
chosen such that Π(B)> 0 and Π(V )> 0.

Endowed with some matrix norm, Θ is compact and a Borel prior on Θ can be de-
fined in various ways. For example, we may assign the vector (pα(·|1), . . . , pα(·|N))
a product of Dirichlet distributions. Conjugacy applies and the posterior for pα is
again a product of Dirichlet distributions [249]. For an alternative family of priors,
consider the set E of NN N×N-matrices E that have standard basis vectors ek in
RN as rows. Each E ∈ E is a deterministic Markov transition matrix on Sα and E
is the extremal set of the polyhedral set Θ . According to Choquet’s theorem, every
transition matrix pα can then be written in the form,

pα = ∑
E∈E

λE E, (7.29)
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for a (non-unique) combination of λE := {λE : E ∈ E } such that λE ≥ 0, ∑E λE = 1.
If λE > 0 for all E ∈ E , the resulting Markov chain is ergodic and we denote the
corresponding distributions for Zn by Pα,n. Any Borel prior Π ′ (e.g. a Dirichlet
distribution) on the simplex SNN in RNN

is a prior for λE and induces a Borel prior
Π on Θ . Note that all non-ergodic transition matrices lie in the boundary ∂Θ , so if
we choose Π ′ such that Π(Θ̊) = 1, ergodicity may be assumed in all prior-almost-
sure arguments. This is true for any Π ′ that is absolutely continuous with respect to
the (NN −1-dimensional) Lebesgue measure on SNN (for example when we choose
Π ′ equal to a Dirichlet distribution). Note that if the associated density is continuous
and strictly positive, Π(B)> 0 and Π(V )> 0.

We intend to use theorem 7.6.2 with B and V defined by H0 and H1, so we first
demonstrate that a Bayesian test sequence for B versus V exists, based on a version
of Hoeffding’s inequality valid for random walks [118]. First, define, for given 0 <
λn ≤ N−N such that λn ↓ 0,

S′n :=
{

λE ∈ SNN
: λE ≥ λn/NN−1, for all E ∈ E

}
,

and denote the image of S′n under (7.29) by Sn. Note that if Π(∂Θ) = 0, then πS,n :=
Π(Θ \Sn)→ 0.

Now fix n ≥ 1 for the moment. Recalling the nature of the matrices E, we see
that for every 1 ≤ k, l ≤ N, pα(k|l) as in equation (7.29) is greater than or equal to
λn. Consequently, the corresponding Markov chain satisfies condition (A.1) of [118]
(closely related to the notion of uniform ergodicity [201]): starting in any point X0
under a transition from Sn, the probability that X1 lies in A ⊂ Sα is greater than or
equal to λn φ(A), where φ is the uniform probability measure on Sα . This mixing
condition enables a version of Hoeffding’s inequality (see theorem 2 in [118]): for
any λE ∈ S′n and 1 ≤ k, l ≤ N, the transition matrix of equation (7.29) is such that,
with p̂n(k, l) = n−1

∑i 1{Zi = k,Zi−1 = l},

Pα,n
(

p̂n(k, l)− pα(k, l)≥ δ
)
≤ exp

(
−λ 2

n (nδ −2λ−1
n )2

2n

)
. (7.30)

Now define for a given sequence δn > 0 with δn ↓ 0 and all n≥ 1,1≤ k, l ≤ N,

Bn = {pα ∈Θ : max
k,l

∣∣pα(k, l)− p0(k, l)
∣∣< ε−δn},

Vk,l = {pα ∈Θ :
∣∣pα(k, l)− p0(k, l)

∣∣≥ ε},
V+,k,l,n = {pα ∈Θ : pα(k, l)− p0(k, l)≥ ε +δn},
V−,k,l,n = {pα ∈Θ : pα(k, l)− p0(k, l)≤−ε−δn}.

Note that if Π ′ is absolutely continuous with respect to the Lebesgue measure on
SNN

, then πB,n := Π(B\Bn)→ 0 and πn,k,l := Π(Vk,l \ (V+,k,l,n∪V−,k,l,n))→ 0.
If we define the test φ+,k,l,n(Zn) = 1{ p̂n(k, l)− p0(k, l) ≥ ε}, then for any pα ∈

Bn∩Sn,
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Pα,nφ+,k,l,n(Zn)≤ Pα,n
(

p̂n(k, l)− pα(k, l)≥ δn
)
≤ exp

(
−λ 2

n (nδn−2λ−1
n )2

2n

)
.

If on the other hand, pα lies in the intersection of V+,n,k,l with Sn, we find,

Pα,n
(
1−φ+,n,k,l(Zn)

)
= Pα,n

(
p̂n(k, l)− pα(k, l)<−δn

)
≤ exp

(
−λ 2

n (nδn−2λ−1
n )2

2n

)
.

Choosing the sequences δn and λn such that nδ 2
n λ 2

n → ∞, we also have λ−1
n =

o(nδn), so the exponent on the right is smaller than or equal to − 1
8 nλ 2

n δ 2
n .

So if we define φn(Zn) = maxk,l{φ−,k,l,n(Zn),φ+,k,l,n(Zn)},∫
B

Pα,nφn dΠ(pα)+
∫

V
Qα,n(1−φn)dΠ(qα)

≤
∫

B∩Sn

Pα,nφn dΠ(pα)+
∫

V∩Sn

Qα,n(1−φn)dΠ(qα)+Π(Θ \Sn)

≤
∫

B

N

∑
k,l=1

Pα,n(φ−,k,l,n +φ+,k,l,n)dΠ(pα)

+
N

∑
k,l=1

(∫
V−,k,l

Qα,n(1−φ−,k,l,n)dΠ(qα)

+
∫

V+,k,l

Qα,n(1−φ+,k,l,n)dΠ(qα)
)

+
N

∑
k,l=1

Π
(
Vn,k,l \ (V+,n,k,l ∪V+,n,k,l)

)
+Π(Θ \Sn)+Π(B\Bn)

≤ 2N2e−
1
8 nλ 2

n δ 2
n +πB,n +πS,n +

N

∑
k,l=1

πn,k,l .

So if we choose a prior Π ′ on SNN
that is absolutely continuous with respect to

Lebesgue measure, then (φn) defines a Bayesian test sequence for B versus V .
Because we have not imposed control over the rates at which the terms on the

r.h.s. go to zero, remote contiguity at exponential rates is not good enough. Even if
we would restrict supports of a sequence of priors such that πB,N = πS,n = πn,k,l = 0,
the first term on the r.h.s. is sub-exponential. To obtain a rate sharp enough, we
note that the chain Zn is positive recurrent, which guarantees that the depen-
dence pα → dPα,n/dP0,n is locally asymptotically normal [133, 119]. According
to lemma 3, section 8.4 in [191], this implies that local prior predictive distribu-
tions based on n−1/2-neighbourhoods of p0 in Θ are cn-remotely contiguous to P0,n
for any rate cn, if the prior has full support. If we require that the prior density π ′

with respect to Lebesgue measure on SNN
is continuous and strictly positive, then

we see that there exists a constant π > 0 such that π ′(λ ) ≥ π for all λ ∈ SNN
,

so that for every n−1/2-neighbourhood Bn of p0, there exists a K > 0 such that
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Π(Bn) ≥ bn := K n−NN/2. Although local asymptotic normality guarantees remote
contiguity at arbitrary rate, we still have to make sure that an = o(bn). Then the
remark directly after theorem 7.6.2 shows that condition (ii) of said theorem is sat-
isfied.

The above leads to the following conclusion concerning goodness-of-fit testing
cf. (7.28).

Proposition 7.8.2. Let Xn be a stationary, discrete time Markov chain on a measur-
able state space (S,S ). Choose a finite, measurable partition α of S such that the
Markov chain Zn is ergodic. Choose a prior Π ′ on SNN

absolutely continuous with
respect to Lebesgue measure with a continuous density that is everywhere strictly
positive. Assume that,

(i) nλ 2
n δ 2

n / log(n)→ ∞,

(ii) Π(B\Bn),Π(Θ \Sn) = o(n−(N
N/2)),

(iii) maxk,l Π(Vk,l \ (V+,k,l,n∪V−,k,l,n)) = o(n−(N
N/2)).

Then for any choice of ε > 0, posterior odds Gn are consistent for H0 versus H1.

To interpret these conditions: a random walk for which mixing does not occur
quickly enough does not give rise to (7.30) and alternatives for which separation
decreases too fast, lose testing power, so the difference sets of proposition 7.8.2
are the hard-to-test parts of the parameter space and conditions (ii)–(iii) of proposi-
tion 7.8.2 formulate how scarce prior mass in these parts has to be.

7.9 Exercises

7.9.1. BAYESIAN TESTING POWER
Consider a model P of distributions P for i.i.d. data (X1,X2, . . . ,Xn)∼ Pn, (n≥ 1).
Fix n ≥ 1 and let a prior (Πn) and convex G -measurable model subsets Bn,Vn be
given.

a. Using the fact that convex sets contain their barycentres, show that,

H
(
PΠn|Bn

n ,PΠn|Vn
n

)
≥ inf{H(Pθ ,n,Pθ ′,n) : θ ∈ Bn,θ

′ ∈Vn}.

Hint: given any Q, the mapping P 7→ H2(P,Q) is convex.
b. Use the techniques of example 2.4.9 to show that (7.5) holds, and the right-hand

side can be simplified to:∫
Bn

Pn
φn dΠn(P)+

∫
Vn

Qn(1−φn)dΠn(Q)≤
√

Πn(Bn)Πn(Vn)e−nε2
n ,

where εn = inf{H(P,Q) : P ∈ Bn,Q ∈Vn}.
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7.9.2. TESTING POWER AND REMOTE CONTIGUITY
Let (Pn) and (Qn) be two sequences of probability measures on measurable spaces
(Xn,Bn), and let an ↓ 0.

a. Show that if (Pn) is an-remotely contiguous with respect to (Qn), then there
does not exist a test sequence to distinguish between Pn and Qn with power of
order o(an).

b. Show that if (Pn) is contiguous with respect to (Qn), then there does not exist a
test sequence that distinguishes between Pn and Qn.

7.9.3. ALMOST-SURE SUBSEQUENCES
Let (X ,B,P) be a probability space with a sequence (φn) of real-valued random

variables such that Pnφn(X) ↓ 0.

a. Show that, equivalently, φn(X)
P−→0.

b. Use the first Borel-Cantelli lemma (lemma B.2.13) to show that if ∑n Pnφn(X)<
∞, then φn(X) converges to zero P-almost-surely.

c. Let (Xn) be a sequence of real-valued random variables X →R that converges
weakly to a random variable X : X → R under P. Use part b. above, to show
that there exists a subsequence of (Xn) that converges to X P-almost-surely.

7.9.4. In example 7.3.3, we consider an i.i.d. sample from a uniform distribution on
[θ0,θ0 +1], for unknown θ0 ∈Θ =R. We choose a prior Π on Θ with a continuous
and strictly positive Lebesgue density π : R→ R.

a. Show that for any θ > θ0 and Xn ∼ Pn
θ0

,

dPn
θ

dPn
θ0

(Xn) = 1{X(1) ≥ θ}.

b. Use this to show that, with α > 0, δn ↓ 0, Bn = (θ0,θ0 +δn),

dPΠ |B
n

dPn
θ0

(Xn)≥ 1−α

1+α

δn∧ (X(1)−θ0)

δn
,

for large enough n.





Chapter 8
Limits of random histogram systems

The material presented in this chapter combines the analysis of Bayesian methods
of previous chapters with [166], which reconsiders the theory of the Dirichlet prior
and other non-parametric Bayesian tools. In the non-parametric Bayesian exam-
ples of chapter 6, formulation of model and prior proceeds through parametriza-
tion: given a subset Θ of a (usually infinite-dimensional Banach or Hilbert) space
with Borel probability measure Π on Θ , the model P arises as the image of a
one-to-one mapping Θ → M1(X ) : θ 7→ Pθ that is measurable with respect to a
suitable σ -algebra on M1(X ) and often (Lebesgue-)dominated. The intrinsically
Bayesian random histogram limits we study in this chapter provide a direct (that
is, non-parametrized) formulation of Borel probability distributions on M1(X ) or
subspaces thereof. Based on a refining family A of partitions α = (A1, . . . ,AN) of
X with (user-specified) distributions Πα for the histograms (P(A1), . . . ,P(AN)),
one would like to discuss a random element P ∼ Π in M1(X ) with the property
that for each partition α , the marginal distribution of (P(A1), . . . ,P(AN)) matches
the prescribed Πα . Central in the choice of the distributions Πα is the condition of
coherence, which says that if β refines α and A ∈ α is the disjoint union of two
sets A1,A2 ∈ β , then the distribution of P(A1)+P(A2) under Πβ must match that of
P(A) under Πα . Analogous to Daniell-Kolmogorov existence (see theorem B.6.2),
one may expect any coherent system of marginal distributions Πα to have a corre-
sponding limit, but the situation for random measures is more complicated than for
random functions, as we shall see in detail in this chapter.

After some introductory remarks concerning random histograms, we start the
chapter with a discussion of two standard families of random histogram limits that
are used in non-parametric Bayesian statistics (see, for example [98, 99, 111] and
many more) and machine learning (see, e.g. [40] and others), called the Dirichlet
process distributions and the Pólya tree distributions. We consider both in some
detail, but refer to other sources for a more broad discussion of their applications.
Next we discuss tailfreeness and posterior consistency.

The issue we focus on primarily in this chapter, is the mathematical question
of existence of a limiting Π : given a directed set A of partitions α with a coher-
ent system of histogram distributions Πα , does there exist a corresponding random

233
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P ∼ Π in M1(X )? The question does not have a simple answer (like the Daniell-
Kolmogorov theorem) and many authors have given conditions for the existence of
Dirichlet and Pólya tree processes (some of which more appropriate and accurate
than others). In this chapter we focus on existence of general random histogram
limits as Radon probability measures for various topologies on M1(X ), and we
show that the support and approximative properties of random histogram limits
vary accordingly: inverse limit distributions that are Borel for the weak topology
can have a support that covers all of M1(X ), while random histogram limits that
are also Radon for the Le Cam-Schwartz topology are necessarily supported on
dominated subspaces. In combination with Kingman’s property of complete ran-
domness (which guarantees almost-sure discreteness of random measures), random
histogram limits occur in one of four ‘phases’ discussed in section 8.8.

To conclude we emphasize the constructive nature of the existence theorems pro-
vided: random histogram systems not only define but also approximate random mea-
sures. The approximative property has two large advantages, one computational and
one analytic: firstly histogram systems consist of finite-dimensional probability dis-
tributions, which we can simulate: the Dirichlet process, for example, derives much
of its immense popularity from its ease of numerical implementation and use, and
this considerable advantage extends to all histogram methods. The second advan-
tage lies in mathematical accessibility: the analyses of example histogram limits in
sections 8.9 and 8.10 are possible, only because calculations with finite-dimensional
random histograms are feasible, and limits of the results correspond to properties of
the infinite-dimensional histogram limits.

8.1 Inverse systems of random histograms

To start we consider some basic definitions and notation concerning directed sets
of partitions and histograms in subsection 8.1.1, and we consider random histogram
systems and coherence in subsection 8.1.2.

8.1.1 Histograms and histogram projections

In this chapter we let X be a topological sample space; ordinarily X is a space like
R or Rd , but functional data [225] takes its values in spaces of functions, curves,
manifolds or distributions (in principle, and in some sampled form in practice),
which we assume to be Hausdorff completely regular (and later, Polish). Dirich-
let process priors have been formulated for functional data as well, and the matter
of existence of random histogram limits has been raised (see Petrone, Guindani
and Gelfand (2009) [218]). Throughout this introductory subsection, however, we
equate X to R for concreteness. The space X has a (Hausdorff, Polish or com-
pact) topology T and a Borel σ -algebra we denote by B. We consider a collection
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A of partitions α of X that consist of a finite number of non-empty Borel sets:
α = {A1, . . . ,A|α|}. (| · | : A → N denotes the mapping that associates with any
partition α ∈ A its cardinality.) We order A partially by refinement: if α,β ∈ A
and β refines α , write α ≤ β ; and we assume that A forms a directed set (i.e.
for every α,β ∈ A there exists a γ ∈ A that refines both). We let A0 denote the
collection of all partitions of X into non-empty Borel sets. Naturally, α ≤ β im-
plies inclusion for the generated σ -algebras σ(α) ⊂ σ(β ) ⊂B. Let I(α) denote
the index set {1, . . . , |α|}. Furthermore, we associate with α a finite, discrete space
Xα = {e1, . . . ,e|α|} and a mapping ϕα : X → Xα , such that ϕα(x) = ei for all
x ∈ Ai. For all α ≤ β , we also define ϕαβ : Xβ →Xα such that ϕα = ϕαβ ◦ϕβ

(and ϕαα as the identity on Xα for all α), and define Jαβ (i)⊂ I(β ) to be such that
Ai = ∪ j∈Jαβ (i)B j for all i ∈ I(α). Initially we may think of A as the collection A0

of all finite measurable partitions of X , but later we restrict to smaller collections.
Together with the fact that A forms a directed set, the following property implies

that A is rich enough for histograms to fix measures on all of the Borel σ -algebra.

Definition 8.1.1. A set A of partitions of a Hausdorff topological space X is said
to resolve X , if the σ -algebra generated by the union of all sets A in all partitions
in A , is the Borel σ -algebra, i.e. if σ({A : α ∈A ,A ∈ α}) = B.

To formulate necessary conditions below, we also need a construction of partitions
in terms of a topological basis for X .

Definition 8.1.2. Let U be a topological basis for X . We say that a partition α (or
collection of partitions A ) is generated by the basis U , if, for (any α ∈A and) any
A ∈ α , A is the union of a finite number of subsets obtained through a finite number
of intersections of X with U or with X \U , (U ∈U ).

Example 8.1.3. In a topological space X with a countable basis U , we may con-
struct a sequence of refining partitions based on an enumeration of U : start with
α0 = {X }; for all n ≥ 1, intersect all sets in αn−1 with Un and X \Un, and then
define αn to consist of all non-empty such intersections. The resulting A = {αn :
n≥ 1} is a fully ordered set and A resolves X .

Consider X (or any of the discrete spaces Xα ) and recall definition C.8.6:
Cb(X ) (or C(Xα)) is the linear space of all bounded, continuous f : X →R (or fα :
Xα → R). With more general reference to appendix C.8, let Mb(X ) (or M(Xα))
denote the space of all bounded, signed Radon measures µ on X (or µα on Xα ).
Define the bilinear form ⟨µ, f ⟩ =

∫
f dµ (or ⟨µα , fα⟩α = ∑i∈I(α) fα(ei)µα(Ai)), to

place Cb(X ) in dual correspondence with Mb(X ) (or C(Xα) with M(Xα)). Def-
inition C.8.8 calls the resulting topology on Mb(X ) the weak topology TC. Let
M1(X ) ⊂M+(X ) denote the space of all Radon probability measures on X (or
analogue on Xα ). If X is a Polish space, then so are M+(X ) and M1(X ) (see
[49], Ch. IX, § 5, No. 4, prop. 10). Alternatively, we view Cb(X ) and Mb(X ) as
normed spaces, with the supremum norm ∥ · ∥∞,X (or ∥ · ∥∞,α ) and total-variational
norm ∥·∥1,X (or ∥·∥1,α )) respectively. We refer to the corresponding norm topology
on Mb(X ) as the total-variational topology, denoted TTV . Below we also consider
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Mb(X ) and M1(X ) in duality with the space of all bounded Borel-measurable
h : X → R. We refer to the corresponding topology on Mb(X ) as the Le Cam-
Schwartz topology, denoted T1. (We note that this is what is called the first Le Cam-
Schwartz topology in chapter 9.) The total-variational topology refines the Le Cam-
Schwartz topology and the Le Cam-Schwartz topology refines the weak topology
(see exercise 8.11.1).

To summarize the most basic requirements for X , A and M1(X ), we give the
following definition.

Definition 8.1.4. We say that X , A and M1(X ) satisfy the minimal conditions, if,

(i.) X and M1(X ) are Hausdorff topological spaces;
(ii.) A is a directed set of finite partitions of X in terms of non-empty, Borel mea-

surable sets; and,
(iii.) for any α ∈A and all A ∈ α , M1(X )→ [0,1] : P 7→ P(A) is Borel measurable.

With regard to the third requirement it is noted that, if the space X is a Polish space,
the mappings P 7→ P(G), (G ∈ B), are measurable with respect to the Borel σ -
algebra for the weak topology on M1(X ), To illustrate this, consider the following
example which plays a central role in section 8.7.

Example 8.1.5. Let X be a Polish space and consider M1(X ) as a topological
space with the weak topology (or finer). Then X is a Hausdorff completely reg-
ular space, so for any open G⊂X , the indicator function 1G : X → R equals the
upper envelope function for the family of all continuous functions it dominates (cf.
[47], Ch. XI, § 1, No. 6, prop. 5): 1G(x) = sup{ f (x) : f ∈ Cb(X ), f ≤ 1G} for all
x ∈X . By separability of X , there exists a monotone increasing sequence ( fn)
in Cb(X ) with 1G as its pointwise limit. Since, for any f ∈ Cb(X ), P 7→

∫
f dP

is weakly continuous, P 7→ P(G) =
∫

1G dP is the monotone limit of a sequence of
Borel measurable mappings and, as such, is itself Borel measurable. For any closed
subset of F , the indicator P 7→ P(F) (equal to 1−P(G), for some open G) is also
measurable, and the same holds for subsets C in the Borel σ -algebra on X , by
σ -additivity.

The Borel σ -algebra for the weak topology on M1(X ) is also the σ -algebra gener-
ated by the mappings P 7→ P(A), A ∈B (see exercise 8.11.13).

For any Borel probability measure P ∈M1(X ) on X , there exists a mapping on
A , α 7→ Pα =

(
P(A1), . . . ,P(A|α|)

)
, that takes a finite, measurable partition α of X

into the (α-)histogram associated with P. Collectively, the histograms {Pα : α ∈A }
are called the histogram system associated with P. Note that P(A1)+ . . .+P(A|α|) =
P(X ) = 1, so any Pα ∈M1(Xα) can be represented by an element of the simplex
(example 1.1.13) S|α| = {p ∈ R|α| : Σi pi = 1} (and we shall interchange these two
perspectives freely in what follows). Consider α,β ∈A such that β refines α . By
finite additivity of the measure P (see definition B.2.1), we have, for every A ∈ α ,

P(A) = P
(
∪B⊂AB

)
= ∑{P(B) : B ∈ β ,B⊂ A}, (8.1)

so the histograms Pα and Pβ are related through summation of probabilities for com-
ponents that are unified when partitions coarsen. Clearly, any probability measure
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P defines a collection of probability histograms related through (8.1) which, con-
versely, are enough to reconstruct P if A is rich enough, based on the Carathéodory
extension, theorem B.2.3). Figure 8.1 illustrates how a mixture of three Beta-
distributions is mapped to eight increasingly refined histograms, by repeated subdi-
visions of the interval [0,1] (a so-called dyadic tree of partitions, see section 8.10).

To give these observations regarding histograms formal expression, we make the
following definitions. For every α ∈ A , there exists a projection mapping ϕ∗α :
M1(X )→M1(Xα),

ϕ∗α(P) =
(
P(A1), . . . ,P(A|α|)

)
, (8.2)

that maps a probability distribution to its α-histogram. Based on (8.1), for all α,β ∈
A such that α ≤ β , there is a transition mapping ϕ∗αβ : M1(Xβ )→M1(Xα),

ϕ∗αβ (Pβ ) =

(
∑

B⊂A1

Pβ (B) , . . . , ∑
B⊂A|α|

Pβ (B)
)
, (8.3)

that maps β -histograms to α-histograms. Then ϕ∗αα is the identity for any α ∈A ,
and for any α ≤ β ≤ γ , we have,

ϕ∗αγ = ϕ∗αβ ◦ϕ∗βγ .

because, for all α ≤ β ≤ γ and all i ∈ I(α), Jαγ(i) = ∪{Jβγ( j) : j ∈ Jαβ (i)}. For all
α ≤ β ,

ϕ∗α = ϕ∗αβ ◦ϕ∗β . (8.4)

To conclude consider the following simple example, which randomizes a normal
histogram to demonstrate that conventional Bayesian model-prior constructions can
also be represented in random histogram formulation.

Example 8.1.6. Let P be the normal distribution N(µ,σ2) on (the Borel σ -algebra)
on R, for certain µ ∈ R, σ2 > 0. Let A consist of all partitions of R of the form,

α =
{
(−∞,a1],(a1,a2], . . . ,(aM−1,aM],(aM,∞)

}
, (8.5)

where M ≥ 0, a1 < a2 < .. . < aM with a1, . . . ,aM ∈Q. Then the α-histogram of P
is given by,

Pα =
(
Φµ,σ2(a1),Φµ,σ2(a2)−Φµ,σ2(a1), . . . ,1−Φµ,σ2(aM)

)
∈ SM+1, (8.6)

where Φµ,σ2 : R→ [0,1] denotes the distribution function of the normal distribution
N(µ,σ2). The collection of all histograms of the form (8.6) is rich enough to fix P
uniquely to be the normal distribution N(µ,σ2), because the ring R consisting of
the empty set and all finite unions of half-open intervals (a,b] with a,b ∈ Q, a < b
generates the Borel σ -algebra on R.
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Fig. 8.1 Histograms associated with a dyadic tree of refining partitions of the interval [0,1] for
the mixture of Beta-distributions 1

2 Beta(10,100) + 1
4 Beta(20,40) + 1

4 Beta(30,10). Randomiza-
tion of the number of components, mixing constants or Beta-parameters would result in random
histograms.

Now let Π be a prior probability distribution on Θ = R× (0,∞), and let θ =
(µ,σ2)∈Θ parametrize the family of all normal distributions on R: Pθ = N(µ,σ2).
Then, for every θ ∈ Θ and every α of the form (8.5), Pθ ,α is a histogram of the
form (8.6) and if we regard θ ∼ Π as random, then for every α ∈A , the resulting
histogram Pα is a random histogram with a distribution Πα on S|α|.
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8.1.2 Random histogram systems and coherence

Regarding random elements P ∈ M1(X ), we can project P onto its random his-
tograms, as formalized in the following proposition, which introduces a random
histogram systems and the notion of coherence.

Proposition 8.1.7. Let X , A and M1(X ) satisfy the minimal conditions and let Π

denote a Borel probability distribution on M1(X ) describing a random element P.
Then for every α ∈A0,

Pα := ϕ∗α(P) =
(
P(A1), . . . ,P(A|α|)

)
∼Πα , (8.7)

induces a random histogram Pα with probability distribution Πα on M1(Xα). If
α ≤ β , then Pα and Pβ are coherent, i.e., the distribution of Pα follows from that of
Pβ through summation as in (8.1).

Proof. By assumption, for every α ∈ A and every A ∈ α , M1(X )→ [0,1] : P 7→
P(A) is Borel measurable. Accordingly, Πα = Π ◦ϕ−1

∗α is a Borel probability distri-
bution on M1(Xα). Coherence (8.1) is a consequence of (8.4).

The main question for the latter half of this chapter may be paraphrased as
the converse of the above proposition: suppose that we provide distributions Πα

for random histograms Pα , for all α ∈ A . Under which conditions does a collec-
tion of (probability) histogram distributions define a random (probability) measure
(uniquely)? According to proposition 8.1.7, coherence is necessary.

Definition 8.1.8. Let X , A and M1(X ) satisfy the minimal conditions. For every
α ∈A , let Πα be a distribution for a random histogram Pα as in 8.7. Assume that
the resulting system of random histograms has the following property: if α ≤ β ,
then the distribution Πα follows from Πβ through summation as in 8.3, i.e.,

Πα = Πβ ◦ϕ
−1
∗αβ

(8.8)

Then we refer to (Πα ,ϕ∗αβ ) as a coherent (inverse) system of random histogram
distributions. If there exists a unique Radon probability distribution Π on M1(X )
with projections Πα for all α ∈A , then Π is called its random histogram limit.

For later reference, we define mean measures for Borel probability distributions on
M1(X ).

Definition 8.1.9. Let X , A and M1(X ) satisfy the minimal conditions. Consider
M1(X ) with a Borel probability measure Π . The mean measure G under Π is
defined pointwise,

G(A) =
∫

M1(X )
P(A)dΠ(P),

for every Borel set A in X . Its restrictions to the sub-σ -algebras σ(α) are denoted
Gα .
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The proof that G is a well-defined probability measure is left to the reader as ex-
ercise 8.11.2. Note that the restrictions Gα := G

∣∣
σ(α)

are mean measures for the

distributions Πα on M1(Xα): for any A ∈ α ,

G(A) =
∫

M1(X )
P(A)dΠ(P) =

∫
M1(X )

Pα(A)dΠ(P)

=
∫

M1(Xα )
Pα(A)dΠα(Pα) = Gα(A).

Remark 8.1.10. In the above we have abused notation slightly: for any probability
measure in M1(Xα), the domain is σ(Xα) rather than σ(α) ⊂ B. So when we
mean to refer to ϕ∗α(P)({ei}), we shall often use the more natural notation Pα(Ai)
instead.

8.2 Dirichlet priors and posteriors

But before we engage in existence questions, let us consider the most prominent
example, the so-called Dirichlet random histogram system Dirν with base measure
ν , which defines a random Borel probability set-function P : σ(A )→ [0,1] on the
real line. Dirichlet systems are coherent by construction, implying finite additiv-
ity of the random P directly. A deceptively simple argument for its σ -additivity is
given, but that argument does not constitute a proof and we postpone the actual
proof that Dirichlet random histogram systems define random probability measures
until section 8.7. In the second subsection we explore some of the properties of P in
a Bayesian setting, particularly we show that with i.i.d. data, a Dirichlet prior his-
togram system gives rise to a Dirichlet posterior histogram system and we consider
the resulting asymptotic composition of the posterior predictive distribution from a
frequentist perspective.

8.2.1 The Dirichlet process

Although there are other ways to construct the Dirichlet family of distributions (see,
for example, Blackwell and MacQueen (1973) [39]) here we depart from some
non-zero, bounded, positive Borel measure ν : B → [0,∞) on X = R and define
Dirichlet-distributed (recall section 3.6) random histograms Pα ∼Dir(ν(A1),...,ν(A|α|)),
for all finite partitions α of R into non-empty Borel measurable subsets A1, . . . ,A|α|⊂
R. Because of lemma 3.6.4 (particularly equation (3.20)), (finite) additivity of ν

guarantees that if another partition β refines α , the distribution of Pα follows from
that of Pβ through summation as in (8.1). In Ferguson (1973,1974) [98, 99], the
Daniell-Kolmogorov existence theorem (theorem B.6.2), is used to show that there
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exits a coupling P∼ Dirν for the random variables {P(A) : A ∈B}. This construc-
tion results in a random mapping P : B→ [0,1] that is finitely additive with Dirν -
probability one (see proposition 8.5.5).

Theorem 8.2.1. (Existence of the Dirichlet process)
Given a non-zero, bounded, positive Borel measure ν on R, there exists a unique
probability measure Dirν on the space of finitely-additive Borel probability set-
functions on R such that for P∼Dirν and every B-measurable partition (A1, . . . ,Ak)
of R, (

P(A1), . . . ,P(Ak)
)
∼ Dir(ν(A1),...,ν(Ak)). (8.9)

Proof. Let k ≥ 1 and B1, . . . ,Bk ∈B be given; note that here the Bi’s are arbitrary
and do not form a partition of R, in the sense that they may intersect and their union
may not cover all of R. First, we fix the marginal distribution for (P(B1), . . . ,P(Bk))
in terms of that of a partition: through the indicators 1Bi we define 2k new sets
Aν1...νk , with ν1, . . . ,νk ∈ {0,1}, as follows:

1Aν1 ...νk
(x) =

k

∏
i=1

1νi
Bi
(x)(1−1Bi

(x))1−νi ,

for all x ∈ R. Then the collection {Aν1...νk : νi ∈ {0,1},1 ≤ i ≤ k} does form a
partition α of R and from (8.9) we have the histogram marginals,

Pα =
(
P(Aν1...νk) : νi ∈ {0,1},1≤ i≤ k

)
∼ Dir(ν(Aν1 ...νk ):νi∈{0,1},1≤i≤k).

The distribution of the vector (P(B1), . . . ,P(Bk)) then follows from summing ap-
propriately over the νi’s:

(
P(B1), . . . ,P(Bk)

)
=

(
∑

{ν :ν1=1}
P(Aν1...νk), . . . , ∑

{ν :νk=1}
P(Aν1...νk)

)
, (8.10)

in accordance with (3.20). This defines all finite-dimensional marginal distributions
as needed in the Daniell-Kolmogorov theorem. To arrive at the underlying probabil-
ity space (Ω ,F ,Π), we have to verify the Kolmogorov consistency conditions (K1)
and (K2) of theorem B.6.2, which is a straighforward (albeit somewhat tedious) ex-
ercise that is done explicitly in Ferguson (1973,1974) [98, 99]: it is seen readily that
omission of one of the Bi’s reduces the number of components in the partition α by
a factor 2 and components sum appropriately; a permutation of the Bi’s amounts to
an analogous permutation of the binary indices νi, resulting in the required permu-
tation of the components of the finite-dimensional marginal distributions. Conclude
that there exists a probability space (Ω ,F ,Dirν) on which the stochastic process
{P(A) : A ∈ B} can be represented with finite dimensional marginals cf. (8.10).
Clearly the resulting random set-function P is finitely additive with Dirν -probability
one. Uniqueness of Dirν is trivial: for any other probability measure D′ on the space
of bounded, positive, finitely-additive Borel set-functions on R, there exits (a cylin-
der set on which Dirν and D′ differ and thence) a Borel set A such that the marginal
distribution for (P(A),P(X \A)) under D′ differs from (8.9).
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The resulting distribution Dirν is called the Dirichlet process distribution with base
measure ν . The conclusion of theorem 8.2.1 is somewhat disappointing because
we were hoping to define random probability measures, not just probability set-
functions that are finitely additive. The random quantity P is merely the sample-
path of Kolmogorov’s stochastic process. What remains, is to demonstrate Dirν -
almost-sure countable additivity of P. We follow the historical proof [98, 99] but
note beforehand that it contains a mistake. (Finding the mistake is left to the reader
as exercise 8.11.3.) Although the assertion of proposition 8.2.2 is true, it is surpris-
ingly hard to formulate a correct proof. Existence of Dirichlet histogram limits is
discussed in section 8.9.

Proposition 8.2.2. Given a bounded, positive Borel base measure ν on R, the
Dirichlet process distribution Dirν is concentrated entirely on the subspace of prob-
ability measures,

Dirν

(
P ∈M1(R)

)
= 1,

i.e. P is countably additive, Dirν -almost-surely.

Proof. Let (Bn) be a sequence in B that decreases to ∅. Since ν is countably addi-
tive, ν(Bn)→ 0, according to the continuity theorem for measures (theorem B.2.7).
Therefore, there exists a subsequence (Bn j) j≥1 such that ∑ j ν(Bn j) < ∞. For fixed
ε > 0, using Markov’s inequality,

∑
j≥1

Π
(
P(Bn j)> ε

)
≤ ∑

j≥1

1
ε

∫
P(Bn j)dDirν(P) =

1
ε

∑
j≥1

ν(Bn j)

ν(R)
< ∞,

according to lemma 3.6.6. From the first Borel-Cantelli lemma (lemma B.2.13), we
see that, for every ε > 0,

Dirν

(
limsup

j→∞

{P(Bn j)> ε}
)
= Dirν

(⋂
J≥1

⋃
j≥J

{P(Bn j)> ε}
)
= 0,

which shows that lim j P(Bn j) = 0, Dirν -almost-surely. Since, by Dirν -almost-sure
finite additivity of P,

Dirν

(
P(Bn)≥ P(Bn+1)≥ . . .

)
= 1,

we conclude that limn P(Bn) = 0, Dirν -almost-surely. Again using theorem B.2.7, P
is countably additive, Dirν -almost-surely.

The attentive reader will have noticed that measurability of the set C in the state-
ment of theorem 8.2.1 is mentioned but not specified. The (cylinder-set-generated)
domain of the probability measure of the Daniell-Kolmogorov theorem is the Borel
σ -algebra for the topology of pointwise convergence: P→ Q iff P(A)→ Q(A) for
all A ∈B.
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8.2.2 Conjugacy and discreteness of Dirichlet distributions

Although we have not reached the conclusion that the Dirichlet process distributions
live on the subspace of all probability measures in R, that conclusion is true as we
shall see later. For now we assume that P ∈M1(R), Dirν -almost-surely, and explore
the consequences from a Bayesian perspective. In particular, we show that with i.i.d.
data, a Dirichlet prior gives rise to a Dirichlet posterior (e.g. the Dirichlet family of
distributions is conjugate for any of the full models for i.i.d. samples X1, . . . ,Xn, see
definition 3.5.1).

Theorem 8.2.3. Fix n ≥ 1. Let X1, . . . ,Xn be an i.i.d. sample of observations in R.
Let ν be a bounded, positive Borel base measure on R with associated Dirichlet
process distribution Dirν , used as a prior for the distribution of a single-observation
Xi. For any measurable C ⊂M1(R) the posterior probability is given by,

Π
(

P ∈C
∣∣ X1, . . . ,Xn

)
= Dirν+∑

n
i=1 δXi

(C),

almost-surely.

This theorem has implications for consistency of posterior predictive distributions
associated with Dirichlet posteriors for i.i.d. data, as shown below. Although the
theorem is correct as stated, the proof we give below (which is customary in the
literature), is somewhat careless regarding the data-dependence of the posterior dis-
tribution. We return to this point in section 8.4, which addresses consistency more
comprehensively.

Proof. Denote νn = ν +∑
n
i=1 δXi . Let α = (A1, . . . ,Ak) be a Borel measurable par-

tition of R and consider the cylinderset,{
P ∈M1(R) : (P(A1), . . . ,P(Ak)) ∈ B

}
, (8.11)

where B lies in the k-fold product σ -algebra of the Borel σ -algebra on [0,1]. The
marginal prior for the histogram Pα is the Dirichlet distribution Dir(ν(A1),...,ν(Ak)),
and the model for the data is multinomial with likelihood,

Lα(P(A1), . . . ,P(Ak);X1, . . . ,Xn) =
n

∏
i=1

k

∏
j=1

P(A j)
1{Xi∈A j}.

The proof of theorem 3.6.8 can now be followed to the conclusion that the posterior
for (P(A1), . . . ,P(Ak)) is Dirichlet again, Dir(νn(A1),...,νn(Ak)). Finite unions of sets
of the form (8.11) form a ring that generates the (Daniell-Kolmogorov) domain
F for Dirichlet process distributions, so equality of the posterior to Dirνn for all
cylindersets implies equality of the posterior to Dirνn , according to the Carathéodory
extension, theorem B.2.3.

This theorem makes the Dirichlet process a very practical tool for data analysis
with the full, non-parametric model: one chooses a finite partition α of the real
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line that provides sufficiently high resolution in a bounded subset of interest (with
a single complementary set that can contain ‘outliers’, often chosen such that it
contains none of the data points). One then takes some base measure ν (for example,
some ‘best guess’ Q ∈ M1(R) the frequentist has for true distribution of the data,
normalized with a constant Λ > 0 of a size that reflects the degree of conviction
behind the above ‘best guess’: µ = Λ Q). One may then proceed to calculate the
posterior distribution for the α-histogram directly as Dir(µn(A1),...,µn(Ak)).

This simple perspective is also expressed through Bayesian point estimators for
the distribution of a single-observation Xi. Again, let X1,X2, . . . be an i.i.d. sample
of observations in R and let ν be a bounded, positive Borel measure on R with
associated Dirichlet process prior Dirν . Let B ∈B be given. Following the steps in
(3.23), the posterior predictive distribution (see definition 2.2.2), is then given by:

PDirν |Xn
(B) =

µ(R)
µ(R)+n

PDirν (B)+
n

µ(R)+n
1
n

n

∑
i=1

δXi(B),

almost-surely, where PDirν denotes the prior predictive distribution. With refer-
ence to decompositions (3.11) and (3.13), we see that the posterior predictive
distribution can be viewed as a convex combination of the empirical distribution
Pn = n−1

∑
n
i=1 δXi and a bias term PDirν (equal to Q in the above ‘best-guess’ sce-

nario),
PDirν |Xn

= λn PDirν +(1−λn)Pn, (8.12)

almost-surely. As a result, we see that,∥∥PDirν |Xn −Pn
∥∥

TV = λn
∥∥PDirν −Pn

∥∥≤ λn,

almost-surely. (Note that λn =Λ/(Λ +n) in the above ‘best-guess’ scenario, so that
larger values for Λ correspond to stronger bias.) Since λn→ 0 as n→ ∞, the differ-
ence between the sequence of posterior predictive distributions and the sequence of
empirical distributions converges to zero in total variation almost surely, as we let
the samplesize grow to infinity. Note that the estimator Pn for P, based on i.i.d. data
Xn = (X1, . . . ,Xn)∼ Pn, is almost-surely T1-consistent by the law of large numbers,
a fact that also underpins the existence results for tests in chapter 9.

One of the most prominent characteristics of a Dirichlet-distributed probability
measure is its almost-sure discreteness (see Blackwell (1973) [38]). In section 8.8.1,
this property is related to what is called complete randomness; here we use a disin-
tegration argument due to Berk and Savage (1979) [23], illustrated further in James
(2003) [139], that departs from the conjugacy of the Dirichlet family, theorem 8.2.3.
Let D(X ) denote the subset of all discrete distributions in M1(X ) (Remark: D(X )
is measurable for the σ -algebra generated by the weak topology (see [114], propo-
sition A.7), that is, under the minimal conditions of definition 8.1.4).

Proposition 8.2.4. Let ν be a bounded measure on X and assume that the Dirichlet
process defines a random probability measure P∼ Dirν . Then,

Dirν

(
P ∈ D(X )

)
= 1.
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Proof. A probability measure P is discrete if and only if all its mass is contained in
singletons, that is, P({x ∈ R : P({x})> 0}) = 1. If we consider P ∼ Dirν , then, by
Bayes’s Rule in the form of disintegration (2.4) (see also exercise 2.6.7), we may
condition on X rather than P to obtain,∫

P(P({X})> 0)dDirν(P) =
∫
R

∫
1{(x,P):P({x})>0} dΠ(P|X = x)dPDirν (x)

=
∫
R

∫
1{(x,P):P({x})>0} dDirµ+δx(P)dPDirν (x).

(8.13)

where PDirν denotes the prior predictive distribution. Since,

P({x})∼ Beta
(
µ({x})+1,µ(R)−µ({x})

)
,

if P∼Dirµ+δx , we have P({x})> 0, Dirµ+δx -almost-surely, so that the inner integral
in (8.13) evaluates to one, for every x ∈ R. Since P({x ∈ R : P({x})> 0})≤ 1, that
is possible only if Dirν

(
P ∈ D(R)

)
= 1.

8.3 Pólya tree distributions

Here we give only the briefest of introductions to Pólya tree distributions, for much
more see [170, 199, 175, 176] and the overviews in [115, 114].

8.3.1 Dyadic trees and Pólya tree histogram systems

The Pólya-tree distribution is defined through a sequence of refining partitions of
a Polish space X (usually R or the interval [0,1]), where in each step, every set
in the preceding partition is split in two subsets. To describe the resulting tree of
refinements, we define the following: for every m ≥ 0, we denote by Em the set
of all binary sequences ε of length m (and we denote the empty binary sequence
formally as ε∅, forming the only element of the set denoted E0). We also define the
set E = ∪m≥0Em of all finite binary sequences (including the empty one). For any
two binary sequences ε ∈ Em, ε ′ ∈ Em′ , we write εε ′ for the concatenation in Em+m′ .
In particular, for any ε ∈ Em, ε0 (ε1) in Em+1 appends a zero (one) to ε . Also note
that ε∅ε = εε∅ = ε for all ε ∈ E . We write out ε ∈ Em as ε = e1 . . .em, and use
the notation εl := e1 . . .el ∈ El for the projections onto the first 1 ≤ l ≤ m binary
digits. We also define, for any ε ∈ Em with em ∈ {0,1}, ε with the last digit flipped:
ε̂ = εm−1(¬em).

We use E to organise a refining sequence A = {αn : n ≥ 0} of partitions, α0 =
{X }, α1 = {A0,A1}, α2 = {A00,A01,A10,A11}, etcetera, into a dyadic tree, defining
αn = {Aε : ε ∈ En} and for all ε ∈ E , the disjoint union,
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Aε = Aε0∪Aε1. (8.14)

To guarantee that these partitions are generated by a basis, mostly we shall look
at refinement through intersection with basis sets and their complements, i.e. for
every ε ∈ E either Aε0 or Aε1 equals Aε ∩U for some element U in a basis U for
X . Note that in the case of a countable basis U , iterative application of the above
construction gives rise to a countable A = {αm : m≥ 1} that resolves X .

Example 8.3.1. A typical example of a dyadic tree of partitions starts with X =
[0,1] (or (0,1)) and partitions αm, m ≥ 1, consisting of 2m intervals of the forms
(l,u), [l,u), (l,u] or [l,u], where l = u− 2−m and u = 2−mk, k = 1,2 . . . ,2m: with
every step in the sequence of refinements, every existing interval is bi-sected at the
mid-point. Such partitions are generated by a basis and resolve X .

Example 8.3.2. We also specify a dyadic tree of partitions of R. Define a refining
sequence of partitions A = {αm : m ≥ 0} into intervals based on a strictly in-
creasing positive sequence 0 = a0 < a1 < a2 < .. ., am → ∞, as follows: A∅ = R,
A0 = (−∞,−a0), A1 = [a0,∞), A00 = (−∞,−a1), A01 = [−a1,a0), A10 = [a0,a1],
A11 = (a1,∞), and we continue splitting the outer-most intervals like this: for m≥ 2,
ε = 0 . . .0∈ Em, ε ′m = 1 . . .1∈ Em the elements Aεm0,Aεm1,Aε ′m0,Aε ′m1 ∈αm are given
by Aεm0 = (−∞,−am), Aεm1 = [−am,−am−1), Aε ′m0 = [am−1,am], Aε ′m1 = (am,∞)
(and, of course, suitable dyadic refinement into intervals of the intervening sets in
the partitions αm). Such partitions are generated by a basis and resolve R.

To arrive at random histogram distributions for the Pólya-tree, we define, for
every ε ∈ E , a so-called splitting variable Vε0 (and Vε1 = 1−Vε0) taking values in
[0,1] such that,

(i.) for any ε,ε ′ ∈ E such that ε ̸= ε ′, Vε0 is independent of Vε ′0;
(ii.) for every ε ∈ E , there exist βε0,βε1 > 0 such that Vε0 has a Beta(βε0,βε1) dis-

tribution.

(In case X = [0,1] we assign a separately chosen, fixed probability 0 ≤ p0 ≤ 1 to
{0} with Πα -probability one, for all α ∈A . As a default, we choose p0 = 0.)

Remark 8.3.3. Here and below, we extend the usual family of Beta-distributions
somewhat: we consider βε0 = ∞ and βε1 = ∞ and define Beta(∞,βε1) = δ1 for all
0 < βε1 < ∞; Beta(βε0,∞) = δ0 for all 0 < βε0 < ∞; and Beta(∞,∞) = δ1/2.

The splitting variables Vε0 are interpreted as random fractions that determine how
much of the probability mass of Aε goes to Aε0 and how much remains for Aε1, in
accordance with (8.14):

Vε0 = P(Aε0|Aε), Vε1 = P(Aε1|Aε).

Consequently, for every m ≥ 1, ε = e1 . . .em ∈ Em, the random probability for Aε

can be written as a product of independent fractions,

P(Aε) =Ve1Ve1e2 . . .Ve1...em =
m

∏
l=1

Ve1...el ,
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which fixes the histogram probability measures Παm on Xαm for all m≥ 1,(
P(Aε) : ε ∈ Em

)
∼Παm . (8.15)

By construction, the Παm are such that refinement and coarsening of partitions (cor-
responding to relations of the type (8.1)) are accommodated coherently. To have a
sub-class of relatively simple examples, we define so-called homogeneous Pólya-
tree systems.

Definition 8.3.4. Let A denote the a dyadic tree of partitions of X = (0,1] (or
[0,1]) as in example 8.3.1. A Pólya-tree system is called homogeneous, if we choose
βm > 0 for all m≥ 1, and set βε = βm, for all ε ∈ Em.

Accordingly, in a homogeneous Pólya-tree system, splitting variables are distributed
symmetrically around v = 1

2 and the mean measure G for any homogeneous Pólya-
tree system with a limit, is Lebesgue measure.

For later reference, we note the first two moments of the random variables P(Aε):
for every m≥ 1 and every ε ∈ Em, the mean measure equals,

G(Aε) :=
∫

M1(Xαm )
Pαm(Aε)dΠαm(Pαm)

=
∫ m

∏
l=1

Ve1...el dΠαm =
m

∏
l=1

βεl−1el

βεl−10 +βεl−11
,

(8.16)

by independence of the variables Vε0 and expectations of the Beta-distributions.
Expressed in terms of the parameters β , the second moment of P(Aε) takes the
form,∫

M1(Xαm )
Pαm(Aε)

2 dΠαm(Pαm) =
∫ m

∏
l=1

V 2
e1...el

dΠαm

=
m

∏
l=1

(
βεl−10βεl−11

(βεl−10 +βεl−11)2(βεl−10 +βεl−11 +1)
+

β 2
εl−1el

(βεl−10 +βεl−11)2

)
,

based on independence of the Vε0, the variances of the corresponding Beta-distributions
and (8.16).

8.3.2 A variety of Pólya tree distributions

The versatility of the family of Pólya tree distributions becomes clear when we
consider the variety of manifestations that make their appearance.

Example 8.3.5. Let us list some possible choices for the system of partitions and the
parameters βε , ε ∈ E with the properties of the random distributions that correspond
to the coherent system of measures they induce.
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(i) Consider X = [0,1] with a dyadic tree of partitions as defined in example 8.3.1.
If for all ε ∈ E ,

βε = βε0 +βε1,

then the resulting Pólya tree histograms are those of the Dirichlet process on
[0,1] with Lebesgue measure as its base measure (see Ferguson (1974) [99],
Lavine (1992) [175]).

(ii) Again considering X = [0,1] with a dyadic tree of partitions as defined in
example 8.3.1, choose βε = 1 for all ε ∈ E . With probability one, the resulting
random probability measure P is mutually singular with respect to Lebesgue
measure, but P({x}) = 0 for all x ∈ [0,1].

(iii) Again with X = [0,1] partitioned like above, choose βε = m2 for all ε ∈ Em,
all m ≥ 1. This choice induces a random probability distribution on M1([0,1])
that is almost-surely absolutely continuous with respect to Lebesgue measure.

(iv) To define also a counterexample, consider X = R with a dyadic tree of parti-
tions as defined in example 8.3.2, and for all m≥ 0, ε ∈ Em,

βε0 = cos
( 1

2 πx(ε)
)
, βε1 = sin

( 1
2 πx(ε)

)
,

where the Cantor mid-point function x : E → [0,1] is given in definition 8.10.4
(as mid-points of deleted intervals in the standard construction of the Cantor
space). It is shown in example 8.10.5 that Pólya tree random histograms defined
in this way form a coherent random histogram system that does not lead to a
Borel probability measure on M1(R) with the weak topology.

Distributions P as in (ii) in example 8.3.5 are called continuous-singular and have
distribution functions F : [0,1]→ [0,1] that are continuous but are, in every point,
either constant or non-differentiable. Examples can be supported, for example, on
subsets like the subset C of definition 8.10.4, which is homeomorphic to the Cantor
space and nowhere dense, uncountable and of Lebesgue measure zero.

Distributions P as in (iii) in example 8.3.5 were considered in Kraft (1964) [170].
The following example describes a random probability measure that is dominated
by Lebesgue measure with Π -probability one.

Example 8.3.6. Kraft devises random histograms on X = [0,1] as follows: we take
Z1,1 = 1/2 and for every n ≥ 2, we consider sets of independent random variables
{Zn,k :,k = 1,2, . . . ,2n − 1}, some of which are inherited from the previous set:
Zn,k = Zn−1,l (if k = 2l, 1 ≤ l ≤ 2n−1 − 1); and some of which are drawn inde-
pendently (if k = 1,3,5, . . . ,2n−1). At every level n ≥ 1, we obtain a set of 2n−1
independent random variables in this way, and we impose only that 0≤ Zn,k ≤ 1 for
all (n,k) and that all expectations are equal to 1/2. Denote the probability space for
the corresponding coupling by (Ω ,F ,Π) and let ([0,1],B,µ) denote the interval
[0,1], regarded as a probability space with Borel σ -algebra and Lebesgue measure.
Based on the sets of Zn,k, we give a pointwise definition of a random distribution
function Fn : [0,1]→ [0,1] for every n≥ 1, through a recurrence relation:
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F1(0) = 0, F1(1/2) = Z1,1 =
1
2
, F1(1) = 1,

Fn

( k
2n

)
=
(
1−Zn,k

)
Fn

(k−1
2n

)
+Zn,kFn

(k+1
2n

)
,

with linearly interpolated distributions functions,

Fn(x) = Fn

( k
2n

)
+2n

(
x− k

2n

)(
Fn

(k+1
2n

)
−Fn

( k
2n

))
,

for 2−nk < x < 2−n(k+1). Although organised differently, Pólya tree distributions
defined on [0,1] with partitions αn = {[0,2−n],(2−nl,2−n(l +1)] : l = 1,2, . . . ,2n−
1}, and Vε0 ∼ Beta(βε0,βε0) for some βε0 > 0 are of this type (if we condition
on Pα1(A1,1) = Pα1(A1,2), or let β∅0 → ∞). The sequence of random distribution
functions Fn describe random histograms on [0,1] and the question Kraft answered,
concerns a sufficient condition for the Fn to describe a limiting random distribution
function F that is dominated by µ .

Clearly, for all n ≥ 1 and 2−nk < x < 2−n(k+1), the derivative of Fn exists and
is equal to,

fn(x) =
dFn

dx
(x) = 2n

(
Fn

(k+1
2n

)
−Fn

( k
2n

))
,

and since Lebesgue measure of the sets {2−nk : 0≤ k ≤ 2n} equals zero,

Fn(A) =
∫

A
dFn(x) =

∫
A

fn(x)dx,

for every Borel measurable subset A of [0,1]. Kraft shows the following.

Theorem 8.3.7. If, for given random Fn ∼Π like above,

sup
n≥1

∫ (∫ 1

0
fn(x)2 dx

)
dΠ < ∞, (8.17)

then the probability densities fn converge to a random probability density f in
L1([0,1],B,µ), Π -almost-surely.

Proof. On the product probability space (Ω× [0,1],σ(F ×B),Π×µ), the random
variables fn : Ω × [0,1]→ [0,∞) form a martingale, since the expectations of the
random variables Zn,k are equal to 1/2. martingale convergence implies that there
exists a random variable f : Ω × [0,1]→ [0,∞) such that fn → f , Π × µ-almost-
surely. Denote the supremum in condition (8.17) by K. By the square-integrability
of fn with respect to Π , and the Cauchy-Schwartz and Chebyshev inequalities,
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fn>M

fn(ω,x)d(Π ×µ)(ω,x) =
∫ 1

0

∫
Ω

fn(ω,x)1{ fn(ω,x)> M}dΠ(ω)dx

≤
∫ 1

0

(∫
Ω

fn(ω,x)2 dΠ(ω)

)1/2

Π
(

fn(ω,x)> M
)1/2 dx

≤ 1
M

∫ 1

0

∫
Ω

fn(ω,x)2 dΠ(ω)dx≤ K
M
,

by Fubini’s theorem (see theorem B.3.9). Note that the right-hand side is indepen-
dent of n, so the left-hand side goes to zero uniformly in n, as M → ∞. Conclude
that the martingale fn is uniformly integrable and hence fn→ f in L1(Π×µ), which
amounts to (see [170] for the details),∫ 1

0

∣∣ fn(ω,x)− f (ω,x)
∣∣dµ(x)→ 0,

for Π -almost-all ω ∈Ω .

The occurrence of uniform integrability as a step in the proof of convergence, is not
accidental: in section 8.6 we shall see that (relative) compactness for the Le Cam-
Schwartz topology (manifesting as a requirement of uniform integrability) plays a
crucial role in proof of existence of random histogram densities.

Let us consider condition (8.17) in some more detail: for any x ∈ [0,1], there
exists a binary sequence (εi(x)), such that x = ∑

∞
i=1 2−iεi(x), and for all x ∈ [0,1]

such that x ̸= 2−1k for any n≥ 1, 0≤ k≤ 2n, there exists a sequence (ki(x)) such that
2−iki(x)< x< 2−i(ki(x)+1) for all i≥ 1. This defines (εi(x)), (ki(x)) for Lebesgue-
almost-all x ∈ [0,1] and for those x,

fn(x) =
n

∏
i=1

2
(
Zn,ki(x)+1

)1−εi(x)(1−Zn,ki(x)
)εi(x).

Consequently, for every x like above,

∫
fn(x)2 dΠ =

n

∏
i=1

4
(∫

Z2
n,ki(x)+1 dΠ

)1−εi(x)(∫
(1−Zn,ki(x))

2 dΠ

)εi(x)

,

Kraft uses this form to show that condition 8.17 is satisfied whenever,

∑
n≥1

max{VarΠ (Zn,k) : 1≤ k ≤ 2n−1}< ∞. (8.18)

To explain this condition at the heuristic level, one could say that condition (8.18)
imposes that the distributions for the random variables Zn,k (which play the same
role as the splitting variables Vε0 in the Pólya tree contruction), should concentrate
around their expectations 1/2 sufficiently fast to ‘spread out’ the probability mass
in the previous random histogram equitably enough for the resulting random proba-
bility measure F to be dominated by µ .
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In section 8.6 we consider a sufficient condition that is weaker than (8.18): in
subsection 8.6.2 it is shown that Pólya tree distributions Π exist as Radon measures
on M1([0,1]) with the Le Cam-Schwartz topology (see theorem 8.6.4), which im-
plies that the support of Π is dominated by the expected measure G. One verifies
easily that G is Lebesgue measure in Kraft’s example.

The conclusion of this subsection is that the Pólya tree family of random proba-
bility distributions has various widely differing manifestations. In the latter sections
of this chapter we shall see that this is ultimately due to the very same existence
issues we have been avoiding so far: depending on whether random histograms give
rise to a Borel probability measure on M1(X ) for the Le Cam-Schwartz or the weak
topology, domination plays a role or not.

8.4 Tailfreeness and posterior consistency

To assess the asymptotic behaviour of posteriors that are based on priors of the types
discussed in sections 8.2 and 8.10, we take a step back and first consider the much
simpler situation of i.i.d. data from a finite sample space, as in section 3.6: sub-
section 8.4.1 demonstrates posterior consistency in total variation for priors of full
support. Extending this, subsection 8.4.2 concerns consistency of posteriors for pri-
ors that have Freedman’s tailfreeness property [102, 95], like the Dirichlet process
priors section 8.2 and the Pólya tree priors of section 8.10.

8.4.1 Posterior consistency with finite sample spaces

First consider the situation where we observe an i.i.d. sample of random variables
X1,X2, . . . taking values in a space XN consisting of a finite number of points N.
Writing XN as the set of integers {1, . . . ,N}, we note that the space M1(XN)
of all probability measures P on the measurable space (XN ,2XN ) with the total-
variational metric (P,Q) 7→ ∥P−Q∥, is in isometric correspondence with the sim-
plex SN (see example 1.1.13) equipped with the L1-metric (p,q) 7→ ∥p− q∥ =
Σ N

k=1 |pk − qk| that SN inherits from RN (here, k 7→ pk denotes the density of
P ∈ M1(XN) with respect to the counting measure). We also define M′ = {P ∈
M1(XN) : P({k}) > 0,1 ≤ k ≤ N} (and the corresponding subset S′ = {p ∈ SN :
p(k)> 0,1≤ k ≤ N} in SN).

Proposition 8.4.1. If the data is an i.i.d. sample of XN-valued random variables,
then for any n≥ 1, any Borel prior Π : G → [0,1] of full support on M1(XN), any
P0 ∈M1(XN) and any ball total-variational ball B around P0, there exists an ε ′ > 0
such that,

Pn
0 ◁ e

1
2 nε2

PΠ |B
n , (8.19)

for all 0 < ε < ε ′.
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Proof. By the inequality ∥P−Q∥ ≤ −P log(dQ/dP), the ball B around P0 contains
all sets of the form K(ε) = {P∈M′ :−P0 log(dP/dP0)< ε}, for some ε ′ > 0 and all
0< ε < ε ′. Fix such an ε . Because the mapping P 7→−P0 log(dP/dP0) is continuous
on M′ and M′ is dense in M, there exists an open neighbourhood U of P0 in M such
that U ∩M′ is non-empty and U ∩M′ ⊂ K(ε). Since both M′ and U are open and
Π has full support, Π(K(ε))≥Π(U ∩M′)> 0. With the help of example 7.2.2, we
see that for every P ∈ K(ε),

e
1
2 nε2 dPn

dPn
0
(Xn)≥ 1,

for large enough n, P0-almost-surely. Fatou’s lemma again confirms that condi-
tion (ii) of lemma 7.2.3 is satisfied. Conclude that assertion (8.19) holds.

Together with a uniform test sequence of exponential power, this leads to posteriors
that are consistent almost-surely, analogous to Schwartz’s theorem 6.3.1.

Theorem 8.4.2. Let XN be a sample space containing a finite number of points and
let X1,X2, . . . be an i.i.d. sample of observations in XN , distributed according to
some distribution P0 ∈M1(XN). Endow M1(XN) with the total-variational metric.
For any prior Π on M1(XN) that is of full support, the posterior distribution is
consistent, almost-surely.

Proof. Define for given δ > 0, consider the hypotheses,

B = {P ∈M : ∥P−P0∥< δ}, V = {Q ∈M : ∥Q−P0∥> 2δ}.

Noting that M1(XN) is compact (or with the help of the simplex representation
SN) one sees that entropy numbers of M1(XN) are bounded, so the construction of
example 7.4.5 shows that uniform tests of exponential power e−nD (for some D > 0)
exist for B versus V . Application of proposition 8.4.1 shows that the choice for an
0 < ε < ε ′ small enough, guarantees that Π(V |Xn) goes to zero in Pn

0 -probability.
Conclude that the posterior resulting from a prior Π of full support on M1(XN) is
consistent in total variation.

8.4.2 Tailfreeness and posterior consistency

We have analysed consistency of posteriors on finite sample spaces, because re-
striction of a (random) P ∈ M1(X ) to (the σ -algebra generated by) a partition α ,
effectively reduces P to a probability measure Pα on a finite sample space Xα that
can be associated with α . Restriction to partitions corresponds to what practitioners
induce when they decide to bin the data.

Fix a finite, measurable partition α of a sample space X , denote its cardinality
by |α| and its elements by A1, . . . ,A|α|. For every n ≥ 1, denote by σα,n the finite
sub-σ -algebra of Bn generated by products of the form Ai1 ×·· ·×Ain ⊂X n, with
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1 ≤ i1, . . . , in ≤ |α|. Take N = |α| and identify the finite sample space XN of sub-
section 8.4.1 with an arbitrary basis of orthogonal unit-vectors {e1, . . . ,eN} in RN .
Write Xα for this space XN and define the projection ϕ ′α : X →Xα by,

ϕ
′
α(x) =

(
1{x ∈ A1}, . . . ,1{x ∈ AN}

)
. (8.20)

Note that if α,β ∈A and β refines α , then (in the notation defines before (8.1)),

1Ai(x) = 1∪ j∈J
αβ

(i)B j(x) = ∑
j∈Jαβ (i)

1B j(x),

for all x ∈X . Therefore, ϕαβ : Xβ →Xα that map unit vectors e j ∈Xβ to ei ∈
Xα if j ∈ Jαβ (i), define maps such that (Xα ,ϕαβ ) is an inverse system in the set-
theoretic sense (see definition C.5.1), and (with the discrete topology) also in the
topological sense.

We view Xα (respectively X n
α ) as a probability space, and identify its powerset

σα with the σ -algebra σα,1 in B (respectively σα,n in Bn). Probability measures
on Xα are denoted Pα : σα → [0,1] and we identify such Pα with elements of S|α|
as we did in subsection 8.4.1. Given some P ∈ M1(X ), the projection ϕ ′α maps
the X -valued random variable X defined by P(X ∈ A) = P(A) for all A ∈B to a
Xα -valued random variable Zα = ϕ ′α(X) with distribution P(Zα ∈ A) = Pα(A) =
(ϕ∗α(P))(A) for all A ∈ σα . When this projection is applied to an i.i.d. sample of
n≥ 1 observations, we obtain Zα

n = (ϕ ′α(X1), . . . ,ϕ
′
α(Xn)) in Xα

n.
A special class of inverse limit priors is the class of tailfree priors (Fabius (1964),

Freedman (1965) [95, 102]), defined as follows.

Definition 8.4.3. Let (P,G ) be a measurable model on a measurable space (X ,B),
with partitions α ∈A and random histograms distributed according to Πα , α ∈A .
Such an inverse system of measures is said to be tailfree , if for all α,β such that
β refines α , the following holds: the random vector (P(B j|Ak) : 1 ≤ k ≤ |α|, j ∈
Jαβ (k)) is independent of (P(A1), . . . ,P(A|α|)). If a tailfree inverse system of mea-
sures has an inverse limit measure Π , then Π is said to be tailfree.

Although somewhat technical in its formulation, explicit control of the choice for the
Πα renders this definition quite feasible in practice. The usefulness of tailfreeness
derives from the following property.

Proposition 8.4.4. If an inverse system Πα , α ∈ A , is tailfree and has an inverse
limit prior Π with posterior Π(·|Xn) given n≥ 1 and Xn ∈X n, then the posterior
is tailfree and the mapping Xn 7→Π(A|Xn) is σα,n-measurable for every α ∈A and
A ∈ α .

Proof. See Freedman (1963) [101] or Ghosal and van der Vaart (2017) [114], theo-
rems 3.14 and 3.15.

The main consequence of proposition 8.4.4 is that, for tailfree priors, binning of
the data with ϕ ′α followed by conditioning on Zn

α to obtain the posterior for the
histogram Pα , leads to the same posterior as conditioning on the data Xn followed by
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histogram projection with the mapping ϕ∗α , as expressed in the following corollary.

Corollary 8.4.5. Let Πα , α ∈A , be a tailfree inverse system with an inverse limit
prior Π and posterior Π(·|Xn) given n ≥ 1 and Xn ∈X n. For given α ∈ A and
every Borel subset V of S|α|,

Π(ϕ−1
∗α (V )|Xn) = Π(V |ϕ ′α(Xn)),

PΠ
n -almost-surely.

Proof. Let Πα denote a Borel prior on S|α|. By definition 2.1.7, the posterior on S|α|
given Zα

n = zα
n ∈X n

α is a Borel probability measure denoted Πα(·|Zα
n = zα

n),
which satisfies, for all A ∈ σ|α|,n and any Borel set V in S|α|,∫

A
Πα(V |Zα

n = zα
n)dPΠα

n (zα
n) =

∫
V

Pn
α(A)dΠα(Pα).

In the model for the original i.i.d. sample Xn, Bayes’s rule takes the form, for all
A′ ∈Bn and all measurable subsets V ′ of M1(X ),∫

A′
Π(V ′|Xn = xn)dPΠ

n (xn) =
∫

V ′
Pn(A′)dΠ(P),

defining the posterior for P. Now specify that V ′ is the pre-image ϕ−1
∗α (V ) of a Borel

measurable V in S|α|: if the prior Π is tailfree, then proposition 8.4.4 says that the
data-dependence of the posterior for such a V ′, Xn 7→Π(V ′|Xn), is measurable with
respect to σα,n. So there exists a function gn : X n

α → [0,1] such that,

Π(V ′|Xn = xn) = gn(ϕ
′
α(x1), . . . ,ϕ

′
α(xn)),

for PΠ
n -almost-all xn ∈X n. Then, for given A′ ∈ σα,n (with corresponding A in the

Borel σ -algebra on Sn
|α|),∫

A′
Π(V ′|Xn)dPΠ

n =
∫

Pn(1A′(X
n)Π(V ′|Xn))dΠ(P)

=
∫

Pn
α

(
1A(Zα

n)gn(Zα
n)
)

dΠα(Pα) =
∫

A
gn(Zα

n)dPΠα
n ,

while also, ∫
V ′

Pn(A′)dΠ(P) =
∫

V
Pn

α(A)dΠα(Pα).

This shows that Zα
n 7→ gn(Zα

n) is a version of the posterior Πα(·|Zα
n) on S|α|.

Corollary 8.4.5 implies that for tailfree priors, questions of posterior consis-
tency or concentration can be analysed by considering posterior convergence only
in the partitions forming the inverse system. Denote the true distribution of a sin-
gle observation from the i.i.d. sample Xn by P0 ∈M1(X ). For any V ′ of the form
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ϕ−1
∗α (V ) for some α and a neighbourhood V of P0,α = ϕ∗α(P0) in S|α|, the ques-

tion whether Π(V ′|Xn) converges to one in P0-probability reduces to the question
whether Π(V |Zn

α) converges to one in P0,α -probability. Remote contiguity then only
has to hold in the projected S|α|, as in subsection 8.4.1.

Alternatively, note directly that, because Xn 7→Π(V ′ |Xn) is σα,n-measurable for
any V ′ = ϕ−1

∗α (V ), remote contiguity (as in definition 7.2.1) needs to hold only for
φn : X n → [0,1] that are measurable with respect to σα,n (rather than Bn) for ev-
ery n ≥ 1. That conclusion again reduces the remote contiguity requirement nec-
essary for the consistency of the posterior for the parameter (P(A1), . . .P(AN)) to
that of the posterior applicable to data from the finite sample space Xα , like in sub-
section 8.4.1. Full supports of the priors Πα then guarantee remote contiguity for
exponential rates as required in condition (ii) of theorem 7.4.1. The uniform tests
of exponential power for weak neighbourhoods, as in proposition A.0.6, complete
the proof that tailfree priors lead to consistent posterior distributions. Hence consis-
tency of the posteriors Πα(·|Zn

α) for all α implies that the full posterior Π(·|Xn) is
consistent in the inverse limit topology that the inverse system of topological spaces
(Sα : α ∈A ) induces on M1(X ) (recall definition C.5.2 and proposition C.5.4).

Theorem 8.4.6. Let Πα be a tailfree, coherent inverse system of priors of full sup-
port on the simplices S|α|, with inverse limit Π . Then the posterior is consistent in
the inverse limit topology, i.e. for every P0 ∈M1(X ),

Π(U |Xn)
P0-a.s.−−−−→1,

where U is any inverse limit neighbourhood of P0.

Proof. According to proposition C.5.4, for any inverse limit neighbourhood U of P0
there exists an α and a neighbourhood U ′ of ϕ∗α(P0) in S|α| such that ϕ∗α(U ′)⊂U .
Because under the assumptions,

Πα(U ′|Zα
n)

P0,α -a.s.
−−−−−→1,

according to theorem 8.4.2, and,

Π(U |Xn = xn)≥Π(ϕ∗α(U ′)|Xn = xn)

= Πα(U ′|ϕ ′α(x1), . . . ,ϕ
′
α(xn)) = Πα(U ′|Zα

n = zα
n),

for all xn ∈X n, the assertion is proved.

This is the first instance where the exact choice for the collection A becomes im-
portant. So far in this chapter, it has been only beneficial to work with the maximal
A =A0, in line with the central Dirichlet example of theorem 8.9. Moreover propo-
sition 8.1.7 asserts that if a limit exists for a smaller A (e.g. the dyadic examples
in section 8.10), then the histogram system can always be extended to include all of
A0. In the above theorem 8.4.6, however, the condition that Πα has full support, is
formulated for all α ∈ A . Then A that are large enough to have a unique inverse
limit Π but otherwise as small as possible, are preferable.
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Note that the inverse limit topology on M1(X ) depends heavily on the choice
for A : for example, if we include all of A0, for every Borel measurable A ∈ B,
the mapping M1(X )→ [0,1] : P 7→ P(A) is continuous (rather than measurable,
as in definition 8.1.4). The corresponding inverse limit topology on M1(X ) is the
Le Cam-Schwartz topology. Then the requirement that priors Πα have full support
for all α ∈ A , becomes untenable in many examples, for example in the case of
a Dirichlet process distribution (if α contains a non-empty Borel set A to which
the base measure ν assigns ν(A) = 0, then Dirν(P(A) > 0) = 0), even though the
Dirichlet histogram system is tailfree (see exercise 8.11.7).

As we shall see in the latter sections of this chapter, examples like the Dirich-
let process cannot be realised as Borel probability measures on M1(X ) for the
Le Cam-Schwartz topology. Other such examples exist, but they describe random
densities relative to the mean measure G. To define histogram limits like the Dirich-
let process distribution, we assume that X is Polish and the directed set A consists
only of partitions that are generated by the basis (see definition 8.1.2 below). Then
the inverse limit topology is the weak topology and the condition of theorem 8.4.6
become feasible again. As a result we have the following consistency theorem for
Dirichlet process distributions.

Corollary 8.4.7. Given a bounded, positive Borel measure ν on R of full support,
the posterior associated with the Dirichlet prior Dirν is consistent in the weak topol-
ogy.

8.5 Existence of inverse limit measures

Existence of the Dirichlet process prior of subsection 8.2.1, defined in terms of the
random histograms (8.9), was left as an open issue following lemma 8.2.2 (see exer-
cise 8.11.3). In subsection 8.5.1 we discuss various existence results from stochastic
analysis as well as from the Bayesian non-parametric literature. In subsection ?? we
consider a necessary and sufficient condition for the existence of limits for inverse
systems of random histograms in detail, which we use in subsequent sections to
prove the existence of the Dirichlet and Pólya-tree families of priors, and to con-
sider their supports in the weak topology, the Le Cam-Schwartz topology and the
total-variational topology in subsequent sections.

8.5.1 A variety of existence results

The literature on Bayesian non-parametric statistics and the literature on stochas-
tic analysis have formulated a wide variety of conditions for the existence of in-
verse limit measures, more or less independently. First explorations of the subject
in stochastic analysis date back to the 1950’s, starting with Bochner (1955) [41] and
Choksi (1958) [58], who formulate the classical Bochner-Kolmogorov conditions
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for existence of a random distribution function on R. To formalize earlier develop-
ments and to state Bochner’s theorem, the following definitions are given first (see
also definition C.5.2). The index set I is assumed to be a directed set with order
relation ≤.

Definition 8.5.1. Let (Yα ,ϕαβ ) be an inverse system of topological spaces with
inverse limit Y and continuous projections ϕα : Y → Yα . Denote the Borel σ -
algebra’s on the spaces Yα by Bα for all α ∈ I, and the Borel σ -algebra on Y
by B. A collection of Borel measures µα ∈ M(Yα ,Bα) is said to be a (coherent)
inverse system of measures, if for all α,β ∈ I with α ≤ β , µα = µβ ◦ϕ

−1
αβ

.

This definition is elaborated upon in proposition 8.5.5. The following common con-
dition on the inverse system of spaces Yα is there to guarantee that the inverse limit
space Y is not empty.

Definition 8.5.2. An inverse system of topological spaces (Yα ,ϕαβ ) is said to be
sequentially maximal if for every increasing sequence α1 ≤ α2 ≤ . . . in I and yn ∈
Yαn such that ϕαnαn+1(yn+1) = yn, there exists a y ∈ Y such that ϕαn(y) = yn for all
n≥ 1.

Bochner’s theorem (see Bochner (1955), [41]) can then be stated as follows.

Theorem 8.5.3. Let (Yα ,ϕαβ ) be an inverse system of Hausdorff topological spaces
with inverse limit Y . Assume that (Yα ,ϕαβ ) is sequentially maximal and let Πα ,
α ∈ I, be a coherent system of inner-regular probability measures on the spaces
Yα . Let B denote the σ -algebra on Y , generated by the collection of all ϕ−1

α (Bα),
α ∈ I. Then there exists a probability measure Π on (Y ,B) such that Πα =Π ◦ϕ−1

α

for all α ∈ I.

Choksi (1958) specializes to compact Hausdorff spaces and does not rely on the no-
tion of sequential maximality. Other approaches based on notions of inner regular-
ity are considered in Metivier (1963) [202], Schwartz (1973) [239], Bourbaki (2010)
[49] and discussed comprehensively in Rao (1981) [228] and Bogachev (2007) [42].
Definitions of measure-theoretic inverse limit constructions that (mostly) by-pass
topological notions and result in probability measures on the inverse limit space
of finitely additive set-functions (rather than its subspace M 1(X ) of probability
measures) are presented in Mallory and Sion (1971) [197], Rao (1971) [227], Pintér
(2010) [222], and Beznea and Cimpean (2014) [26].

Limits of systems of random histograms in the Bayesian non-parametric litera-
ture start with the seminal work of Freedman (1963,1965) [101, 102] and Fabius
(1964) [95] and the notion of tailfreeness introduced there. The work of Kingman
(1967,1975) [154, 155] on completely random measures forms a leading example
in this context and is continued with Ferguson (1973,1974) [98, 99] who defines the
Dirichlet process as a normalized completely random measure, with an existence
proof based on Kolmogorov’s theorem and the argument put forth in lemma 8.2.2.
Alternative methods to construct the Dirichlet, Pólya-tree and an array of other con-
crete families of priors on the full model (e.g. Pólya urn, Gibbs type, stick-breaking,
Chinese restaurant and Indian buffet processes) have been studied extensively and
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imply their own, specific proofs of existence (for overviews, see [221, 67, 114]).
Ghosh and Ramamoorthi (2003) [115] construct priors with Kraft-type conditions
on an inverse system for distribution functions on R and prove existence. Based
on Harris’s theorem [128], Orbanz (2011) [214] requires that there exist a Borel
measure G with histogram projections Gα such that,

Gα(A) =
∫

Pα(A)dΠα(Pα), (8.21)

for all partitions α and all A∈ α . Note that the (quite generally accepted) conditions
that the random P satisfies,

Π
(
0≤ P≤ 1 is σ -additive

)
= 1, (8.22)

or that the set-function G : B→ [0,1],

G(A) :=
∫

P(A)dΠ(P),

defines a Borel measure, both conditions refer to Π before proving it exists as a
measure. That can only be justified if we take a Daniell-Kolmogorov-type existence
assertion like that of theorem 8.2.1 for granted.

8.5.2 The Bourbaki-Prokhorov-Schwartz theorem

The conditions we derive in subsequent sections are based on a theorem from
Schwartz (1973) [239] (referred to as Prokhorov’s theorem in [49]), which says
that the existence of a limiting positive Radon measure in inverse systems of posi-
tive measures is equivalent to a form of inner regularity that holds for all projections
simultaneously. This leads to characterization of those inverse systems (Πα ,ϕ∗,αβ )

that consistently define Radon probability measures Π on M1(X ) with various
topologies.

To discuss the Bourbaki-Prokhorov-Schwartz theorem, we first have to gener-
alize somewhat: let A be a directed set, assume that Yα , α ∈ A , are Hausdorff
topological spaces and that for any α ≤ β , there exist continuous, surjective tran-
sition mappings ψαβ : Yβ → Yα . Together, they form an inverse system of Haus-
dorff spaces (see [46], Ch. I, § 4, No. 4, [46], Ch. I, § 2, No. 3, Prop. 4), denoted
(Yα ,ψαβ ). If T denotes a Hausdorff topological space, a family of (projection) map-
pings ψα : T →Yα , α ∈A , is said to be coherent if, for all α ≤ β , ψα = ψαβ ◦ψβ ,
and it is said to be separating if, for all x,y ∈ T , x ̸= y, there exists an α ∈A such
that ψα(x) ̸= ψα(y).

Theorem 8.5.4. (Bourbaki-Prokhorov-Schwartz)
Let (Yα ,ψαβ ) be an inverse system of Hausdorff topological spaces indexed by
α ∈ I, T a Hausdorff topological space and ψα : T → Yα a coherent and separat-
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ing family of continuous mappings. Let (µα ,ψαβ ) be a coherent inverse system of
positive measures on (Yα ,ψαβ ). There exists a bounded positive Radon measure µ

on T projecting to µα for all α ∈ I, if and only if the following property is satisfied:

for every ε > 0, there is a compact H ⊂ T such that for all α ∈ I,

µα

(
Yα \ψα(H)

)
≤ ε. (P)

When (P) holds, the measure µ is uniquely determined and µ(L)= inf
{

µα(ψα(L)) :
α ∈ I

}
for every compact set L in T .

Proof. See theorem 1 of [49], Ch. IX, § 4, No. 2.

If all conditions of theorem 8.5.4 are met, except the system of functions ψα is not
separating, then a measure µ exists but may not be unique.

Bourbaki [49] continues with application to a proof of existence of Wiener mea-
sure and Kolmogorov’s perspective, and the definition of so-called promeasures
(also commonly known as cylinder set measures) which can be compared with the
coherent histogram systems we define below: for a locally convex space E, [49],
Ch. IX, § 6 considers the collection of all linear subspaces V of finite co-dimension
in E with continuous projections pV : E→ E/V (and canonical PVW : E/W → E/V
for W ⊂ V ), to introduce (E/V, pVW ) as the inverse system of finite-dimensional
quotients. A coherent system of positive measures ΠV on the finite-dimensional
spaces E/V , (ΠV , pVW ), is called a promeasure on E. It is noted that [49], Ch. IX,
§ 6, No. 8–10 formulates a sufficient condition, (Minlos’s theorem, [49], Ch. IX, § 6,
No. 10, Theorem 2 (based on [203]), but it appears difficult to apply unless E is a
(barrelled) nuclear space.

In subsequent sections, we apply theorem 8.5.4 directly to spaces of (bounded/signed/-
positive/probability) measures with various topologies, limiting the inverse system
of finite-dimensional quotients and promeasures, to inverse systems of partitions
and random histograms. Let us prepare the discussion with some specifications per-
taining to the situation where X , A and M1(X ) satisfy the minimal conditions and
I =A , T = M1(X ), Yα = M1(Xα) and ψαβ = ϕ∗αβ , in the form of the following
proposition.

Proposition 8.5.5. Let X , A and M1(X ) satisfy the minimal conditions. For all
α ≤ β , the mappings ϕ∗αβ : M1(Xβ )→ M1(Xα), are continuous and surjective,
and (M1(Xα),ϕ∗αβ ) forms an inverse system of compact Hausdorff topological
spaces, with non-empty, compact Hausdorff inverse limit N.

Proof. Let α ≤ β be given. For any g ∈ C(Xα), the mapping g ◦ϕαβ : Xβ → R
is an element of C(Xβ ). Because ϕαβ is surjective, the induced mapping ϕ∗

αβ
:

C(Xα)→C(Xβ ) is a bounded linear operator (with norm equal to one). The trans-
pose mapping ϕ∗αβ : M(Xβ )→M(Xα) is defined by,

⟨ϕ∗αβ (µβ ),g⟩α = ⟨µβ ,ϕ
∗
αβ

(g)⟩β = ⟨µβ ,g◦ϕαβ ⟩β , (8.23)

for all µβ ∈ M(Xβ ) and g ∈ C(Xα). The linear mapping ϕ∗αβ is bounded (with
norm less than or equal to one) and surjective. Note that if we express µβ as a vector
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(µβ ,1, . . . ,µβ ,|β |) in R|β |,

⟨µβ ,g◦ϕαβ ⟩β = ∑
j∈I(β )

µβ , j g(ϕαβ (e j)) = ∑
i∈I(α)

(
∑

j∈Jαβ (i)
µβ , j

)
g(ei)

= ∑
i∈I(α)

ϕ∗αβ (µβ )ig(ei).

in accordance with (8.3). Finally, it is noted that inverse limits of non-empty, com-
pact spaces are non-empty and compact (see [46], Ch. I, § 9, No. 6, Prop. 8).

The space N consists of finitely additive probability set-functions on the σ -algebra
generated by the partitions in A . Existence theorems for inverse limit probability
measures on associated inverse limit spaces like N have been studied extensively:
Bochner’s theorem (Bochner (1955) [41]) and Choksi’s theorem (Choksi (1958)
[58]) give relatively mild sufficient conditions for the existence of a limiting prob-
ability measure Π on N for inverse systems of Radon probability spaces (see also,
[227, 228, 26]). But although M1(X ) (with the Le Cam-Schwartz topology of sec-
tion 8.6) is homeomorphic to a subspace of N, it has proven difficult to formulate an
additional condition to specify that Π is concentrated on the image of M1(X ) in N
(see, however, [98, 115, 114] and the correct proof of the mean-measure condition
in [214]). One of the strengths of the Bourbaki-Prokhorov-Schwartz theorem is that
T = M1(X ) is projected directly onto the spaces Yα = M1(Xα), without detour
via the inverse limit N. In that way, theorem 8.5.4 avoids the (attractive but mislead-
ing) suggestion that a probability distribution Π on N is an easy way to get ‘close
to’ the desired distribution on M1(X ). By insisting only on continuous projections
T → Yα , theorem 8.5.4 focusses on inner regularity as the central issue. (Compare
[239, Theorem 21] and [49], Ch. IX, § 4, No. 2, Theorem 1.)

8.5.3 Domination, histogram densities and total variation

In dominated families of probability measures, convergence of histogram systems
coincides with martingale convergence of Radon-Nikodym densities (see also, [64,
appendix A1.6]). Due to the monotony of the relation α 7→ σ(α), F = {σ(α) : α ∈
A } is a directed filtration. Furthermore, if A resolves X the limit of the filtration
F (which has the union of all σ(α), (α ∈A ), as a generating ring), is equal to the
Borel σ -algebra B on X .

Let P,Q ∈M1(X ) be given and assume that P≪ Q, so that P has a (Q-almost-
everywhere unique) Radon-Nikodym density p : X → [0,∞) with respect to Q.
Consider the σ(α)-measurable functions pα : X → [0,∞), defined by,

pα(x) = ∑
A∈α

(
1

Q(A)

∫
A

p(y)dQ(y)
)

1A(x), (8.24)
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for Q-almost-all x ∈X (particularly, if Q(A) = 0, for some A ∈ α , then the corre-
sponding term proportional to 1A is (Q-almost-everywhere equal to 0 and therefore)
not included in the sum). We may define, for every α ∈A , the Q-dominated prob-
ability measure PQ,α : B→ [0,1]:

PQ,α(B) =
∫

B
pα(x)dQ(x), (8.25)

for all B ∈B, where it is noted that, for all A ∈ α , PQ,α(A) = P(A) (“= Pα(A)”, in
a slightly abusive but natural notation that we introduce in (8.1.10)).

Lemma 8.5.6. Let X , A and M1(X ) satisfy the minimal conditions and assume
that A resolves X . Then, for any P ∈M1(X ) and any dominating Q ∈M1(X ),
PQ,α converges to P in total variation.

Proof. The Radon-Nikodym density function pα is Q-almost-everywhere equal to
the σ(α)-measurable conditional expectation E[p|σ(α)] : X → [0,∞), and as such,
the pα form a non-negative, uniformly integrable Doob martingale relative to the
filtration F . Since A resolves X , Doob’s martingale convergence guarantees that
limα pα = p in L1(X ,B,Q). The assertion now follows from the fact that, for
Q-dominated probability measures P and PQ,α , the total variational norm of their
difference is proportional to the L1(Q)-norm of the difference between densities:

∥P−PQ,α∥1,X = 1
2

∫ ∣∣p(x)− pα(x)
∣∣dQ(x), (8.26)

for all α ∈A .

The above martingale convergence of densities has implications for the total-
variational norm that we shall appeal to in sections 8.6 and ??.

Proposition 8.5.7. Let µ be a bounded, signed Borel measure on X . The mapping
α 7→ ∥µα∥1,Xα

is monotone increasing. If A resolves X , then the total-variational
norm for µ equals,

∥µ∥1,X = sup
α∈A
∥µα∥1,Xα

= sup
α∈A

∑
A∈α

|µα(A)|

Proof. If α,β ∈A , and β refines α , then,

∥µα∥1,Xα
= ∑

A∈α

|µα(A)| ≤ ∑
B∈β

|µβ (B)|= ∥µβ∥1,Xβ
.

Let a signed measure µ : B → R and ε > 0 be given. According to the Hahn-
Jordan decomposition, there exists a A+ ∈ B such that, for any A ∈ B, A ⊂ A+,
we have µ(A)≥ 0; and for any A ∈B, A⊂X \A+, we have µ(A)< 0. Moreover,
∥µ∥1,X = µ(A+)−µ(X \A+). Since A is directed and the union of all σ(α)⊂B,
(α ∈A ) generates a generating ring for B, there exist an α ∈A and a Aα,+ ∈ σ(α)
with µ((A+ \Aα,+)∪ (Aα,+ \A+))<

1
2 ε , so that,
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∥µ∥1,X ≤ µ(Aα,+)−µ(X \Aα,+)+ ε ≤ ∥µα∥1,Xα
+ ε,

proving the assertion.

The quantities ∥P−P∧LQ∥, used to control relative compactness for the Le Cam-
Schwartz topology in section 8.6, are also suprema of their histogram versions.

Lemma 8.5.8. Assume that A resolves X . For any P,Q∈M1(X ) such that P≪Q
and any L > 0, we have,

∥P−P∧LQ∥1,X = sup
α∈A
∥Pα −Pα ∧LQα∥1,Xα

.

Proof. Write the Radon-Nikodym derivative of P with respect to Q as p = dP/dQ.
Let B ∈B be given. If Q(B) = 0 then P(B) = 0 and, (P−P∧LQ)(B) = 0 for any
L> 0. If Q(B)> 0, it follows from the convexity of x 7→ (x)+ and Jensen’s inequality
that,

(P−P∧LQ)(B) = Q(B)
( 1

Q(B)

∫
1B(x)(p(x)−L)+ dQ(x)

)
≥
(∫

1B(x)(p(x)−L)dQ(x)
)
+
= P(B)−P(B)∧LQ(B)

which implies that, for any α ∈A ,

∥Pα − (P∧LQ)α∥1,Xα
≥ ∥Pα −Pα ∧LQα∥1,Xα

,

and that the mapping α 7→ ∥Pα − Pα ∧ LQα∥ is monotone increasing. Based on
proposition 8.5.7, we then find

∥P−P∧LQ∥1,X = sup
α∈A
∥Pα − (P∧LQ)α∥1,Xα

≥ sup
α∈A
∥Pα −Pα ∧LQα∥1,Xα

.

Note that we have, for every α ∈A ,∣∣∣∣ ∥∥P−P∧LQ
∥∥

1,X −
∥∥Pα −Pα ∧LQα)

∥∥
1,Xα

∣∣∣∣
≤
∥∥(P−P∧LQ)− (PQ,α −PQ,α ∧LQ)

∥∥
1,X

= 1
2

∫
|(p(x)−L)+− (pα(x)−L)+|dQ(x)

= 1
2

∫
|(p(x)−L)1{p(x)>L}− (pα(x)−L)1{pα (x)>L}|dQ(x)

≤ 1
2

∫
1{p(x)>L,pα (x)>L}|p(x)− pα(x)|

+1{p(x)>L,pα (x)≤L}|p(x)−L|−1{p(x)≤L,pα (x)>L}|pα(x)−L|dQ(x)

≤ 1
2

∫
|p(x)− pα(x)|dQ(x) = ∥P−PQ,α∥1,X
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An appeal to lemma 8.5.6 then proves the assertion.

8.6 Random histogram limits with the Le Cam-Schwartz
topology

Again, let X , A and M1(X ) satisfy the minimal conditions, and fix the topology
on M1(X ) to be the Le Cam-Schwartz topology, defined as the subspace topology
that M1(X ) inherits from Mb(X ) with the Le Cam-Schwartz topology. Compact-
ness of a subset of M1(X ) is characterized by the Dunford-Pettis-Grothendieck
theorem (as presented, for example, in [187, Theorem 6, Appendix 8]): a subset H
of M1(X ) is relatively compact in the Le Cam-Schwartz topology, if and only if,
for some Q ∈M1(X ),

sup
P∈H

∥∥P−P∧LQ
∥∥

1,X → 0,

as L → ∞. The more classical characterization of relative compactness for the
Le Cam-Schwartz topology, is that of the Dunford-Pettis theorem (see [78]), which
says that a Q-dominated subset H of M1(X ) is relatively compact in the Le Cam-
Schwartz topology, if and only if, the subset of Radon-Nikodym densities {dP/dQ :
P ∈ H} in L1(X ,B,Q) is uniformly integrable, i.e.,

sup
P∈H

∫
{x∈X :dP/dQ(x)>L}

dP
dQ

(x)dQ(x)→ 0,

as L→ ∞. And finally, we may characterize relative compactness of a subset H
of M1(X ) in the Le Cam-Schwartz topology, by the condition that there exists a
Q ∈M1(X ) such that for every ε > 0, there exists a δ > 0 such that,

Q(A)< δ ⇒ sup
P∈H

P(A)< ε, (8.27)

for every measurable A⊂X . These three characterizations are equivalent.

8.6.1 Support and approximation of Le Cam-Schwartz histogram
limits

Before we apply theorem 8.5.4 to define Radon probability measures on M1(X )
with the Le Cam-Schwartz topology (and total-variational topology), let us consider
some consequences, that is, necessary conditions for the existence of a random his-
togram limit. First, we characterize the support of Borel probability measures, next
we consider approximations of random P by random Pα .
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8.6.1.1 Support and domination

The following lemma is immediate but central enough to emphasize.

Lemma 8.6.1. Let X , A and M1(X ) satisfy the minimal conditions. Consider
M1(X ) with a Borel probability measure Π . For any Borel set A in X , G(A) = 0
implies that Π({P ∈M1(X ) : P(A)> 0}) = 0.

Proof. Let a Borel set A in X be given and assume that G(A) = 0. If the Borel
set B = {P ∈ M1(X ) : P(A) > 0} in M1(X ) has probability Π(B) > 0, then by
σ -additivity, for some ε > 0 the Borel set B′ = {P ∈M1(X ) : P(A)> ε} has prob-
ability Π(B′) > 0. That would imply that G(A) =

∫
P(A)dΠ ≥

∫
B′ P(A)dΠ(P) ≥

εΠ(B′)> 0, contradicting the assumption.

Domination by the mean measure plays a role in the following proposition concern-
ing the support of Borel probability measures on M1(X ) with the Le Cam-Schwartz
topology.

Proposition 8.6.2. Let X , A and M1(X ) satisfy the minimal conditions. Consider
M1(X ) with the Le Cam-Schwartz topology and a Borel probability distribution
Π . Let G be the mean measure under Π . Then {P ∈M1(X ) : P≪ G} is closed in
M1(X ) and,

suppT1
(Π)⊂ {P ∈M1(X ) : P≪ G}.

Moreover, if P ∈M1(X ) is such that for all measurable partitions α ∈A , Pα lies
in the support of Πα in M1(Xα), then P lies in the Le Cam-Schwartz support of Π .

Proof. If P ∈ M1(X ) is not dominated by G, then there exists a Borel set A such
that P(A)> 0=G(A). Consequently for small enough ε ′> 0, the Le Cam-Schwartz-
open neighbourhood U = {Q ∈M1(X ) : |Q(A)−P(A)|< ε ′} does not meet {Q ∈
M1(X ) : Q≪ G}, so {Q ∈ M1(X ) : Q≪ G} is closed in the Le Cam-Schwartz
topology. According to lemma 8.6.1, Π(U) ≤ Π({Q ∈M1(X ) : Q(A) > 0}) = 0,
so U receives Π -mass zero, implying that P ̸∈ suppT1

(Π).
Regarding the last assertion, it is noted that, since M1(X ) with the Le Cam-

Schwartz topology is homeomorphic to a subspace of the inverse limit N of propo-
sition 8.5.5, the collection of sets {ϕ−1

∗α (V ) : α ∈ A ,V ∈ Uα} (where Uα is any
topological basis for M1(Xα)) in M1(X ) forms a basis for the Le Cam-Schwartz
topology. Consequently, for any Le Cam-Schwartz neighbourhood U of P∈M1(X )
there exists an α ∈A and a V ∈Uα such that ϕ−1

∗α (V )⊂U , and,

Π(U)≥Π(ϕ−1
∗α (V )) = Πα(V )> 0,

by assumption.

Recall the open problem regarding construction of random elements from specific
dominated families, as posed in [64, p. 42]:

Indeed, it appears to be an open problem to find simple sufficient conditions, analogous to
Corollary 9.3.VI, for the realizations of a random measure to be [almost-surely] absolutely
continuous with respect to a given measure.
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([64, Corollary 9.3.VI] formulates a condition for a system of random histograms
with limit, to be almost-surely non-atomic.) Proposition 8.6.2 says that, given some
probability measure G, we should look for coherent systems of random histograms
with the projections Gα as their mean histograms, and a limit Π that is a Borel
probability measure on M1(X ) with the Le Cam-Schwartz topology. In subsec-
tion 8.6.2, we provide a relatively simple necessary and sufficient condition for a
coherent random histogram system to have a unique Le Cam-Schwartz-Radon ran-
dom histogram limit Π .

8.6.1.2 Approximation by Le Cam-Schwartz convergent histograms

Next, we consider the way in which histogram systems with a Le Cam-Schwartz
limit approximate (random) probabilities P(A). Let Π be a Radon probability mea-
sure on M1(X ) with the Le Cam-Schwartz topology, with mean measure G. For
every η > 0 and every α ∈A , let CG,α(η) denote the collection of all Borel sets B
in X that are approximated by elements of the σ -algebra σ(α) to within G-measure
η :

CG,α(η) =
{

B ∈B : inf{G((B\C)∪ (C \B)) : C ∈ σ(α)}< η
}
.

Note that for any η > 0 and any B, there exists an α such that B ∈ CG,α(η) (see
theorem 4.4 in [153]).

Proposition 8.6.3. Let X , A and M1(X ) satisfy the minimal conditions. If Π is
a Le Cam-Schwartz-Radon probability measure on M1(X ) with mean measure G,
then for every δ ,ε > 0, there exists a partition α ∈A and an η > 0, such that for
all B ∈ CG,α(η),

Π

({
P ∈M1(X ) : inf{P((B\C)∪ (C \B)) : C ∈ σ(α)}> δ

})
< ε.

Proof. Let ε > 0 be given. By inner regularity, there exists a H in M1(X ) that
is compact in the Le Cam-Schwartz topology and such that Π(H) > 1− ε . For
every δ > 0, there exists an η > 0, such that for all Borel sets A in X , G(A) <
η implies that P(A) < δ for all P ∈ H, cf. (8.27). In particular, if B ∈ CG,α(η),
then for some C ∈ σ(α), G((B \C)∪ (C \B)) < η , implying that for all P ∈ H,
P((B\C)∪ (C \B))< δ .

This observation is important from a computational perspective: the practitioner
chooses an approximating partition α to perform computations with histograms and
would like to be able to control accuracy of his approximations for the P in terms
of their restrictions to σ(α). He has control over the probability measures Πα , and
as a result, control over the mean measures Gα . Accordingly, he can choose a level
of refinement (expressed by a choice for some partition α), making approximations
in G-measure by α-histogram. The Radon property ensures that the approximation
in G-measure carries over to approximation in P-measure, uniformly in P, with
arbitrarily high Π -probability, depending on the degree of approximation in the level
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α that is chosen for actual computations. Such a guarantee concerning degrees of
approximation is not automatic if Π is a Radon measure for the weak topology of
section 8.7.

8.6.2 Existence of Le Cam-Schwartz histogram limits

Let A denote a set of finite Borel measurable partitions of X , directed for order-
ing by refinement. If we equip T = M1(X ) with the Le Cam-Schwartz topology,
theorem 8.5.4 takes the following form.

Theorem 8.6.4. Let X , A and M1(X ) satisfy the minimal conditions. Assume
that A resolves X and consider M1(X ) with the Le Cam-Schwartz topology. Let
(Πα ,ϕ∗αβ ) be a coherent system of Borel probability measures on the inverse sys-
tem (M1(Xα),ϕ∗αβ ). There exists a unique Le Cam-Schwartz-Radon probability
measure Π on M1(X ) projecting to Πα for all α ∈A , if and only if,

there is a Q ∈M1(X ) such that, for every ε,δ > 0 there is a L > 0 such that,

Πα

(
{Pα ∈M1(Xα) : ∥Pα −Pα ∧LQα∥1,Xα

> δ}
)
< ε, (P-LS)

for all α ∈A .

Proof. According to proposition 8.5.5, (M1(Xα),ϕ∗αβ ) forms an inverse system
of Hausdorff topological spaces. For all α ∈ A , ϕ∗α : M1(X ) → M1(Xα) is
continuous with respect to the Le Cam-Schwartz topology. If P,Q ∈ M1(X ) and
P ̸= Q, then there exists a set B in the σ -algebra generated by the σ(α) such that
P(B) ̸= Q(B), which cannot be the case unless, for some α ∈ A , the histogram
projections ϕ∗α(P) and ϕ∗α(Q) differ. Combining this with (8.4), we conclude
that (ϕ∗α ,ϕ∗αβ ) forms a coherent and separating family of continuous mappings
M1(X )→M1(Xα).

The assertion now follows from theorem 8.5.4 if we can show that condition (P)
holds. To that end, let ε > 0 be given and define εn = 2−nε . Given some monotone
decreasing sequence (δn) such that δn > 0, δn→ 0, let Ln be positive constants such
that,

Πα

({
Pα ∈M1(Xα) : ∥Pα −Pα ∧Ln Qα∥1,Xα

> δn
})

< εn,

for every α ∈A . Define,

H =
⋂{

P ∈M1(X ) : ∥Pα −Pα ∧Ln Qα∥1,Xα
≤ δn, n≥ 1, α ∈A

}
.

Let δ > 0 be given, choose n ≥ 1 such that δn < δ and define L = Ln. Since
A resolves X , proposition 8.5.7 and lemma 8.5.8 say that ∥P−P∧ LQ∥1,X =
sup{∥Pα −Pα ∧LQα∥1,Xα

: α ∈A } for all P, and hence,

sup{∥P−P∧LQ∥1,X : P∈H}= sup{∥Pα−Pα ∧LQα∥1,Xα
: P∈H,α ∈A } ≤ δ ,
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Conclude that H is relatively compact with respect to the Le Cam-Schwartz topol-
ogy, cf. the Dunford-Pettis-Grothendieck condition. For the compact closure H of
H in M1(X ) and any α , we have (by monotony of α 7→ ∥Pα −Pα ∧LQα∥1,Xα

for
any L > 0),

Πα

(
M1(Xα)\ϕ∗α(H)

)
≤Πα

(
M1(Xα)\ϕ∗α(H)

)
≤Πα

(
M1(Xα)\

⋂
n≥1

ϕ∗α

({
P ∈M1(X ) : ∥Pα −Pα ∧Ln Qα∥1,Xα

≤ δn
}))

= Πα

(⋃
n≥1

{Pα ∈M1(Xα) : ∥Pα −Pα ∧Ln Qα∥1,Xα
> δn}

)
≤ ∑

n≥1
Πα

(
{Pα ∈M1(Xα) : ∥Pα −Pα ∧Ln Qα∥1,Xα

> δn}
)
< ε,

which shows that condition (P) of theorem 8.5.4 is satisfied. Conclude that there
exists a unique Radon probability measure Π on M1(X ) that projects to Πα for all
α ∈A .

Conversely, let Π be a Le Cam-Schwartz-Radon probability measure Π on
M1(X ). According to proposition 8.6.2, the Le Cam-Schwartz support of Π is
dominated by the mean measure G. Again appealing to lemma 8.5.8, we see that
that for every δ > 0, all L > 0 and all α ∈A ,

Π

({
P ∈M1(X ) : ∥P−P∧LG∥1,X > δ

})
= Π

({
P ∈M1(X ) : sup

β∈A

∥Pβ −Pβ ∧LGβ∥1,Xβ
> δ

})
≥Π

({
P ∈M1(X ) : ∥Pα −Pα ∧LGα∥1,X > δ

})
= Πα

({
Pα ∈M1(Xα) : ∥Pα −Pα ∧LGα∥1,Xα

> δ
})

.

Since Π is Le Cam-Schwartz-Radon, for every δ ,ε > 0 there exists a constant L > 0
such that,

Π

({
P ∈M1(X ) : ∥P−P∧LG∥1,X > δ

})
< ε,

verifying that condition (P-LS) holds.

On first sight, condition (P-LS) may appear technical and inaccessible. It is noted,
however, that in practice one has considerable control: one may choose A (large
enough to resolve X but otherwise) as small as possible, and the histogram system
(Πα : α ∈A ) as simple as possible, in order to enable verification of condition (P-
LS) in manageable form. Moreover, all subsequent calculations involve only proba-
bility distributions on finite-dimensional simplices, enhancing feasibility greatly.

Regarding the measure Q, we simplify by appeal to a necessary condition: it
is clear that if theorem 8.6.4 holds, then the support of the probability measure
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Π is dominated by the mean measure G, cf. proposition 8.6.2. So, when looking
for a candidate dominating measure Q to verify condition (P-LS), we can turn to
the mean measures Gα of the histogram distributions Πα : if we show, either, that
the Gα are the histograms associated with a mean measure G (the mean measure
condition [214]), or, that condition (P-weak) below holds (cf. definition 8.1.9), then
G can play the role of Q.

Based on those two remarks, condition (P-LS) can be rewritten as follows:

for some G ∈M1(X ), α-histograms ϕ∗α(G) equal the mean measures Gα for
all α ∈A , and, for every ε,δ > 0 there is a L > 0 such that,

Πα

({
Pα ∈M1(Xα) : ∑

A∈α

(
Pα(A)−LGα(A)

)
+
> δ

})
< ε, (P-LS’)

for all α ∈A .

This form of the condition forms the starting point for the examples of section 8.10.

8.6.3 Existence of total-variational histogram limits

Let X be a Hausdorff topological space and let P be a subset of M1(X ) dominated
by a probability measure Q ∈ M1(X ). In this subsection, we distinguish P from
Pb, represented by the same set, denoted P when equipped with the Le Cam-
Schwartz topology, and Pb when equipped with the total-variational topology. The
identity mapping i : Pb→P is a continuous bijection. Write B(P) and B(Pb)
for the associated Borel σ -algebras.

Proposition 8.6.5. If X is separable and P is a dominated subset of M1(X ), then
Pb is separable and B(P) = B(Pb).

Proof. Let Q denote the probability measure that dominates P . By separability of
X , the Banach space L1(X ,B,Q) of Q-integrable, real-valued functions on X ,
is separable, and so is its subspace of Radon-Nikodym densities P ′

b = {dP/dQ :
P ∈P}. Since Pb and P ′

b are homeomorphic, Pb is separable too. It can be
shown [220, 248] that then the total-variational norm is measurable with respect to
the minimal σ -algebra for measurability of the mappings P 7→ P(A), A ∈B, which
is contained in B(P). Accordingly, B(Pb) ⊂B(P). Since the total-variational
topology refines the Le Cam-Schwartz topology, also B(P)⊂B(Pb).

As a consequence, any Borel probability measure Π on P (viewed as a σ -additive
set-function with B(P) as its domain) gives rise to a Borel probability measure Πb
on Pb (viewed as a σ -additive set-function with B(Pb) as its domain).

Corollary 8.6.6. Let X be separable and, together with A and M1(X ), satisfy the
minimal conditions. Consider M1(X ) with the total-variational topology. Assume
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that A resolves X . Let (Πα ,ϕ∗αβ ) be a coherent system of Borel probability mea-
sures on the inverse system (M1(Xα),ϕ∗αβ ). If condition (P-LS) holds, there exists
a unique TTV -Radon probability measure Π on M1(X ) projecting to Πα for all
α ∈A .

Proof. Under stated conditions, theorem 8.6.4 asserts the existence of a Radon prob-
ability measure Π on M1(X ) with the Le Cam-Schwartz topology, and proposi-
tion 8.6.2 guarantees that P = suppT1

(Π) is dominated by the mean measure G.
Because X is separable, B(P) =B(Pb), so Π is a Borel probability measure on
Pb. Uniqueness follows from the uniqueness of the Le Cam-Schwartz histogram
limit. By the Radon-Nikodym theorem, Pb is homeomorphic (isometrically, even,
cf. (8.26)) to a closed subset of the Polish space L1(X ,B,G), and therefore a Radon
space, so that Π is a Radon measure.

So, remarkably, existence of a total-variational random histogram limit does not
impose stricter conditions than existence of a Le Cam-Schwartz random histogram
limit; moreover, not even inner regularity is lost in the transition from P to Pb.
From the perspective of theorem 8.8.4 this amplification is inconsequential, but
events and statements involving the total-variational norm are very common and
measurability of total-variational balls is crucial for many applications (for example,
in large-sample limits of posterior distributions on metric spaces in non-parametric
statistics [114, 163]).

8.7 Random histogram limits with the weak topology

The existence question of a limit for coherent random histogram systems has been
studied extensively with the weak topology for M1(X ): a rich literature has grown
from Kingman’s original work on completely random measures [154], with an em-
phasis on limits with almost-surely purely atomic realizations [63, 64]. Here we
revisit the existence problem without restricting to point-processes, and derive a
necessary and sufficient condition in subsection 8.7.1, based on theorem 8.5.4. In
subsection 8.7.2 we consider the support of weak random histogram limits.

8.7.1 Existence of weak histogram limits

Let X be a Polish space with topology T . We are interested in the construction
of Radon probability measures on M1(X ) with the weak topology. In comparison
with the construction of subsection 8.6.2, the assertion is weaker since the Le Cam-
Schwartz topology refines the weak topology. Accordingly, compactness as in con-
dition (P) constitutes a less stringent restriction, while the continuity requirement of
histogram projections becomes harder to satisfy.
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Indeed, when one tries to reproduce the initial steps in the proof of theorem 8.6.4
with the weak topology, a disappointment awaits: if X = Rd with the standard
topology, for example, then for any partition α of X into two or more subsets, the
projection mapping ϕ∗α : M1(X )→M1(Xα) of equation (8.2) is not continuous:
superficially, it appears that theorem 8.5.4 cannot be applied.

In order to correct this, we refine to a zero-dimensional version X̂ of X , ren-
dering projection mappings continuous for a collection of partitions that is large
enough to be separating and resolving. While this leaves the Borel σ -algebra un-
changed, the transition to X̂ does complicate the nature of weak compactness in
M1(X̂ ). A counterexample at the end of this subsection shows that this complica-
tion corresponds directly to the precise way in which a coherent system of random
histograms can fail to have a weak limit.

8.7.1.1 Zero-dimensional refinements of Polish spaces

With a countable basis U for the topology T , define the topological sub-basis,

S = {U,X \U : U ∈U }, (8.28)

for a topology T̂ on the set X in which each basis element U ∈U is clopen; denote
the resulting topological space by X̂ .

Proposition 8.7.1. The space X̂ is zero-dimensional and the identity mapping i :
X̂ → X is continuous. If U1 and U2 are two bases for X , the corresponding
spaces X̂1 and X̂2 are homeomorphic. If X is Polish, then X̂ is also Polish.

Proof. The sub-basis S gives rise to a basis consisting of clopen sets, so X̂ is
zero-dimensional, and the identity i is continuous because T̂ refines T . Because
any U2 ∈U2 contains a U1 from the basis U1 and vice versa, the identity mapping
on X is continuous from X̂1 to X̂2 and also from X̂2 to X̂1. Assuming X is
Polish, the countable product space X N = ∏n≥1 X is Polish (see [149, prop. 3.3])
and has a diagonal ∆ = {(x,x, . . .) ∈ ∏n≥1 X : x ∈X } that is a closed subspace,
homeomorphic to X . Enumerate the basis sets in U = {Ui : i ≥ 1} and define
Yn to be the refinement of X with U1, . . . ,Un made clopen (e.g. Y1 is the topo-
logical sum of U1 and X \U1, etcetera). The canonical set-theoretic identification
in : Yn →X , is continuous. The spaces Yn are all Polish, as the topological sums
of Un and X \Un (which are Polish). The product space ∏n≥1 Yn is Polish and
the map j : ∏n≥1 Yn →X N is a continuous bijection. Then j−1(∆) is Polish and
homeomorphic to X̂ .

Proposition 8.7.2. Let X be a Polish space. The Borel sets on X and X̂ are equal
and any set function µ is a (bounded/signed/positive/probability) Borel measure on
X , if and only if, µ is a (bounded/signed/positive/probability) Borel measure on
X̂ .

Proof. Note that the Borel σ -algebra on X generated by the basis U is identical to
the σ -algebra generated by U and its complements, which form the sub-basis for
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X̂ . Conclude that X and X̂ have the same Borel sets. Boundedness, signedness
or positivity, being a probability measure and countable additivity are then identical
as properties of set functions µ on the Borel σ -algebra.

Proposition 8.7.2 implies the existence of a bijective mapping i∗ with the following
properties.

Proposition 8.7.3. The mapping i∗ : Mb(X̂ )→Mb(X ) is a continuous bijection. If
X is Polish, M1(X ) and M1(X̂ ) are Polish and i−1

∗ : M1(X )→M1(X̂ ) is Borel
measurable.

Proof. Any bounded, continuous f : X → R is also bounded, continuous when
viewed as f : X̂ → R, so there exists a linear, injective mapping j∗ : Cb(X )→
Cb(X̂ ) of norm one, and transpose to that, a bounded, injective, linear i∗ = jt∗ :
Mb(X̂ )→Mb(X ) of norm one (see [50], Ch. II, § 6, No. 4, proposition 5 and [50],
Ch. IV, § 1, No. 3, proposition 8). As noted earlier, if X is a Polish space, then
so is M1(X ) ([49], Ch. IX, § 5, No. 4, prop. 10), so based on proposition 8.7.1,
both M1(X ) and M1(X̂ ) are Polish spaces. According to theorems 12.4 and 14.12
(Souslin’s theorem) in [149], if X ,Y are standard Borel spaces and f : X → Y
is a Borel measurable injection, then its inverse on f (X ) is also Borel measurable.
Applied to i∗, this proves the last assertion.

For all α ∈A , define the mappings ϕ̂∗α : Mb(X̂ )→M(Xα),

ϕ̂∗α(µ) =
(
µ(A1), . . . ,µ(A|α|)

)
, (8.29)

that takes any bounded, signed Radon measure µ on X̂ into its α-histogram.

Proposition 8.7.4. Let α be a partition of X generated by a basis U , and let X̂ de-
note the associated zero-dimensional version of X . The mapping ϕ̂∗α : Mb(X̂ )→
M(Xα) is continuous for the weak topology.

Proof. For any partition α generated by the basis U (cf. definition 8.1.2), any A∈α

is clopen in X̂ . For any clopen A, 1A is a bounded, continuous function on X̂ .
Therefore M1(X̂ )→R : P 7→ P(A) is continuous with respect to the weak topology
and so is ϕ̂∗α .

Compactness in X̂ has a more stringent meaning than in the original space X : in-
deed, according to Brouwer’s theorem, any compact K̂ ⊂ X̂ is a union of a subspace
homeomorphic to the Cantor set with isolated points. For example, with X = R in
its standard topology, [0,1] is not compact in the space X̂ .

8.7.1.2 Weak histogram limits with zero-dimensional compacta

Weak compactness in Mb(X ) is characterized by Prokhorov’s theorem (see [223]),
which says that a subset H of Mb(X ) is relatively weakly compact, if and only if,

(i.) sup{∥Φ∥1,X : Φ ∈ H}< ∞,
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(ii.) for every ε > 0, there exists a compact K ⊂X such that,

sup{|Φ |(X \K) : Φ ∈ H}< ε. (8.30)

We are now in a position to apply theorem 8.5.4 to M1(X ) (or rather, M1(X̂ ))
with the weak topology. (Note: mention of the Radon property in the statement of
theorem 8.7.5, is accurate but strictly speaking redundant, since M1(X ) is a Radon
space.)

Theorem 8.7.5. Let X be a Polish space with a directed set A of partitions that
resolves X , generated by a basis that gives rise to a zero-dimensional X̂ . Con-
sider M1(X ) with the weak topology. Let (Πα ,ϕ∗αβ ) be a coherent system of Borel
probability measures on the inverse system (M1(Xα),ϕ∗αβ ). There exists a unique
Radon probability measure Π on M1(X ) projecting to Πα for all α ∈ A , if and
only if,

for every ε,δ > 0 there is a compact K̂ ⊂ X̂ such that,

Πα

({
Pα ∈M1(Xα) : Pα(ϕα(K̂))< 1−δ

})
< ε, (P-weak)

for all α ∈A .

Proof. Under the condition of the theorem, X̂ , A and M1(X̂ ) satisfy the minimal
conditions. Like before (see proposition 8.5.5), (M1(Xα),ϕ∗αβ ) forms an inverse
system of compact Hausdorff topological spaces. As in the proof of theorem 8.5.4,
(ϕ̂∗α ,ϕ∗αβ ) is a coherent and separating family of mappings on M1(X̂ ), and from
proposition 8.7.4 we conclude that the ϕ̂∗α are also continuous.

To show that condition (P) holds, let ε > 0 be given and define εn = 2−nε . Given
some decreasing sequence (δn) such that δn > 0, δn→ 0, let K̂n be compact subsets
of X̂ such that,

Πα

({
Pα ∈M1(Xα) : Pα(ϕα(K̂n))< 1−δn

})
< εn,

for every α ∈A and every n≥ 1. Define,

H =
⋂{

P ∈M1(X ) : Pα(ϕα(K̂n))≥ 1−δn, n≥ 1, α ∈A
}
.

Let δ > 0 be given, choose n ≥ 1 such that δn < δ and choose L̂ = K̂n. Since the
Borel sets Lα = (ϕ−1

α ◦ϕα)(L̂) decrease as the level of refinement of the partition α

increases, and since A resolves X , L̂ =∩α∈A Lα , and P(L̂) = inf{Pα(ϕα(L̂)) : α ∈
A } by monotony. Conclude that H is relatively compact with respect to the weak
topology, according to (8.30). For the compact closure H of H in M1(X̂ ) and any
α , we have (by monotony of α 7→ Pα(ϕα(K)) for any K),
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Πα

(
M1(Xα)\ ϕ̂∗α(H)

)
≤Πα

(
M1(Xα)\ ϕ̂∗α(H)

)
≤Πα

(
M1(Xα)\

⋂
n≥1

ϕ̂∗α

({
P ∈M1(X ) : Pα(ϕα(K̂n))≥ 1−δn

}))
≤Πα

(⋃
n≥1

{Pα ∈M1(Xα) : Pα(ϕα(K̂n))< 1−δn}
)

≤ ∑
n≥1

Πα

(
{Pα ∈M1(Xα) : Pα(ϕα(K̂n))< 1−δn}

)
< ε,

which shows that condition (P) of theorem 8.5.4 is satisfied. Conclude that there
exists a unique Radon probability measure Π̂ on M1(X̂ ) that projects to Πα for
all α ∈ A . The continuous mapping i∗ : M1(X̂ )→ M1(X ) of proposition 8.7.3
serves to define Π = Π̂ ◦ i−1

∗ , a Radon probability measure on M1(X ), and Π still
projects to Πα for all α ∈A .

Conversely, since X is Polish, cf. proposition 8.7.3, X̂ , M1(X̂ ) and M1(X )
are Polish spaces, and the mapping i−1

∗ : Mb(X )→ Mb(X̂ ) is Borel measurable.
Therefore, the mapping Π̂ = Π ◦ i∗ defines a Borel probability measure on M1(X̂ ),
which is Radon because M1(X̂ ) is a Radon space. So, according to Prokhorov’s
theorem, for every δ ,ε > 0, there exists a compact K̂ in X̂ such that,

Π

({
P ∈M1(X̂ ) : P(K̂)< 1−δ

})
< ε.

With K̂α =(ϕ−1
α ◦ϕα)(K̂)⊂ X̂ , for every α ∈A , we have K̂⊂ K̂α and accordingly,

Π

({
P ∈M1(X̂ ) : P(K̂)< 1−δ

})
≥Π

({
P ∈M1(X̂ ) : P(K̂α)< 1−δ

})
= Πα

({
Pα ∈M1(Xα) : Pα(ϕα(K̂))< 1−δ

})
,

for any δ > 0, which implies the converse.

Let us paraphrase: to have a coherent inverse system of probability measures for
histograms define a limit Π that is a Radon probability measure on M1(X ) for the
weak topology, we look for compacta K̂ in a zero-dimensional version of X that
capture most of the mass of the projected measures Pα with high Πα -probability,
uniformly in α ∈A .

8.7.1.3 Weak histogram limits with ordinary compacta

In certain histogram systems (like those that define Dirichlet process distributions),
there is an easy way to prove the mean measure condition (see the proof of the-
orems 8.9.1). In histogram systems where this condition is less or not accessible
(like those that define the Pólya-tree distributions), zero-dimensional compacta in
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the space X̂ are unwieldy, so we also provide a re-formulation of theorem 8.7.5
that relies only on compacta in X .

To avoid mention of the zero-dimensional space X̂ , we re-construct compacta K̂
from decreasing sequences of compacta in X . Let A be a directed set of partitions
generated by a basis. For every α ∈A consider the topological space Yα obtained
from X by declaring all sets A ∈ α clopen, i.e. Yα is the topological sum of all
the partition sets A ∈ α with their subspace topologies. Note that the set-theoretic
identity mapping on X is continuous as a mapping πα : X̂ → Yα . (See also the
proof of proposition 8.7.1.)

Lemma 8.7.6. A subset K̂ is compact in X̂ , if and only if, Kα = πα(K̂) is compact
in Yα , for all α ∈A . Conversely, given compact subsets Kα of Yα for all α ∈A ,
the subset ∩α Kα is compact in X̂ .

Proof. Consider the product space Y =∏α∈A Yα . The diagonal ∆ = {(x,x,x, . . .)∈
Y : x ∈X } is a closed subset of Y , homeomorphic to X̂ and the mappings πα

are the canonical projections Y → Yα , applied after the homeomorphism X̂ → ∆ .
A compact K̂ in X̂ has compact images πα(K̂) in all Yα , α ∈ A . Conversely,
if H is a subset of X̂ such that πα(H) is compact in Yα for all α ∈ A , then
B = ∏α∈A πα(H) is compact in Y by Tychonov’s theorem, and so is the closed
subspace ∆ ∩B. Set-theoretically, πα(H) = H for all α ∈ A , implying that ∆ ∩B
is homeomorphic to H, so H is compact. Given compact subsets Kα of Yα for all
α ∈A , the subset K̂ = ∩α Kα is compact as a subset of any Yα , (α ∈A ), so K̂ is
compact as a subset of X̂ .

Corollary 8.7.7. Let X be a Polish space with a countable basis U and a well-
ordered sequence A of partitions generated by the basis, that resolves X . Con-
sider M1(X ) with the weak topology. Let (Πα ,ϕ∗αβ ) be a coherent system of Borel
probability measures on the inverse system (M1(Xα),ϕ∗αβ ). If,

for all α ∈A , all A ∈ α and all ε,δ > 0, there is a K ⊂ A, compact in X , such
that,

Πβ

({
Pβ ∈M1(Xβ ) : Pβ (ϕβ (K))< Pβ (ϕβ (A))−δ

})
< ε, (P-weak’)

for all β ∈A such that α ≤ β ,

then there exists a unique Radon probability measure Π on M1(X ) projecting to
Πα for all α ∈A .

Proof. Enumerate the partitions in A , A = {αn : n≥ 0}, and let δ ,ε > 0 be given.
To find a compact subset K̂ of X̂ to satisfy property (P-weak), we construct a de-
creasing sequence of non-empty, compact sets in the spaces Yαn , (n ≥ 0) by in-
duction, and take the intersection. For now, assume that α0 = {X }. According to
condition (P-weak’), there exists a compact set K0 in Yα0 = X such that,

Παn

({
Pαn ∈M1(Xαn) : Pαn(ϕαn(K0))< 1− 1

2 δ
})

< 1
2 ε,
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for all n≥ 0. Make the induction assumption that, for given n≥ 0, there is a compact
Kn in Yαn with,

Παm

({
Pαm ∈M1(Xαm) : Pαm(ϕαm(Kn))< 1− 2n+1−1

2n+1 δ

})
<

2n+1−1
2n+1 ε, (8.31)

for all m ≥ n. Fix m ≥ n + 1. To combine masses back at a later stage, choose
0 < λi < 1 for all 1≤ i≤ |αn+1|, such that ∑i λi = 1. For any 1≤ i≤ |αn+1|, there
exists a compact Ki ⊂ Ai, such that,

Παm

({
Pαm ∈M1(Xαm) : Pαm(ϕαm(Ai))−Pαm(ϕαm(Ki))> 2−(n+2)

λiδ
})

< 2−(n+2)
λiε.

(8.32)
for all m ≥ n+1. The intersection Kn+1 = Kn∩ (∪iKi) is not only compact in Yαn ,
but also in Yαn+1 . Then, for any m ≥ n, if Pαm does not lie in any of the M1(Xαm)-
subsets on the left-hand sides of inequalities (8.31) and (8.32),

Pαm

(
ϕαm(Kn+1)

)
≥ 1− 2n+2−1

2n+2 δ ,

and the Παm -probability of that event is lower-bounded by,

Παm

({
Pαm ∈M1(Xαm) : Pαm

(
ϕαm(Kn+1)

)
≥ 1− 2n+2−1

2n+2 δ

})
≥ 1− 2n+1−1

2n+1 ε−∑
i

2−(n+2)
λiε = 1− 2n+2−1

2n+2 ε,

completing the induction step. Define K̂ = ∩n≥1Kn, which is compact in X̂ by
lemma 8.7.6, and,

Παn

({
Pαn ∈M1(Xαn) : Pαn(ϕ̂αn(K̂))< 1−δ

})
< ε,

for all n≥ 0, showing that condition (P-weak) is satisfied, and the assertion follows
from theorem 8.7.5. Coming back to the assumption that α0 = {X }, if α0 consists
of more than one set, then the induction argument is started from a (finite) partition
α0 that coincides with some αn-stage in the proof as provided above.

The requirements that corollary 8.7.7 places on X and A are more specific than
those of theorem 8.7.5, but not necessarily more restrictive: all Polish spaces have
countable bases and well-ordered partition systems A , generated by some count-
able basis U , can all be derived as subsequences of the generic situation, cf. exam-
ple 8.1.3.
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8.7.1.4 Coherent random histogram systems without limit

To conclude, we consider the cases in which condition (P-weak) does not hold. We
start with a counterexample that illustrates concretely how failure of condition (P-
weak) is related to the ‘leaking away’ of probability mass in the limit of refining
α .

Example 8.7.8. Consider X = R with a basis U defined by all open intervals with
rational midpoints and rational radii. Consider a triangular array defined by {qn,m :
n ≥ 1,1 ≤ m ≤ Mn = 2n− 1} of values in Q, such that for every n ≥ 1, we have
qn+1,1 ≤ qn,1, qn+1,Mn+1 ≥ qn+1,Mn ; for every 1 ≤ m ≤Mn, qn+1,2m = qn,m; and for
every m≤Mn−1, qn,m < qn+1,2m−1 < qn,m+1. Defining, αn to be of the form,

αn =
{

An,1 = (−∞,qn,1],An,2 = (qn,1,qn,2], . . . ,An,|αn| = (qn,Mn ,∞)
}
,

one verifies that the αn are generated by the basis U and αn+1 refines αn for any
n≥ 1. Assuming that the set ∪{qn,m : n≥ 1,1≤m≤Mn} is dense in R, the resulting
partitions collectively generate the Borel σ -algebra. (For later reference, we indicate
the possibility to choose qn,1 = 0, qn,Mn = 1, to define partitions on (0,1].)

The simplest example of a coherent histogram system that does not satisfy con-
dition (P-weak), is constructed as follows. Choose some δ > 0, N ≥ 1 and define
histogram distributions Παn for all n ≥ N, for the probability vectors (Pαn(An,m) :
1≤ m≤ |αn|) satisfying,

Παn

(
Pαn(An,1)+Pαn(An,|αn|) = δ

)
= 1,

that is, some non-zero fraction of the total probability mass in the n-th histogram is
concentrated in the ‘outside’ sets An,1,An,|αn| with Παn -probability one. As An+1,1 ⊂
An,1 and An+1,|αn+1| ⊂ An,|αn|, coherence of the histogram system (Παn ,ϕ∗αnαm) is
maintained. Assuming that −qn,1,qn,Mn → ∞, any compact K in X = R, fails to
meet the ‘outside’ sets, K∩An,1 =∅ and K∩An,|αn| =∅, for large enough n, which
invalidates condition (P-weak).

To summarize the above example, the problem occurs because the Παn shift a non-
zero amount of mass towards ±∞ without limitations as n grows. For any presumed
limit measure Π on M1(X ), this would mean that for all compact sets K in R,
Π(P(K) ≤ 1− δ ) = 1. This shows that property (P-weak) cannot be satisfied, and
no such limit Π exists as a probability distribution on M1(X ).

Non-compactness of X appears essential in the above example; however the
next example shows that the situation is more complicated: mass can ‘leak away’
not just to points at infinity, but at any boundary between partition sets.

Example 8.7.9. In example 8.7.8, take X equal to the compact subset [0,1], define
the points sn,m = 1

2 +
1
π

arctan(qn,m) for all n ≥ 1, 1 ≤ m ≤Mn and consider parti-
tions,

βn =
{

Bn,0 = {0},Bn,1 =(0,sn,0],Bn,2 =(sn,0,sn,1], . . . ,Bn,|αn|−1 =(sn,Mn ,1),Bn,|βn|= {1}
}
,
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so that |βn|= |αn|+2. Now define the histogram distributions Πβn for the probabil-
ity vectors (Pβn(Bn,m) : 1≤ m≤ |βn|), by

Πβn

(
Pβn(Bn,0) = 0

)
= Πβn

(
Pβn(Bn,|βn|) = 0

)
= 1,

and the distribution of (Pβn(Bn,m) : 2 ≤ m ≤ |βn| − 1) equal to that of (Pαn(An,m) :
1 ≤ m ≤ |αn|). Again, we have a coherent system of histogram distributions, and
like in example 8.7.8, probability mass is shifted up against the boundary points at 0
and 1, but no limiting distribution Π on M1([0,1]) exists with the Πβn as histogram
projections.

In fact, probability mass does not even have to disappear at points of the bound-
ary of X : if we make this example on [0,1] part of a refining system of partitions
of R, with some fraction of the total probability mass in (a random histogram sys-
tem on) the complements (−∞,0)∪ (1,∞), the construction on {0}∪ (0,1)∪{1}
will continue to make some non-zero fraction of the mass ‘leak away’ across the
boundary of (0,1), which lies in the interior of X .

The concluding remark in example 8.7.9 is close to the generic situation: if we
partition R into intervals, boundaries between partition sets create the potential for
coherent random histogram systems that make probability mass disappear there in
the limit. If we generalize to higher dimensions, it becomes clear that mass does not
necessarily disappear at specific points, it may be concentrated in any decreasing
sequence of partition sets with empty limit; this shows in which way a (histogram-
specific) form of σ -additivity makes a re-appearance.

These counterexamples highlight the significance of condition (P-weak): requir-
ing the existence of a compact K in X would prevent counterexample 8.7.8 but
not 8.7.9. In order to prevent ‘leakage’ of the latter type, we have to impose the
stronger requirement of a existence of a compact K̂ in X̂ , which keeps probability
mass away from all potential points of ‘leakage’ simultaneously.

In case condition (P-weak) cannot be satisfied, as in examples 8.7.8 and 8.7.9, it is
possible to consider compactification of X̂ , for example, the Stone-Čech compact-
ification βX̂ . With canonical extension of partitions of X to the space βX̂ condi-
tion (P-weak) is satisfied trivially. The limiting probability measure Π on M1(βX̂ )
may not be unique (because the projections onto the spaces M1(Xα) are not neces-
sarily separating). Moreover, in applications, the added points in the closed subset
βX̂ \X̂ lack interpretation.

8.7.2 Support in the weak topology

Below, theorem 8.7.5 is used to characterize the support of histogram limit measures
Π on M1(X ) with the weak topology, for a Polish space X . As it turns out, the
appropriate relation to the mean measure is inclusion of supports. This assertion
was already known in the literature (see, for example, theorem 4.15 in [114]), but
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the proof given here was not. In the formulation of the following theorem, let G
denote the mean measure of definition 8.1.9.

Proposition 8.7.10. Let X be a Polish space. Consider M1(X ) with the weak
topology and a Borel probability distribution Π . Let G be the mean measure un-
der Π . Then {P ∈M1(X ) : supp(P)⊂ supp(G)} is closed in M1(X ) and,

suppTC
(Π)⊂ {P ∈M1(X ) : supp(P)⊂ supp(G)}.

Moreover, if P∈M1(X ) is such that for all partitions α ∈A , Pα lies in the support
of Πα in M1(Xα), then P lies in the weak support of Π .

Proof. If P is such that supp(P) ̸⊂ supp(G), there exist an x ∈ supp(P) \ supp(G)
and, by complete regularity of X , a continuous f : X → [0,1] with f = 0 on
supp(G) and f (x) = 1. While ⟨G, f ⟩ = 0, the open neighbourhood of x for which
f > 1

2 receives non-zero P-probability, and we see that ⟨P, f ⟩ > 0. So if Q lies
in the weak neighbourhood {Q ∈ M1(X ) : |⟨(P−Q), f ⟩| < 1

2 ε} of P (for some
0 < ε < ⟨P, f ⟩), ⟨Q, f ⟩> 0 and accordingly, supp(Q) ̸⊂ supp(G), from which it fol-
lows that {P ∈ M1(X ) : supp(P) ⊂ supp(G)} is closed. Moreover, by Markov’s
inequality and Fubini’s theorem,

Π
(
{Q ∈M1(X ) : |⟨(P−Q), f ⟩|< 1

2 ε}
)

≤Π
(
{Q ∈M1(X ) : ⟨Q, f ⟩> 1

2 ε}
)
≤ 2

ε

∫
⟨Q, f ⟩dΠ(Q) =

2⟨G, f ⟩
ε

= 0.

Conclude that P has a weak neighbourhood of Π -mass zero, which means that P
does not lie in the weak support of Π .

Regarding the last assertion, it is noted that, since M1(X ) with the weak topol-
ogy is the continuous image of a subset of the inverse limit N of proposition 8.5.5,
the collection of sets {ϕ−1

∗α (V ) : α ∈ A ,V ∈ Uα} (where Uα is any basis for
M1(Xα), e.g. total-variational balls) in M1(X ) forms a basis for the weak topol-
ogy. Consequently, for any weak neighbourhood U of P ∈M1(X ) there exists an
α ∈A and a V ∈Uα such that ϕ−1

∗α (V )⊂U , and,

Π(U)≥Π(ϕ−1
∗α (V )) = Πα(V )> 0,

by assumption.

8.8 Phase structure of probability histogram limits

In this section we combine the two main existence theorems of preceding sections
with the general theory of completely random measures [154], to describe the vari-
ous ways in which random histogram limits manifest. In subsection 8.8.1 we review
completely random point processes [64], and show in subsection 8.8.2 how com-
bination leads to the conclusion that random histogram limits occur in one of four
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distinct phases: continuous-singular or dominated, each either purely atomic or not
(see theorem 8.8.4 below). The phase of a random histogram limit depends on the
topology on M1(X ) and on independence within random histogram distributions.

8.8.1 Completely random measures

In [154, 155] so-called completely random measures are defined as positive random
measures ν ∼ Π ′ that assign stochastically independent random masses to disjoint
measurable subsets of the underlying space X , and it is shown that (the random part
of) a completely random measure is a purely atomic measure with Π ′-probability
one. (Note, we say that a positive measure ν is purely atomic, if the collection D
of points x ∈X for which ν({x}) > 0 (so-called atoms), contains all ν-mass, i.e.
ν(D) = ν(X ); we say that ν is non-atomic, if D =∅.) Below we give the briefest
of introductions to completely random measures (following [64, chapters 9 and 10]),
and relate the results to the existence theorems of sections 8.6 and 8.7.

Definition 8.8.1. Let (X ,B) be a Polish space. A random positive Radon measure
ν on X , distributed according to Π ′, is called a completely random measure, if,
for any finite collection of disjoint measurable sets A1, . . . ,An ∈ B, the measures
ν(A1), . . . ,ν(An) are independent.

Any (random) positive Radon measure ν ∼Π ′ decomposes as a sum of a (random)
purely atomic measure νd and a (random) non-atomic measure νn in a unique way
[64, Proposition 9.3.IV],

Π
′(

ν = νn +νd
)
= 1, (8.33)

and for a random positive Radon measure to be almost-surely non-atomic, it is
necessary and sufficient that for any ε,δ > 0, there is a finite Borel measur-
able partition α of X such that for all finer finite Borel measurable partitions β ,
Π ′
(
max{ν(B) : B ∈ β} > δ

)
< ε . In the case of a completely random measure ν ,

this implies that ν is Π ′-almost-surely equal to some fixed (that is, non-random)
non-atomic measure νn [64, Proposition 10.1.II]. As a consequence, the atomic part
of any completely random measure can be fixed or random, while the non-atomic
part is always non-random.

Definition 8.8.2. For any random positive Radon measure ν ∼ Π ′ on (X ,B) and
any t > 0, define the cumulant λt : B→ [0,∞], by,

λt(A) = log
∫

etν(A) dΠ
′(ν).

Fubini’s theorem implies that, if ν ∼ Π ′ is a completely random measure, for any
t > 0, the cumulant λt is a positive Borel measure. The theorem below says that
the atomic part of a completely random measure decomposes into a sum of random
atoms at fixed points in X , and a sum νr of random atoms at random points in X .
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Theorem 8.8.3. [154]
Let ν ∼ Π ′ be a completely random measure with cumulant measures λt for t > 0.
If all λt are σ -finite, then with Π ′-probability one, ν satisfies the decomposition,

ν = νn +ν f +νr, (8.34)

where νn is a non-random, non-atomic, σ -finite measure on (X ,B); ν f is a purely
atomic measure supported on a fixed, countable subset D⊂X where ν f ({x}) and
ν f ({x′}) are independent if x,x′ ∈ D, x ̸= x′; and νr is a random purely atomic
measure that is independent of ν f .

As it turns out, σ -finiteness of λt is equivalent to the existence of countable cover
C1,C2, . . . ∈B of X such that Π ′(ν(Ci) < ∞) > 0, for every i ≥ 1. Furthermore,
the set of fixed atoms D is the set of atoms of λt and σ -additivity of λt implies
countability of D. The random purely atomic measure νr is realized with the help
of a Poisson point-process N on X × (0,∞) (cf. [64, Proposition 9.1.III-(v)]), as
follows:

νr(A) =
∫

yN(A× dy),

with an intensity measure µ that may be unbounded on sets of the form A× (0,ε),
(ε > 0), but satisfies, ∫

min{1,y}dµ(A× dy)< ∞.

The measure νn appears in λt as the t-linear contribution: λt(A) = tνn(A)+ . . .. So
completely random measures with cumulant measures without tνn-terms (νn = 0)
and without fixed atoms (ν f = 0) are characterized as purely atomic with random
locations, purely νr; and similarly, completely random measures with νn = 0 and
Poisson intensity measure µ = 0, are characterized as purely atomic with fixed loca-
tions, purely ν f . Based on complete randomness, a wider class of random measures
can be characterized in which the almost-sure atomic nature is preserved [139].

Complete randomness imposes a purely atomic nature on random probability
measures too, after normalization: if a given positive random measure ν ∼ Π ′ sat-
isfies 0 < ν(X ) < ∞ with Π ′-probability one, then P = ν/ν(X ) ∼ Π defines a
random probability measure called a normalized completely random measure, and
P inherits the purely atomic nature of ν . The histogram distributions Πα for Pα

follow from the distributions Π ′α through,

(
Pα(Aα,1), . . . ,Pα(Aα,|α|)

)
=

1
να(X )

(
να(Aα,1), . . . ,να(Aα,|α|)

)
∼Πα , (8.35)

where να(X ) = να(Aα,1)+ . . .+ να(Aα,|α|). We say that the random histograms
Pα are independent up to normalization.
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8.8.2 Phases of probability histogram limits

Combining the conclusions of sections 8.6 and 8.7 with the presence or absence of
complete randomness, we arrive at the following theorem. (Given a random proba-
bility measure, let G denote the associated mean measure.)

Theorem 8.8.4. (Phases of random histogram limits)
Let X , A and M1(X ) satisfy the minimal conditions. Let A be a directed set of
finite, Borel measurable partitions that resolves X , with a coherent system of Borel
histogram probability measures (Πα ,ϕ∗αβ ) on the inverse system (M1(Xα),ϕ∗αβ ).

(i.) (absolutely-continuous)
If condition (P-LS) is satisfied, the histogram limit describes a random element
P of M1(X ), distributed according to a Le Cam-Schwartz-Radon probability
measure Π , such that Π -almost-surely, for all measurable B ∈ B, G(B) = 0
implies P(B) = 0:

Π
(
{P ∈M1(X ) : P≪ G}

)
= 1.

The random element P can be identified isometrically with a random positive
Radon-Nikodym density function p in L1(X ,B,G) of norm one, and we can
write, for all B ∈B,

P(B) =
∫

B
p(x)dG(x);

(ii.) (fixed-atomic)
if condition (P-LS) is satisfied and the Πα describe normalized completely ran-
dom histograms, cf. (8.35), the histogram limit P ∼ Π is a normalized version
of the sum ν of a fixed non-atomic measure νn≪G and a random purely atomic
measure ν f supported on the fixed, countable set D = {x ∈X : G({x}) > 0}.
For all B ∈B,

P(B) =
1

ν(X )

(
νn(B)+ν f (B)

)
.

Assume, in addition, that X is a Polish space and that A is a directed set of finite
partitions generated by a basis that resolves X .

(iii.) (continuous-singular)
If condition (P-weak) is satisfied, the histogram limit describes a random ele-
ment P of M1(X ), distributed according to a weakly-Radon probability mea-
sure Π , such that Π -almost-surely, for all open U ⊂ X , G(U) = 0 implies
P(U) = 0:

Π
(
{P ∈M1(X ) : supp(P)⊂ supp(G)}

)
= 1;

(iv.) (random-atomic)
if condition (P-weak) is satisfied and the Πα describe normalized completely
random histograms, cf. (8.35), the histogram limit P ∼ Π is a normalized ver-
sion of the sum ν of a fixed non-atomic measure νn ≪ G, a random purely
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atomic measure ν f supported on the fixed, countable set D= {x∈X : G({x})>
0}, and a random purely atomic measure νr. For all B ∈B,

P(B) =
1

ν(X )

(
νn(B)+ν f (B)+νr(B)

)
.

Proof. In cases (i.) and (iii.), the theorem states the assertions of theorems 8.6.4
and 8.7.5; in cases (ii.) and (iv.), these assertions are combined with those of theo-
rem 8.8.3, specific to normalized completely random measures (where it is observed
that the set of atoms of λt (for any t > 0), is equal to the set of atoms of G).

In qualitative terms, we may describe the phase structure of random histogram lim-
its as follows: the most general, least constrained type of limit above, is that of the
continuous-singular phase. According to (8.33), any continuous-singular random P
decomposes into a random atomic component and a random non-atomic compo-
nent. The random component of any completely random case manifests as purely
atomic (the random-atomic phase), with independent, randomly-sized point masses
at fixed locations and at independent random locations. Many examples of (normal-
ized) completely random families are known, including the Dirichlet family.

The random non-atomic component of a histogram limit in the continuous-
singular phase is novel and more interesting: it is implied by the above that de-
pendence in histogram distributions is required to induce a random non-atomic
continuous-singular component. To illustrate the nature of such a component, we
may think, for example, of X = [0,1] and a Π with G equal to Lebesgue mea-
sure, describing a random Stieltjes function F : [0,1]→ [0,1], from a class that is
everywhere continuous but not everywhere (or even nowhere) differentiable (e.g.
the so-called Cantor distribution). Such distributions are non-atomic but cannot be
identified with random Radon-Nikodym density functions.

In the absolutely-continuous phase the histogram distributions are such that the
histogram probabilities Pα(A) may be larger than their means Gα(A), but not to such
a degree that (Gα -averages of) proportions between Pα and Gα grow unbounded in
the limit. This is borne out by the formulation of property (P-LS’), and also serves
to interpret later bounds (e.g. (8.37)). The upper bound on the proportions between
Pα(A) and Gα(A) induces domination P≪ G with Π -probability one. Extending
the above example with X = [0,1], the absolutely continuous phase describes a
random Stieltjes function F : [0,1]→ [0,1] which is everywhere differentiable, and
can be identified with a random Radon-Nikodym density function with respect to G.
If we specify that an absolutely-continuous random histogram limit is also normal-
ized completely random, then the limit is in the fixed-atomic phase: combining the
resulting purely atomic character of the random component with domination by G,
we find only random point masses at the fixed locations of the atoms of G. The sub-
family of Dirichlet process distributions with countably supported base measures
are in the fixed-atomic phase.

The distinction between the random-atomic and fixed-atomic phases provides an
alternative explanation for the decomposition ν f +νr of the random purely atomic
component in Kingman’s theorem: based on the above and the Radon-Nikodym the-
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orem, we explain this by the fact that any random probability measure decomposes
uniquely into a random component dominated by its mean measure G, and a random
component that is mutually singular with respect to G (but still with support inside
the support of G).

8.9 Existence and phases of Dirichlet histogram limits

In subsection 8.9.1 we consider the existence of a Dirichlet histogram limit that
is a Borel probability measure for the weak topology. In subsection 8.9.2 we con-
sider Dirichlet histogram limits that are Borel probability measures for the Le Cam-
Schwartz topology.

8.9.1 Tight limits of Dirichlet histogram systems

The following theorem is the (by now classical, see [114]) existence result for
Dirichlet histogram limits, with a new proof in terms of condition (P-weak).

Theorem 8.9.1. Let X be a Polish space, endow M1(X ) with the weak topology
and let ν be a non-zero, bounded, positive Borel measure on X . There exists a
unique Radon probability measure Dirν on M1(X ) projecting to the Dirichlet his-
togram distributions (8.9), describing a random probability measure in the random
atomic phase.

Proof. Let U be a countable basis for X and let A be a refining sequence of
partitions, generated by U , that resolves X . By assumption there exist distributions
Dirνα

for the random histograms Pα ∈M1(Xα), (α ∈A ). As said, coherence of the
inverse system (Dirνα

,ϕ∗αβ ) follows from finite additivity of the measure ν .
To prove condition (P-weak), let ε > 0,δ > 0 be given. According to proposi-

tion 8.7.2, ν defines a bounded positive Borel measure on X̂ , and according to
proposition 8.7.1, X̂ is Polish, so ν is a Radon measure on X̂ . Hence there exists
a compact K̂ in X̂ such that,

ν(X̂ \ K̂)< δε ν(X̂ ).

Let α be given. By Markov’s inequality and the fact that under Dirνα
,

Pα(A)∼ Beta
(
ν(A),ν(X̂ )−ν(A)

)
, (8.36)

for any A ∈ σ(α), we have,



284 8 Random histogram limits

Dirνα

({
Pα ∈M1(Xα) : Pα(ϕ̂α(K̂))< 1−δ

})
= Dirνα

({
Pα ∈M1(Xα) : Pα(Xα)−Pα(ϕ̂α(K̂))> δ

})
≤ 1

δ

∫
M1(Xα )

Pα(Xα \ ϕ̂α(K̂))dDirνα
(Pα)

=
1
δ

ν(X̂ \ (ϕ̂−1
α ◦ ϕ̂α)(K̂))

ν(X̂ )
≤ 1

δ

ν(X̂ \ K̂)

ν(X̂ )
< ε,

by Markov’s inequality, the fact that the Gα are proportional to να , and the fact
that K̂ ⊂ (ϕ̂−1

α ◦ ϕ̂α)(K̂). Conclude that there exists a unique histogram limit Dirν ,
a Radon probability measure on M1(X ) with the weak topology. Because the his-
togram system is normalized completely random, the limiting random element P is
in the random-atomic phase.

To conclude, two remarks are in order: firstly coming back to the mean measure con-
dition, it is noted that the above proof relies on ν being not just finitely, but countably
additive, to imply the Radon property. Secondly, we note that restriction to A with
partitions generated by the basis may be confusing, since the most common defini-
tion of the Dirichlet histogram system involves all Borel measurable partitions, A0.
We argue this distinction expresses the difference between the roles that A plays in
theorem 8.9.1 and proposition ??: to define Dirν , we restrict to directed sets A of a
special form, while after proving existence, we may use histograms associated with
all α ∈A0.

8.9.2 Weak limits of Dirichlet histogram systems

Whether Dirν is a Radon measure with respect to the Le Cam-Schwartz topology as
well, depends on the base measure ν . To make a preliminary assessment, note that,
given α ∈A and L > 0, for any Pα ,Qα ∈M1(Xα),

∥Pα−Pα ∧LQα∥1,Xα
= ∑

{
Pα(Ai) : i ∈ I(α), Pα(Ai)> LQα(Ai)

}
≤ 1

L ∑

{(
Pα(Ai)

Qα(Ai)

)2

Qα(Ai) : i ∈ I(α), Pα(Ai)> LQα(Ai)

}

≤ 1
L ∑

i∈I(α)

Pα(Ai)
2

Qα(Ai)
.

(8.37)

Based on (8.36), we see that, for every A ∈ α ,∫
M1(Xα )

Pα(A)2 dDirνα
(Pα) =

ν(A)2 +ν(A)
ν(X )2 +ν(X )

.
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Now, let δ > 0 be given. Due to the bound (8.37), for any L > 0 and any α ∈ A ,
Markov’s inequality gives,

Πα

(
{Pα ∈M1(Xα) : ∥Pα −Pα ∧LGα∥1,Xα

> δ}
)

≤Πα

({
Pα ∈M1(Xα) :

1
L ∑

i∈I(α)

Pα(Ai)
2

Gα(Ai)
> δ

})
≤ 1

Lδ
∑

i∈I(α)

1
Gα(Ai)

∫
M1(Xα )

Pα(Ai)
2 dΠα(Pα)

=
1

Lδ
∑

i∈I(α)

ν(Ai)+1
ν(X )+1

=
1

Lδ

ν(X )+ |α|
ν(X )+1

for all α ∈ A . Since |α| → ∞, as α ∈ A refines (unless X is finite), this shows
that the most obvious upper bound to imply uniform integrability does not lead to a
useful argument. However, we show the following.

Theorem 8.9.2. Let X , A = A0 and M1(X ) satisfy the minimal conditions and
consider M1(X ) with the Le Cam-Schwartz topology. Let ν be a non-zero, bounded,
positive, purely atomic measure on X . Then there exists a unique Radon probability
measure Dirν on M1(X ) with the Le Cam-Schwartz topology, projecting to Dirνα

for all α ∈A0. In that case, Dirν describes a normalized completely random mea-
sure in the fixed-atomic phase.

Proof. First consider a countable set D with the discrete topology (which is a Pol-
ish space), with a bounded, positive Borel measure νD on D. According to theo-
rem 8.9.1, the Dirichlet histogram system with base measure νD has a Radon his-
togram limit DirνD on M1(D) with the weak topology. Since any bounded f : D→R
is continuous, the weak and Le Cam-Schwartz topologies are equal. Therefore DirνD

is also Radon with respect to the Le Cam-Schwartz topology on M1(D) by default.
Now, let X be Polish, and let D denote the set {x ∈X : ν({x}) > 0}. Let AD

denote the set of all finite partitions of D, and let AX \D denote the set of all finite,
Borel measurable partitions of X \D. Define A to contain all partitions α that
combine a partition αD from AD and a partition αX \D from AX \D, to partition the
whole space X . Note that A resolves X , and A is directed and co-final in A0. For
any α = (αD,αX \D) ∈ A , the Dirichlet histogram distribution Dirνα

is such that,
for the (σ(α)-measurable) subset X \D,

Dirνα

(
{Pα ∈M1(Xα) : Pα(X \D) = 0}

)
= 1.

so Pα(D) = 1 with Dirνα
-probability one. The projections of (P(A) : A ∈ α) onto

(P(A) : A ∈ αD) give rise to a Dirichlet histogram system with base measure νD,
the restriction of ν to subsets of D. As argued above, the limit DirνD is a Radon
probability measure on M1(D) with the Le Cam-Schwartz topology. The space
M1(D) is Le Cam-Schwartz-to-Le Cam-Schwartz homeomorphic to the weakly
closed subspace M of all P ∈ M1(X ) such that P ≪ ν , through the mapping
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φ : M1(D)→ M1(X ), φ(P)(B) = P(B∩D) for all B ∈B. Conclude that the his-
togram system based on partitions in A has a histogram limit Dirν that is Radon on
M1(X ) with the Le Cam-Schwartz topology.

8.10 Existence and phases of Pólya-tree histogram limits

In subsection 8.10.1 we consider the condition for a Pólya tree histogram system to
have a limit that is a Borel probability measure for the weak topology and we discuss
an example of a Pólya tree system without limit. In subsection 8.10.2 we consider
Pólya tree histogram limits that are Borel probability measures for the Le Cam-
Schwartz topology.

8.10.1 Tight limits of Pólya-tree histogram systems

First, the general case of the Pólya-tree histogram system is analysed with corol-
lary 8.7.7: here, the particulars of the partition play a role in the formulation of the
condition, so we have to be specific regarding X and its partitioning. In this sub-
section, we specify that X = (0,1] (or R), with a dyadic tree of partitions. We use
the following notation: for all m≥ 0, om = 0 . . .0 ∈ Em and ιm = 1 . . .1 ∈ Em,

Theorem 8.10.1. Let X = (0,1] and let A = {αm : m ≥ 0} be the dyadic tree of
example 8.3.1. Let (Παm ,ϕ∗,αmαn) be a coherent inverse system of Pólya-tree mea-
sures (with parameter β = {βε : ε ∈ E }) on the inverse system (M1(Xαm),ϕ∗αmαn).
Then there exists a unique probability measure on M1(X ) that is Radon with re-
spect to the weak topology and projects to the Pólya-tree histograms parametrized
by {(βε0,βε1) : ε ∈ E }, if and only if,

∏
m≥0

βεom0

βεom0 +βεom1
= 0, (8.38)

for every ε ∈ E , and the resulting random element P of M1(X ) is in the continuous-
singular phase.

Proof. Given m ≥ 1, the partition αm consists of 2m intervals of the forms (a,b]
where a = b− 2−m and b = 2−mk, k = 1,2 . . . ,2m, which is generated by a basis
for the standard topology on (0,1]. The well-ordered set of partitions A = {αm :
m≥ 1} resolves (0,1]. For given ε ∈ Em we consider Aε ∈ αm. Let also δ ,η > 0 be
given. If Gαm(Aε)= 0, Pαm(Aε)= 0, with Παm -probability one and any compact K⊂
Aε satisfies property (P-weak’). Assuming that Gαm(Aε) > 0, we write Aε = (a,b]
for certain fixed a,b like above, and consider the sequence of half-open intervals
(Iε,l)l≥m in X , defined by,
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Iε,l = Aε \Aεom−l = (a+2−l ,b].

Assuming that (8.38) holds, choose l ≥ m large enough such that,

l−1

∏
k=0

βεok0

βεok0 +βεok1
<

δη

Gαm(Aε)
.

Note that for all m ≤ k ≤ l, ϕαk(Iε,l) = ϕαk(Aε), while for any l′ ≥ l, ϕα ′l
(Iε,l) =

ϕα ′l
(Aε)\ϕα ′l

(Aεom−l ). Defining K to be the closure of Iε,l , by Markov’s inequality,
we have,

Παl′

(
{Pαl′ ∈M1(Xαl′ ) : Pαl′ (K)< Pαl′ (ϕαl′ (Aε))−δ}

)
≤Παl′

(
{Pαl′ ∈M1(Xαl′ ) : Pαl′ (Iε,l)< Pαl′ (ϕαl′ (Aε))−δ}

)
= Παl

(
{Pαl ∈M1(Xαl ) : Pαl (Aεom−l )> δ}

)
≤ 1

δ

∫
M1(Xαl )

Pαl (Aεom−l )dΠαl (Pαl )

=
Gαm(Aε)

δ

l−1

∏
k=0

βεok0

βεok0 +βεok1
< η ,

which shows that property (P-weak’) holds.
Conversely, suppose that there exists a ε ∈ E , such that,

∏
m≥0

βεom0

βεom0 +βεom1
> 0,

Then,
lim

m→∞

∫
Pαm(Aεom)dΠαm(Pαm)> 0,

while the sequence (Aεom)m≥0 decreases to ∅. Hence, the mean measures Gα do
not define a measure (on the ring that is formed by the union of all σ(α), α ∈A ),
which precludes the existence of a Borel probability measure Π on M1(X ) with
the weak topology (if Π would exist, B 7→

∫
P(B)dΠ would define a Borel mean

measure).

Remark 8.10.2. The above applies to examples with X =R as well, but in that case,
we have to require, in addition to (8.38), that,

∏
m≥0

βιm1

βιm0 +βιm1
= 0, (8.39)

because aside from the open, left-sided boundaries of half-open intervals A ∈ α ,
there are directions towards ±∞ where mass can ‘leak away’ in the limit.
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Example 8.10.3. It is well known [175], that a Pólya-tree histogram system with
defining parameters {(βε0,βε1) : ε ∈ E } that satisfy,

βε = βε0 +βε1, (8.40)

for all ε ∈ E , coincides with a Dirichlet histogram system (not on all of A0, but on
a smaller set of dyadic partitions A that resolves X , generated by a basis). Ac-
cordingly, such Dirichlet-Pólya-tree histogram systems have limits that are Radon
probability measures on M1(X ) with the weak topology, and the resulting random
element P of M1(X ) is in the random-atomic phase.

In the example below, we make a choice for the parameters {(βε0,βε1) : ε ∈ E }
that gives rise to a coherent histogram system without a weak limit. This choice is
not singular by construction, in the sense that parameters either grow very large or
vanish in the limit: for all ε ∈ E , we have β 2

ε0 +β 2
ε1 = 1. To introduce the example,

we define the following function on E .

Definition 8.10.4. In the standard construction of Cantor space as a subspace C of
[0,1] by successive deletions of open mid-sections of intervals, we define the Cantor
mid-point function x that parametrizes the set of all mid-points of deleted intervals
in terms of finite binary sequences: x : E → [0,1] maps ε ∈ Em to the midpoint
of the interval that is deleted in the m-th transition in the construction of the set
C : for example, x(ε∅) = 1/2 in E0, x(0) = 1/6, x(1) = 5/6 in E1, x(00) = 1/18,
x(01) = 5/18, x(10) = 13/18, x(11) = 17/18 in E2, etcetera.

Example 8.10.5. Take X = R with a dyadic tree of partitions as defined in exam-
ple 8.7.8, and, for all m≥ 0, ε ∈ Em,

βε0 = cos
( 1

2 πx(ε)
)
, βε1 = sin

( 1
2 πx(ε)

)
. (8.41)

Note that,

∏
m≥0

βom0

βom0 +βom1
= ∏

m≥0

cos
( 1

2 πx(om)
)

cos
( 1

2 πx(om)
)
+ sin

( 1
2 πx(om)

)
= ∏

m≥0

(
1+ tan

( 1
2 πx(om)

))−1
= exp

(
− ∑

m≥0
log
(

1+ tan
( 1

2 πx(om)
)))

.

It is noted that x(om) = 1/2(1/3)m and,

∑
m≥0

log
(

1+ tan
( 1

2 πx(om)
))
≈ ∑

m≥0
tan
( 1

2 πx(om)
)

≈ π

2 ∑
m≥0

x(om) =
π

4 ∑
m≥0

(1
3

)m
=

3π

8
< ∞,

Similarly,
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∏
m≥0

βιm1

βιm0 +βιm1
= ∏

m≥0

sin
( 1

2 πx(ιm)
)

cos
( 1

2 πx(ιm)
)
+ sin

( 1
2 πx(ιm)

)
= ∏

m≥0

(
1+1/ tan

( 1
2 πx(ιm)

))−1
= exp

(
− ∑

m≥0
log
(

1+1/ tan
( 1

2 πx(ιm)
)))

Since x(ιm) = 1− x(om) for all m≥ 0,

1/ tan
( 1

2 πx(ιm)
)
= 1/ tan

( 1
2 π(1− x(om))

)
= tan

( 1
2 πx(om)

)
.

Conclude that,

∏
m≥0

βom0

βom0 +βom1
= ∏

m≥0

βιm1

βιm0 +βιm1
> 0,

which implies that the Pólya-tree random histograms defined in (8.41) form a co-
herent system that does not lead to a limiting probability measure on M1(R) with
the weak topology.

8.10.2 Le Cam-Schwartz limits of Pólya-tree histogram systems

Second, we formulate a sufficient condition for the parameters {(βε0,βε1) : ε ∈ E }
such that the corresponding Pólya-tree histogram system has a limit Π that is a
Radon probability measure on M1(X ) with the Le Cam-Schwartz topology. Based
on this condition, it is demonstrated that homogeneous Pólya-tree systems with
β−1

m = O(m−1) give rise to such Le Cam-Schwartz histogram limits. This rate of
growth is lower than required in the sufficient condition of [170], which is elabo-
rated upon in [99, 199, 175] and re-visited in [114].

Theorem 8.10.6. Let X be a second countable metrizable space with countable
basis U , and corresponding dyadic tree A of partitions αm, m≥ 1, generated by the
basis. Let (Παm ,ϕ∗,αmαn) be a coherent inverse system of Pólya-tree measures (with
parameter β = {βε : ε ∈ E }) on the inverse system (M1(Xαm),ϕ∗αmαn). Assume
also that condition (P-weak) holds. Then there exists a unique Radon probability
measure Π on M1(X ) with the Le Cam-Schwartz topology, projecting to Παm for
all m≥ 1, if,

sup
m≥1

∑
ε∈Em

m

∏
l=1

1
βεl−10 +βεl−11

(
βε̂

βεl−10 +βεl−11 +1
+βε

)
< ∞. (8.42)

The resulting random element P of M1(X ) is in the absolutely-continuous phase.

Proof. Condition (P-weak) implies the existence of a weakly-Borel probability
measure Π ′ on M1(X ) and a corresponding mean measure G ∈ M1(X ), which
serves as our choice of Q in the proof for property (P-LS). Let δ > 0 be given. For
any L > 0 and every m≥ 1, Markov’s inequality gives,
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Παm

(
{Pαm ∈M1(Xαm) : ∥Pαm −Pαm ∧LGαm∥1,Xαm > δ}

)
≤Παm

({
Pαm ∈M1(Xαm) :

1
L ∑

i∈I(αm)

Pαm(Ai)
2

Gαm(Ai)
> δ

})
≤ 1

Lδ
∑

i∈I(αm)

1
Gαm(Ai)

∫
M1(Xαm )

Pαm(Ai)
2 dΠαm(Pαm)

=
1

Lδ
∑

ε∈Em

m

∏
l=1

(
βεl−10βεl−11

βεl−1el

1
(βεl−10 +βεl−11)(βεl−10 +βεl−11 +1)

+
βεl−1el

βεl−10 +βεl−11

)
<

K
Lδ

,

for all m≥ 1, where K denotes the value of the supremum in condition (8.42). Con-
sequently, condition (P-LS) is satisfied and theorem 8.6.4 asserts that there exists a
unique Le Cam-Schwartz-Radon probability measure Π on M1(X ) that projects to
Παm for all m≥ 1.

Corollary 8.10.7. Assume the conditions of theorem 8.10.6 and let a sequence
βm > 0, (m≥ 1) be given. If the βm grow like m or faster, β−1

m = O(m−1), there ex-
ists a unique Radon probability measure Π on M1(X ) with the Le Cam-Schwartz
topology, projecting to the associated homogeneous Pólya-tree histogram system.

Proof. Substituting βε = βm in condition (8.42), we find, for every m≥ 1,

∑
ε∈Em

m

∏
l=1

1
βεl−10 +βεl−11

(
βε̂

βεl−10 +βεl−11 +1
+βε

)
=

(
1

2βm +1
+1

)m

,

which behaves like exp(m/(2βm + 1)) in the limit m→ ∞. Since m/βm = O(1) by
assumption, the right-hand side stays bounded and property (8.42) is satisfied.

Note that the sufficient condition of [170] (see also [114]) suggests that absolute
continuity of homogeneous Pólya-tree limits sets in when βm grows as O(m2) or
faster; here it is shown that absolute continuity already obtains with βm that grow
more slowly, as O(m) or faster.

8.11 Exercises

8.11.1. Let X be a Polish space with Borel σ -algebra B. Consider the space
M1(X ) of all Borel probability measures on X (with various topologies) and a
model P ⊂M1(X ) which we view as a subspace in the topological sense.

a. Show that, on any P , the total-variational topology refines the Le Cam-
Schwartz topology and the Le Cam-Schwartz topology refines the weak topol-
ogy.
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b. Show that, on M1(R), there are sets that are open in the total-variational topol-
ogy but not in the Le Cam-Schwartz topology, and that there are sets that are
open in the Le Cam-Schwartz topology but not in the weak topology.

We view M1(X ) as a subspace of F (X , [0,1]) (see appendix C.6), with the topol-
ogy of pointwise convergence: P→ Q whenever P(A)→ Q(A) for all A ∈B.

c. Show that, on any P , the Le Cam-Schwartz topology refines the topology of
pointwise convergence and the topology of pointwise convergence refines the
weak topology.

d. Show that, on M1(R), there are sets that are open in the Le Cam-Schwartz
topology but not in topology of pointwise convergence, and that there are sets
that are open in the topology of pointwise convergence but not in the weak
topology.

8.11.2. Let X , A and M1(X ) satisfy the minimal conditions. Consider M1(X )
with a Borel probability measure Π . Show that the mean measure G, as defined in
definition 8.1.9, is countably additive.

8.11.3. Find which line contains the mistake in the proof of proposition 8.2.2. Spec-
ulate on possible solutions, to conclude that there is no easy way out. [Hint: Recall
that conditional probabilities are defined almost-surely for every A separately, cf.
definition (B.9), but not automatically also almost-surely for all A simultaneously,
as a regular conditional distribution. The present problem is similar.]

8.11.4. In the proof of proposition 8.2.2, it is claimed that if a positive sequence
(xn)n≥1 converges to zero, then there exists a subsequence (xn j) j≥1 with finite sum.
Prove the following, slightly stronger fact: for every positive sequence (xn)n≥1 and
every s > 0, there exists a subsequence (xn j) j≥1 such that Σ j≥1xn j < s.

8.11.5. Complete the proof of theorem 8.2.1, by verifying the Kolmogorov consis-
tency conditions (K1) and (K2) of theorem B.6.2 explicitly, based on the histogram
marginals.

8.11.6. Prove the following proposition.

Let βε0,βε1 > 0 be given for all ε ∈ E . If βε0+βε1 = βε for all ε ∈ E , then for every
m ≥ 1, the random αm-histogram (8.15) coincides with the corresponding random
αm-histogram (8.9) of the Dirichlet process.

8.11.7. Show that the Dirichlet histogram system is tailfree.

8.11.8. Comparing definition C.1.18 with the assertion of proposition 8.2.2 one
might expect the formulation of the latter to read “the support of Dirν is M1(R)”.
Why does proposition 8.2.2 not mention “the support” of Dirν ? A fortiori, point
out why not just the topological nature of the subset M1(R) but even measurability
forms a problem.

8.11.9. As is mentioned after the statement of theorem 8.2.3, the proof contains a
point that is, at best, correct but passed too quickly. Find this point. [Hint: the proof
is correct only because Dirichlet distributions are tailfree.]
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8.11.10. Let A = {αn : n≥ 1} denote a dyadic tree of refining partitions for a Pólya
tree prior as in section 8.10. Assume that for every n,m ≥ 1, n ̸= m, the vectors of
splitting variables (Vε : ε ∈ En) and (Vε : ε ∈ Em) are independent. Show that the
resulting inverse system of measures Πα is tailfree.

8.11.11. Show that the open interval (0,1) with the subspace topology it inherits
from R (with the usual topology), is a Polish space (even though it is not complete
for the usual metric d(x,y) = |x− y|).

8.11.12. Show that if X is a Hausdorff topological space and P = {δx : x ∈X }
is the space of all Dirac measures on X , and we equip P with the weak topology,
then the mapping x 7→ δx is a continuous bijection. Also show that if X is com-
pletely regular, the inverse mapping δx 7→ x is continuous, so that X and P are
homeomorphic. Next, prove that that the convex hull of P is TC-dense in the space
M 1(X ,B) of all Borel probability measures on (X ,B), but not T∞-dense unless
X is countable.

8.11.13. Show that, if the space X is a Polish space, the Borel σ -algebra for the
weak topology on M1(X ) is smallest σ -algebra that makes all the mappings P 7→
P(A), A ∈B measurable.



Chapter 9
Consistent tests and model selection

The question, “Which pairs of model subsets can be told apart asymptotically and
which cannot?”, is not just of direct practical importance (e.g. for model selection
with large amounts of data) and of essential value in the development of theory. It
is also a fundamental matter at the heart of statistics: which model questions have
a truly statistical nature (that is, questions answerable from the data), and which do
not? Of course, there are two versions of this question, one that requires only a proof
of the existence of tests, and another that asks for the actual construction of such
tests. In this chapter, the existence question is answered first and the constructive
question is considered as in [163], promoting the existence result to a guarantee that
posteriors achieve the correct conclusion, also for the frequentist.

9.1 Asymptotic testability

To make the issue precise, consider a situation where we observe i.i.d. data Xn ∼ Pn,
(n≥ 1), with a model P such that P ∈P . Suppose that, for disjoint B,V ⊂P , we
are interested whether,

H0 : P ∈ B, or H1 : P ∈V.

In an asymptotic, symmetric testing procedure, one requires a sequence of test func-
tions (φn) with type-I and type-II error probabilities (resp. Pnφn for P ∈ B and
Pn(1− φn) for P ∈ V ) that go to zero. Equivalently (see [212, 94] and proposi-
tion 9.4.2) one requires existence of some testing procedure with the following
property,

A testing procedure that chooses for B or V based on Xn for every n ≥ 1, has property (D)
if it is wrong only a finite number of times with P∞-probability one.

Property (D) is referred to as “discernibility” in [71, 212, 94] and it is also the basis
for the tests in many other publications, for example [60, 72].

293
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To do justice to the level of generality that the title promises, a real answer re-
quires various things: ideally, there should be no restrictions on the model at all;
furthermore, the answer should characterise the pairs B,V for which test sequences
exist, as well as the pairs for which this is not the case, preferably in the form
of an equivalence: given any model P , whether P belongs to B or to V can be
tested asymptotically, if and only if, etcetera. Answers depend crucially on the for-
mal/philosophical framework: a Bayesian who gives his answer based on posterior
odds or a Bayes factor, and who disregards potential prior null-sets of exceptions,
answers this question differently from a frequentist, who formulates his answer in
terms of test functions and insists on asymptotic consistency for all points in the
model (or even uniformly). These distinctions lead to differing answers to the ques-
tion “What is asymptotically testable and what is not?”, and hence, to differing
notions of answerable and non-answerable statistical questions.

In section 9.2, we consider three forms of asymptotic testability: uniform testabil-
ity, pointwise testability and Bayesian testability. In subsequent sections we prove
for each form an equivalence characterising pairs B,V for which consistent tests
exist: in section 9.3 equivalent formulations of uniform testability are given; in sec-
tion 9.4 we characterise hypotheses that are pointwise testable; and in section 9.5, it
is shown that Bayesian tests exist for a very wide variety of hypotheses.

As stressed already, we do not restrict attention to subclasses of models, the
model choice is left completely free. (We make one exception: in theorem 9.4.16
we require a dominated model, see the discussion in section 9.7.) Characterisations
of testability are formulated in terms of conditions on the sets B,V only. Other-
wise, we would not characterise testability itself but how it manifests in subclasses.
Of course, it is possible that a hypothesis is not testable versus its complement in a
large model P , while becoming testable when P is restricted. The consequences of
topologically suitable, general restrictions (like completeness, metrizability, metric
totally-boundedness, or weak-relative-compactness) are accommodated in corollar-
ies. Such restrictions form connections with previous work and motivate examples.

9.1.1 Some examples and unexpected answers

Intuition regarding the existence problem of asymptotic tests is greatly helped by
some examples that typify the nature of possible answers: distinctions between
smoothness classes for a regression function f : X → R:

H0 : f ∈C1(X → R), H1 : f ∈C2(X → R), (9.1)

cannot be tested consistently according to the frequentist. However, to the Bayesian
using the posterior, smoothness classes are asymptotically testable without any
reservations, for prior-almost-all points in the model. To mention another instance,
the frequentist cannot test to distinguish asymptotically between classes of densities
p on R with or without a second moment:
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H0 :
∫

x2 p(x)dx < ∞, H1 :
∫

x2 p(x)dx = ∞.

That simple fact implies no statistician dealing with unbounded data can ever use the
central limit theorem with asymptotic certainty that it applies for the true distribution
P, unless square-integrability is established externally, before observation of the
data.

Bayesians can make the distinction between the hypotheses H0 and H1 asymp-
totically (but, again, only prior-almost-surely). Similarly, Bayesians can test con-
sistently whether a distribution on R is compactly supported, whether its Lebesgue
density is square-integrable, etcetera, distinctions that are not testable for frequen-
tists [72].

The intricacy of the question is emphasized further by the unexpected answer to
Cover’s rational mean problem [60]: for an i.i.d. sequence of coin-flips X1,X2, . . .
(with all Xi distributed marginally Bernoulli-p with p∈ [0,1]), consider the hypothe-
ses:

H0 : p ∈ [0,1]∩Q, H1 : p ∈ [0,1]\Q. (9.2)

Rather surprisingly, Cover shows that there exists a test sequence φn(X1, . . . ,Xn) that
goes to one if p ∈ [0,1]∩Q, and to zero for Lebesgue-almost-all p ∈ [0,1]\Q. It is
not possible to find a test sequence for Cover’s problem without such an exceptional
null-set (see corollary 9.4.2). However, it is possible to restrict the model to enable
testability: Dembo and Peres [71] show that there exist asymptotically consistent
tests for,

H0 : p ∈ [0,1]∩Q, H1 : p ∈ [0,1]∩
√

2+Q, (9.3)

without measure-theoretic exceptions. But one does not have to restrict to countable
hypotheses to find testability for apparently deeply intertwined hypotheses: exam-
ple 9.4.25 shows it is possible to test whether p lies in the Cantor subset C or not,

H0 : p ∈C, H1 : p ∈ [0,1]\C, (9.4)

It is noted that C is zero-dimensional and nowhere-dense, while both C and its com-
plement are uncountable. And although C has Lebesgue measure zero, there are
Cantor subspaces of [0,1] that have non-zero Lebesgue measure, for which testabil-
ity also holds. So if testability is ruined by certain forms of denseness but not for
others, and maintained for self-similar sets like C, what does the distinction depend
on (preferably characterized in topological terms)?

9.1.2 Testability over the decades

Of course the question has a long history: the first attempts to answer general ques-
tions on testability appear already in the 1950’s: Hoeffding and Wolfowitz [131] give
sufficient conditions that are also necessary in some cases (see also, [181]). Kraft
[169] studied consistent tests for families of general, dependent data distributions
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and gives a separation condition in terms of the separation of convex hulls of finite-
dimensional projections, much like the Hahn-Banach theorem and its specializations
suggest [50]. Berger [17] gives necessary and sufficient conditions for the existence
of uniformly consistent tests, and subsequent work [18, 181] extends the approach
to pointwise consistent estimation problems. It is noted that the present work is in-
spired first and foremost on the Le Cam-Schwartz theorem [181], which provides
necessary and sufficient conditions for the existence of uniform and pointwise tests,
in terms of a particular uniformity we denote U∞ with associated topology T∞. (Ap-
pendix ?? offers a comparison of T∞ with other, better-known model topologies.) In
the form applicable to pointwise testing, the Le Cam-Schwartz theorem states that,

Theorem 9.1.1. (Le Cam-Schwartz, 1960) Let P be a model for i.i.d. data Xn with
disjoint subsets B,V . There exist (uniformly) consistent tests for B versus V , if and
only if, there exists a sequence of U∞-uniformly continuous functions ψn : P →
[0,1] such that,

ψn(P)→ 1V (P), (9.5)

(uniformly) over all P ∈P .

So the Le Cam-Schwartz theorem provides the definitive answer to our question.
However, its formulation is in terms of a uniformity U∞ that is “rather inaccessi-
ble” [187] (see [71, 212, 94] for more detailed comments), and it is perhaps this
inaccessibility that explains why the entire body of subsequent work on the subject
mentions the Le Cam-Schwartz theorem but does not relate to it at any formal level.
Most sensitive to the argument put forth by Le Cam and Schwartz appears to be the
insightful work of Ermakov [94], which departs from necessary conditions for the
existence of pointwise consistent tests in terms of uniformly consistent tests. How-
ever, a weakly compact, dominated model is required for Ermakov’s results and the
weak topology rather than Le Cam-Schwartz’s uniformity U∞ is used to formulate
testability conditions.

A separate but related historical line of research originates from Cover’s ratio-
nal mean problem [60], and answers Cover’s specific (but prototypical, see theo-
rem 9.4.15) question from the probabilistic point of view (see also, [219]). As a
second inspirational reference for this work, we mention Dembo and Peres [71],
who show that the limited version of Cover’s problem in (9.3) has a solution and
subsequently prove the following theorem.

Theorem 9.1.2. (Dembo and Peres, 1995) Let P be a model dominated by Lebesgue
measure µ for i.i.d. data Xn. Model subsets B,V that are contained in disjoint count-
able unions of closed sets for the weak topology have tests with property (D). If there
exists an α > 1 such that

∫
(dP/dµ)α dµ < ∞ for all P ∈P , then the converse is

also true.

Note the recurrence of weakly compact, dominated models with the weak topology.
Kulkarni and Zeitouni [172] accept Cover’s exceptional null-set and consider the
question when such tests (which we call Bayesian, see definition 9.2.3) exist in
more general setting. Nobel [212] notices that the approach of Dembo and Peres
can be extended from i.i.d. setting to a framework where the data is dependent, e.g.
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to test between disjoint families of (uniformly) ergodic processes. Ermakov’s work
also appears to be inspired by the results of Dembo and Peres.

If one departs from the strictly constructive, statistical perspective (e.g. in non-
parametric density estimation), first of all, there are many solutions that are spe-
cific to model and hypotheses presented, often involving specific test-statistics and
critical regions, roughly following the classical approach of [178]. If we restrict at-
tention to (a non-exhaustive list of) references that aim to answer the more general
question, it is worth mentioning Donoho (1988) [79], who discusses non-parametric
confidence sets and testing of hypotheses for aspects of the density of the data in
dominated, non-parametric models. Similar in intention, and a third major inspira-
tion for this chapter, is Devroye and Lugosi (2003) [72] who construct solutions in
many diverse and practical examples of non-parametric testing problems for densi-
ties, based largely on contemporary methods of kernel estimation.

9.1.3 The forms that answers take

Given the rather intricate examples of subsection 9.1.1, one wonders which expec-
tations one should have regarding the forms in which answers to the testability ques-
tion are formulated. Based on the examples of pointwise testing in subsection 9.1.1,
it is clear that model topology plays a central role in characterising which disjoint
pairs B,V are testable and which are not. Exactly which topology we deploy here, is
prescribed by the necessary and sufficient conditions that the Le Cam-Schwartz the-
orem formulates: we are obliged to view the model as a uniform space with the uni-
formity U∞. (In the examples of subsection 9.1.1, the topology T∞ coincides with
the usual topology of [0,1].) This rather technical starting point is not a choice but
an imperative (if we insist on total freedom of model choice); only by setting model
conditions (e.g. like uniform integrability, as in [71, 212, 94] and corollary 9.4.23)
can this be avoided.

But having decided which topology is relevant, we also need to determine what
type of topological condition we expect to determine testability of disjoint pairs
B,V . For uniform testability of disjoint B,V , it is necessary and sufficient (see the-
orem 9.3.3) that B and V are U∞-uniformly separated: there exists an entourage
U that does not meet B×V ∪V ×B. Regarding pointwise testability one expects
countable unions of weakly closed sets to be important, based on [71, 212, 94]; as
we shall see, disjoint B,V that are pointwise testable can be characterised as sets
that are both countable unions of closed sets and countable intersections of open
sets in B∪V . This condition holds for the Cantor set C and its complement in [0,1]
and for the countable sets [0,1]∩Q and [0,1]∩

√
2+Q, but not for [0,1]∩Q and its

complement in [0,1].
Bayesian testability is different and forms the constructive contribution. Bayesian

testability does not fit the formulation of the Le Cam-Schwartz theorem and, as such,
escapes its topological imperatives. The existence of a Bayesian test sequence is
equivalent to the consistency of posterior odds or Bayes factors (see theorem 7.1.4),
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at least, if one is willing to permit prior null-sets of exceptions. This presents the op-
portunity to promote mere existence proofs for (Bayesian) testability, to constructive
proofs in the sense that they imply an actual way to perform the test based on the
data, using the posterior. This resolves the matter of testability for the Bayesian,
but for the frequentist there remains the rather unwelcome possibility of exceptional
null-sets [102]. To bridge the discrepancy, two things are required [163]: a Bayesian
test sequence with known testing power and a prior that induces a property termed
remote contiguity for local prior predictive distributions. Then the Bayesian con-
clusion that the posterior provides a consistent test sequence remains valid for the
frequentist, that is, without exceptional null-sets. Using a generality concerning the
testing power of uniform test sequences (see proposition 9.3.1), and remote contigu-
ity as it applies for Kullback-Leibler priors, we indicate a practical way to perform
consistent, frequentist model selection with posteriors, and demonstrate how to use
it in two model selection problems, selection of the number of clusters in a cluster-
ing problem, and selection of a directed acyclical graph in a graphical model.

9.2 Existence of test sequences

Let the model P be a collection of distributions P on a measurable space (X ,B),
to model i.i.d. samples Xn = (X1,X2, . . . ,Xn) ∈X n, Xn ∼ Pn. The relevant model
topology is the (subspace) topology T∞ defined in definition ??. We consider two
disjoint model subsets B,V and wonder whether there is a way to tell whether the
true distribution of the data lies in B or in V with asymptotic certainty. More partic-
ularly, we wonder whether there exists a sequence of test functions φn : X n →
[0,1] that converge to one or to zero, depending on P ∈ B or P ∈ V (in prob-
ability/expectation or almost-surely, see proposition 9.4.2). Given a topological
space X , we say that the testing problem has a (uniform) representation on X , if
there exists a T∞-(uniformly-)continuous surjective map f : B∪V → X such that
f (B)∩ f (V ) =∅. Given a Hausdorff topological space Θ , we say that the model is
parametrized by Θ , if there exists a T∞-continuous bijection P· : Θ →P (i.e. for
every m ≥ 1 and measurable f : X m → [0,1], the map θ 7→ Pm

θ
f is continuous).

This condition is satisfied quite easily, for example, it is weaker than continuity
with respect to the total-variational topology (see proposition C.7.17). It does not
imply that Θ and P are homeomorphic, unless Θ is compact. If Θ is compact
and P· is T1-continuous (see proposition C.7.13), then P is parametrized by Θ

and P· is a homeomorphism. When considering a represented testing problem on a
parametrized model with X =Θ , Θ and the model are homeomorphic.

Test sequences come in various kinds, e.g. uniform or pointwise, or Bayesian in
nature.

Definition 9.2.1. We say that (φn) is a uniform test sequence for B versus V , if,

sup
P∈B

Pn
φn→ 0, sup

Q∈V
Qn(1−φn)→ 0. (9.6)
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Existence of a uniform test sequence for B versus V implies the existence of a uni-
form test sequence of exponential power (see proposition 9.3.1), i.e. (9.6) implies
there exist a test sequence ψn whose sum of type-I and type-II errors goes to zero
exponentially fast,

sup
P∈B

Pn
φn + sup

Q∈V
Qn(1−φn)≤ e−nD,

for some constant D > 0. This fact is exploited in section 9.7, where it is used
together with a suitable prior to do demonstrate model-selection with Bayes factors,
in a constructive way, while satisfying frequentist consistency criteria.

Definition 9.2.2. The (φn) are a pointwise test sequence for B versus V , if,

φn(Xn)
P−→0, φn(Xn)

Q−→1, (9.7)

for all P ∈ B and Q ∈V .

Existence of a pointwise test sequence for B versus V is equivalent to the existence
of test sequence with property (D), (see proposition 9.4.2).

Aside from these two frequentist notions of testability, we also consider a version
of the pointwise test that is strictly Bayesian, because it leaves room for a prior-null-
set of exceptions [60, 172, 163].

Definition 9.2.3. Let (P,G ) be a measurable space with prior Π and assume B,V ∈
G . We say that (φn) is a Bayesian test sequence for B versus V (under Π ), if,

φn
P−→0, φn

Q−→1, (9.8)

for Π -almost-all P ∈ B and Q ∈V .

The goal of this chapter is to characterize the existence of the test sequences with
as much precision and in as much detail as possible, for the three definitions 9.2.1–
9.2.3. We require an “accessible” form, that is, firstly we insist on easy illustration
with a wide variety of examples and counterexamples, and secondly, that we elevate
results of existence to constructive results (by applying the methods of [163]).

9.2.1 The Le Cam-Schwartz theorem

The basis for sections 9.3 and 9.4 is the Le Cam-Schwartz theorem. The following
theorem is the Le Cam-Schwartz theorem, restated in test-specific form. Below F
denotes a increasingly directed collection of model subsets (for any finite subset
{F1, . . . ,Fm} ⊂ F , there exists an F ∈ F such that F1 ∪ . . .∪Fm ⊂ F . Examples:
F = {P}; F consists of all finite subsets of P; F consists of all compact subsets
of P , etcetera).

Theorem 9.2.4. (Le Cam-Schwartz, 1960) Let P with hypotheses B,V B∩V = ∅
be given. There exists an F -uniform test sequence for B versus V , if and only if,
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there exists a sequence (ψn) of U∞-uniformly continuous functions ψn : B∪V →
[0,1] such that,

sup
P∈F

∣∣ψn(P)−1V (P)
∣∣→ 0, (9.9)

for every F ∈F .

Proof. (See [181] and also section 17.5 of [187].) If there exists an F -uniform test
sequence (φn) for B versus V , then the functions ψn : B∪V → [0,1],

ψn(P) = Pn
φn(Xn),

are U∞-uniformly continuous and converge F -uniformly to 1V on B∪V . Con-
versely, suppose first that ψn = ψ for some U∞-uniformly continuous ψ : B∪V →
[0,1]. Let ε > 0 be given. There exist m,J ≥ 1, δ > 0 and f j : X m → [0,1]
(1≤ j ≤ J), such that for all P,Q ∈ B∪V ,

ρ(P,Q) := max
1≤ j≤J

∣∣Pm f j−Qm f j
∣∣< δ ,

implies that |ψ(P)−ψ(Q)| < ε . Define M to be the smallest integer greater than
9Jε−1δ−2 and PM f j =M−1

∑
M
i=1 f j(Xi), for random X1, . . . ,XM ∈X m. Because any

probability model is pre-compact for the uniform structure U∞, there exist L≥ 1 and
{Q1, . . . ,QL} such that, for all P ∈ B∪V ,

min
1≤l≤L

ρ(P,Ql)<
1
3 δ .

Let Q̂M denote the minimizer of Q 7→ ρ(PM,Q) over {Q1, . . . ,QL}. For any P and l
such that ρ(P,Ql)<

1
3 δ , we have,

ρ(Q̂M,P)≤ ρ(PM,P)+ρ(PM, Q̂M)≤ ρ(PM,P)+ρ(PM,Ql)≤ 2ρ(PM,P)+ 1
3 δ .

For any P ∈ B∪V , Chebyshev’s inequality gives,

PMm(ρ(PM,P)≥ 1
3 δ )≤

J

∑
j=1

PMm(|PM f j−Pm f j| ≥ 1
3 δ
)
≤

J

∑
j=1

9
δ 2 Var(PM f j)≤

9J
δ 2M

< ε.

Conclude that for all P ∈ B∪V , PMm(|ψ(Q̂M)−ψ(P)| < ε) ≥ 1− ε . This proves
the following intermediate result: for every ε > 0 and uniformly continuous ψ , the
exists a sequence of estimators (Q̂n) which satisfy,

sup
P∈B∪V

Pn|ψ(Q̂n)−ψ(P)|< ε, (9.10)

for large enough n. Generalizing to the sequential case of uniformly continuous
(ψk) satisfying (9.9), let a sequence (εk) be given that decreases to zero. For every
k≥ 1, let (Q̂k,n) denote the estimator sequence that satisfies (9.10) for ψk and εk. By
traversing the sequences labelled with k slowly enough with increasing n, we can
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guarantee that,
sup

P∈B∪V
Pn|ψ(Q̂k(n),n)−ψk(n)(P)|< εk(n).

Combined with assumption (9.9), we see that,

sup
P∈F

Pn|ψ(Q̂k(n),n)−1V (P)| → 0,

completing the proof.

This theorem solves the question for a topological characterization of an F -uniform
test sequence for B versus V elegantly and completely, at least, from a strictly math-
ematical perspective. However, the necessary and sufficient condition stated is not
only technical and difficult to handle, it is very hard to interpret.

A possible interpretation runs as follows: model subsets can be told apart by some
procedure involving i.i.d. data, if and only if, their distinctions can be expressed
in terms of one specific model topology (or rather, uniformity), the topology T∞

(uniformity U∞), using uniform continuity of a sequence of functions on the model
to specify possible distinctions exactly. The topology T∞ (see definition ??) is of
the weak type and non-metrizable in all but the simplest cases.

Moreover T∞ does not display any close relation to the samplespace topology,
like Prohorov’s weak topology. Le Cam qualifies the uniformity U∞ as “not very
easily accessible” [181], and more than 25 years later, as “rather inaccessible” [187].
It is therefore warranted to look for other equivalent formulations or accessible suf-
ficient conditions. We start with the existence of uniform test sequences.

9.3 Uniform testability

A very natural question concerns conditions under uniform test sequences exists
[17, 219]. Let us first establish the following useful equivalence [238, 185, 10, 70].

Proposition 9.3.1. Let P be a model with hypotheses B and V , B∩V = ∅. The
following are equivalent:

1. there exists a uniform test sequence (φn) such that,

sup
P∈B

Pn
φn→ 0, sup

Q∈V
Qn(1−φn)→ 0,

2. there exists a test sequence (φn) and a constant D > 0 such that,

sup
P∈B

Pn
φn ≤ e−nD, sup

Q∈V
Qn(1−φn)≤ e−nD.

This fact can be exploited, for example, in Bayesian model selection, and conse-
quently, in frequentist model selection with posteriors as well if a Kullback-Leibler
prior is used: cf. proposition 9.3.1, existence of a uniform test implies existence of an
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exponentially powerful uniform test, which is enough to compensate for prior-mass
lower-bounds for Kullback-Leibler neighbourhoods, e.g. through remote contiguity.
According to theorem 4.8 of [163] posterior odds or Bayes factors then select the
correct model consistently.

Here, we derive necessary and sufficient conditions for the existence of a uniform
test sequence, in terms of the uniformity U∞.

Definition 9.3.2. Let (P,U ) be a model with uniformity. We say that two model
subsets B and V are uniformly separated by U if there exists an entourage U ∈U
such that for every P,Q ∈P , (P,Q) ∈U implies that either P,Q ∈ B, or P,Q ∈V .

Theorem 9.3.3. Let P be a model and let B,V be model subsets. The following are
equivalent:

(i.) there exists a uniform test sequence (φn) for B versus V , cf. (9.6);
(ii.) the indicator 1V : B∪V →{0,1} is U∞-uniformly continuous;

(iii.) the subsets B and V are uniformly separated by U∞.

Proof. Assume that there exists a uniform test sequence (φn) for B versus V . Define
the U∞-uniformly continuous functions ψn : P → [0,1], ψn(P) = Pnφn and note
that the difference |ψn(P)−1V (P)| goes to zero uniformly over B∪V . So, for every
ε > 0 there exist an N ≥ 1 such that for all n≥ N, supP |ψn−1V |(P)< ε/3 and an
entourage W ∈U∞ such that for all (P,Q)∈W , |ψN(P)−ψN(Q)|< ε/3. Therefore,

|1V (P)−1V (Q)| ≤ |1V (P)−ψN(P)|+ |ψN(P)−ψN(Q)|+ |ψN(Q)−1V (Q)|< ε,

for all (P,Q) ∈ V . To show that (ii.) implies (i.), choose ψn = 1V . The equivalence
of (ii.) to (iii.) follows directly from the definition of U∞-uniform continuity of
1V : P ′→{0,1}.

To expand on formulation (iii.), B and V are uniformly separated by U∞, if and
only if, there exist J,m ≥ 1, ε > 0 and bounded, measurable functions f1, . . . , fJ :
X m→ [0,1] such that,

max
1≤ j≤J

∣∣Pm f j−Qm f j
∣∣< ε,

implies that either P,Q∈ B, or P,Q∈V . If the model is T∞-compact, m = 1 suffices.

Proposition 9.3.4. Let P be a model and let B,V be model subsets with T∞-
closures B and V . If B and V are uniformly separated by U∞, then B∩V = ∅. If
P is relatively T∞-compact, the converse is also true.

Proof. Suppose that there exists a P ∈ B∩V . Let W ∈U∞ be any entourage. There
exists an entourage W ′ ∈ U∞ such that W ′ ◦W ′ ⊂W . (Recall that W ′ ◦W ′ denotes
the collection of all pairs (P,Q) ∈P ×P for which there exists an R ∈P such
that (P,R) ∈W ′ and (R,Q) ∈W ′; more generally, see [46].) The sets U1 = {P′ ∈
P : (P,P′) ∈W ′} and U2 = {P′ ∈P : (P′,P) ∈W ′} are neighbourhoods of the
point P, so U1 ∩B ̸= ∅ and U2 ∩V ̸= ∅. Pick P1 ∈U1 ∩B and P2 ∈U2 ∩V . Then
(P1,P2) ∈W ′ ◦W ′ ⊂W so that W ∩B×V ̸= ∅, i.e. W does not separate B from V
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uniformly. Conversely, assume that the T∞-closure P of P is T∞-compact and that
B and V are not uniformly separated by U∞, that is, for every W ∈U∞, there exists
a pair (PW ,QW ) ∈ B×V ∩W . The collection {(PW ,QW ) : W ∈U∞} forms a net in
B×V . By the compactness of P , there exists a convergent subnet (PW ′ ,QW ′) with a
limit (P,P) on the diagonal of P×P . So there exists a P ∈P and nets (PW ′)⊂ B
and (QW ′)⊂V such that PW ′ → P and QW ′ → P. This shows that P ∈ B∩V .

If P is not compact in T∞, it is possible for two closed subsets to have no points in
common, yet fail to be uniformly separated. (For comparison: two closed subsets of
(the non-compact sets) Rk for k ≥ 1 can have empty intersections but be at distance
zero, for example {(x,y)∈ (0,∞)×R : y≥ 1/x} and {(x,y)∈ (0,∞)×R : y≤−1/x}
in R2. Note that this is not possible if we replace Rk by some compact subset.)

Example 9.3.5. Hellinger tests (from the minimax theorem)

It is shown in [185] that the centre of a total-variational ball cannot be tested with
uniform testing power against the interior of said ball and this negative result stays
true if we change from an L1- to Lp-metrics for p > 1.

9.4 Pointwise testability

This section focusses on pointwise testability. Between Bayesian testability (which
requires only Borel measurability) and uniform testability (which requires no less
than uniform separation), pointwise testability is an interesting test-case where the
question of testability may find its most natural or balanced answer.

In the first subsection, we consider pointwise testability according to defini-
tion 9.2.2 in models that are not dominated. Subsequent subsections focus on hy-
potheses that are asymptotically indistinguishable by statistical testing, and on a
characterization of testable hypotheses in dominated models.

To start with a situation for which most have more intuition, consider the case
of a model in which consistent estimators P̂n : X n →P exists, n ≥ 1. Here P
is a set of single-observation distributions P, assumed Hausdorff in some topology
T . Consistency says that for every P ∈P and neighbourhood U of P, we have
Pn(P̂n ∈ U)→ 1. Given two open hypotheses B,V ⊂P with B∩V = ∅, define
φn(Xn) = 1{P̂n ∈ V} and note that for any P ∈ B, B is a neighbourhood of P so
Pnφn = Pn(P̂n ∈V )≤ Pn(P̂n ̸∈ B)→ 0, and for any Q ∈V , Qn(1−φn)→ 0. So (φn)
is a pointwise test sequence for B versus V . If we restrict attention to P ′ = B∪V , B
and V are complementary, so that B and V are both clopen sets, i.e. B,V both lie in
the first ambiguous class ∆ 0

1 (P
′). We summarize with the following proposition.

Proposition 9.4.1. If P ∈P can be estimated consistently and B is clopen, there
exist pointwise tests for B versus its complement.

So clopenness is sufficient if we can estimate, but is it also necessary? And which
topologies on P are strong enough? Below we shall see that the topology T∞ im-
poses itself and that, in fact, the requirement that B is both an Fσ and a Gδ (i.e.
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that B lie in the second ambiguous class ∆ 0
2 (P)) is necessary for the existence of

pointwise tests, and in complete models, also sufficient.

9.4.1 Pointwise testability in non-dominated models

As a general, introductory remark, let us first prove that there is no difference be-
tween pointwise testability in its “almost-sure”, “in-probability” and “in-expectation”
versions.

Proposition 9.4.2. Let P be a model with hypotheses B and V , B∩V = ∅. The
following are equivalent:

1. there exists a test sequence (φn) such that for all P ∈ B and Q ∈V ,

Pn
φn→ 0, Qn(1−φn)→ 0,

2. there exists a test sequence (φn) such that for all P ∈ B and Q ∈V ,

φn(Xn)
P−→0, (1−φn(Xn))

Q−→0,

3. there exists a test sequence (φn) such that for all P ∈ B and Q ∈V ,

φn(Xn)
P-a.s.−−−→0, (1−φn(Xn))

Q-a.s.−−−→0.

This equivalence has a very useful and immediate implication: one is often inter-
ested in testing procedures that have property (D), which is a way to formulate the
almost-sure version of testing in proposition 9.4.2. The construction of almost-sure
test sequences is often difficult (see, however, [72]), but their existence can be in-
ferred from the much-easier-to-prove in-probability pointwise testability of B versus
V . This fact can be exploited, for example, in Bayesian model selection, and con-
sequently [163], in frequentist model selection with posteriors, if a suitable prior is
used.

Some testing problems do not require analysis at the level of the Le Cam-
Schwartz theorem because a test sequence can readily be constructed.

Example 9.4.3. For fixed, measurable D ⊂X , can we test whether supp(P) ⊂ D?
(I)
For a measurable D⊂ X , it is possible to test,

H0 : P(D) = 1, H1 : P(D)< 1.

Namely, take test functions φn : X n→ [0,1], defined by,

φn(X1, . . . ,Xn) = 1−
n

∏
i=1

1{Xi ∈ D},
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Then, for all P satisfying H0, φn(Xn)
P-a.s.−−−→0 and for all Q satisfying H1, φn(Xn)

Q-a.s.−−−→1,
which implies testability according to definition 9.2.2.

The above may seem trivial but it has many applications, for example the following.

Example 9.4.4. For any random X ∈ [−∞,∞], is tightness of X testable?
Suppose we have a measurable map X : X → [−∞,∞] and hypotheses,

H0 : X is tight, H1 : X is not tight.

Define C = {ω ∈X : |X(ω)| = ∞} and D = X \C and apply example 9.4.3 to
conclude that tightness is testable.

Another example concerns the presence of point-masses in the data-distribution.

Example 9.4.5. Can we test whether a distribution contains any point-masses?
In other words, we require a test for the hypotheses,

H0 : ∀x ∈X ,P({x}) = 0, H1 : ∃x ∈X ,P({x})> 0.

A suitable test sequence is constructed from ties in the sample,

φn(X1, . . . ,Xn) = 1−
n

∏
i, j=1,i ̸= j

1{Xi ̸= X j}.

If there exists an x ∈X such that P({x}) = p > 0, then the probabilities of seeing
no ties decrease like (1− p)n, so Pnφn→ 1; while if H0 holds, probabilities for ties
are zero, P(Xi = X j) = 0 if i ̸= j, so Pnφn = 0.

But in more complicated cases one needs the Le Cam-Schwartz theorem. Without
formulating requirements on the model, we focus solely on the testability question
itself: a pointwise test sequence (φn) for B versus V exists, if and only if, there
exists a sequence of U∞-uniformly continuous ψn : B∪V → [0,1] such that ψn(P)→
1V (P) for all P ∈ B∪V . Let us first look at example 9.4.3 through the Le Cam-
Schwartz equivalence.

Example 9.4.6. For fixed, measurable D ⊂X , can we test whether supp(P) ⊂ D?
(II)
Take the hypotheses of example 9.4.3. Let B = {P ∈P : P(D) = 1} and V = {P ∈
P : P(D)< 1}. Define the function f : P→ [0,1] by f (P)=P(D) and the sequence
ψn = 1− f n. Then the ψn are U∞-uniformly continuous and ψn(P)→ 0 for all P∈B,
while ψn(P)→ 1 for all P ∈V .

Example 9.4.7. Can we test independence of two events A and B?
Let A and B be two measurable subsets of the sample space X for a single-
observation. We test the hypotheses,

H0 : P(A∩B) = P(A)P(B), H1 : P(A∩B) ̸= P(A)P(B).
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Consider the three U1-uniformly continuous functions fi : P → [0,1], (i = 1,2,3),

f1(P) = P(A∩B), f2(P) = P(A), f3(P) = P(B),

and the uniformly continuous function g : [0,1]3→ [1,−1], g(x1,x2,x3) = x1−x2x3.
The composition h : P→ [−1,1], h = g◦ ( f1, f2, f3) and |h| are U1-uniformly con-
tinuous, and so are the functions ψn = |h|1/n. Note that ψn(P) = 0 for all n ≥ 1 if
h(P) = 0, and ψn(P)→ 1 in all other cases. So independence of events A and B is
asymptotically testable.

9.4.2 Pointwise non-testability

As is pointed out in [94], conditions and examples for non-testability of hypotheses
have been largely lacking for a long time (but see [72] for a notable exception). To
better understand potential problems obstructing testability, we focus on necessary
conditions for testability and hypotheses that are impossible to test.

Suppose that there exists a pointwise consistent test sequence (φn) for B versus
V . Defining ψn : P → [0,1],

ψn(P) = Pn
φn,

it is immediate that the ψn are all U∞-uniformly continuous and that ψn(P)→ 1V (P)
for every P. This implies that the nature of pointwise testable pairs of hypotheses
B,V can be described quite precisely.

Proposition 9.4.8. Suppose that there exists a pointwise consistent test sequence
(φn) for B versus V . Then both B and V are both Gδ - and Fσ -sets with respect to
T∞ in the subspace B∪V .

Proof. Let ε < 1/2 be given, consider the closed sets Bn = {P∈ B∪V : ψn(P)≤ ε}
and Vn = {P∈B∪V : ψn(P)≥ 1−ε}. For every P∈B there exists an N≥ 1 such that
P lies in the closed set ∩∞

n≥NBn. So P lies in the Fσ -set ∪N≥1∩∞
n≥N Bn. Conversely,

if P lies in ∪N≥1 ∩∞
n≥N Bn, then ψn(P) ≤ ε for large enough n, which implies that

ψn(P)→ 0 because we assume testability, so P ∈ B. Conclude that B is an Fσ -set.
Since the same holds for V by symmetry, the complement of B in B∪V is also Fσ ,
that is, B is also Gδ .

In the language of descriptive set theory, hypotheses that are testable versus their
complements in the model belong to the class of ambiguous sets ∆ 0

2 (P). Because
P with the T∞-topology is not necessarily metrizable, there is no guarantee that
T∞-open (or -closed) subsets are Fσ (or Gδ ) in general. However, in Polish models
(for examples, see remark 9.4.22 and corollary 9.4.23) testability implies complete-
ness.

Corollary 9.4.9. Suppose that P = B∪V is Polish in the T∞-topology and that B is
pointwise testable versus V . Then the hypotheses B and V are complete (and hence
Polish) subspaces of P .
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Proof. Hypotheses B and V are both Fσ in B∪V , if and only if, they are both Gδ in
B∪V , if and only if, they are both Polish in B∪V . Metrizability and separability (in
metrizable spaces) are subspace properties but completeness is not.

Testability of hypotheses in Polish spaces implies that the hypothesized sets B and V
themselves are complete. That suggests that pointwise non-testability of a hypothe-
sis can be shown based on the properties of Baire spaces.

Corollary 9.4.10. Suppose P is a Baire space in a topology that is T∞ or finer. If
B and P \B are dense in P , then B is not pointwise testable versus P \B.

Proof. We prove this by contradiction: assume that B is testable versus its comple-
ment in P . Then B and its complement C := P \B are both Gδ -sets, so there exist
sequences of open sets (Bn) and (Cn) such that B = ∩∞

n=1Bn and C = ∩∞
n=1Cn. Be-

cause both B and C are dense in the Baire space P , the intersection D =∩{Bn∩Cn :
n≥ 1} is a countable intersection of dense open subsets, so D is dense. However, B
and C are disjoint so, ( ∞⋂

n=1

Bn

)
∩
( ∞⋂

n=1

Cn

)
= B∩C =∅,

so the intersection D cannot be dense.

Remark 9.4.11. The condition that P be a Baire space is not as stringent as it looks:
if C⊂ B and W ⊂V , then non-testability of C versus W implies non-testability for B
versus V . So the above corollary could have been formulated slightly more generally
as follows: if B,V ⊂P , B∩V =∅ are given and there exists a Baire subspace D of
P in which both D∩B and D∩V are dense, then B is not testable versus V . Aside
from the remark that the Polish spaces we have discussed are Baire spaces, the
Baire property is often applicable in dominated (sub-)models, under the condition
of uniform integrability. Namely, because (locally) compact Hausdorff spaces are
Baire spaces, and (relative) T∞-compactness is often an easily accessible property
(see the argument leading up to corollary 9.4.23), finding a Baire sub-problem D in
examples is perhaps less demanding than it appears.

Example 9.4.12. Is Cover’s rational means problem testable?
The above proves that Cover’s rational mean problem has a negative answer. To
prove this, first note that P is dominated and the Dunford-Pettis theorem shows
that P is T∞-compact (so that T∞ = T1). There is an injective parametrization
P· : [0,1]→P , with Pp({1}) = 1−Pp({0}) = p: any p,q ∈ [0,1], Pp ̸= Pq and,
given f : {0,1}→ [0,1],∣∣(Pp−Pq) f

∣∣= ∣∣(p−q)( f (1)− f (0))
∣∣≤ |p−q|,

so that P· is a T∞-continuous injection and therefore a homeomorphism. Since [0,1]
is a complete metric space, P is a Baire space for the T∞-topology. Because both
[0,1]∩Q and [0,1]\Q are dense in [0,1], the images P0 := {Pp : p∈ [0,1]∩Q} and
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P1 := {Pp : p ∈ [0,1]\Q} are T∞-dense in P . So there does not exist a pointwise
test for p ∈ [0,1]∩Q versus p ∈ [0,1]\Q.

Unfortunately, many common statistical assumptions are of this type.

Example 9.4.13. Is integrability of a random variable X, P|X |< ∞, testable?
Let X be a real-valued random variable with some distribution in the space P of all
probability distributions on R. When equipped with the total-variation norm or the
Hellinger metric, (P,Td) refines T∞, is a Polish space and therefore has the Baire
property. Define the dichotomy P0 = {P∈P : P|X |< ∞}, P1 = {P∈P : P|X |=
∞}. The sets P0 and P1 are non-empty, so let P ∈P0 and Q ∈P1 be given.
For any 0 < ε < 1, P′ = (1− ε)P+ ε Q satisfies ∥P′−P∥ = ε∥(P+Q)∥ ≤ 2ε , but
P′ ∈P1. Conclude that P1 lies Td-dense in P . Conversely, tightness of Q implies
that for every ε > 0, there exists a constant M > 0 such that |Q(A)−Q(A||X | ≤
M)|< ε for all measurable A ⊂ R. Since Q(·||X | ≤M) ∈P0, we also see that P0
lies Td-dense in P . So P0 cannot be tested versus P1.

Since we cannot test for integrability of X , there is no asymptotic, statistical way of
finding out whether use of the law of large numbers is justified. In fact, integrability
with regard to any unbounded random variable on R (e.g. P| f (X)| < ∞ for some
f :R→R) cannot be tested: in particular, square-integrability of X cannot be tested,
so use of the Central Limit Theorem cannot be justified with tail-probability one
either, based on an i.i.d. sample.

Example 9.4.14. Can we test whether a random variable X is compactly supported?

H0 : ∃K : P(X ∈ K) = 1, H1 : ∀K : P(X ∈ K)< 1

Let all P ∈ B be such that P(X ∈ K) = 1 for some compact K and all Q ∈ V such
that there is no such K. Then for all 0 < ε < 1, P′ = (1− ε)P + εQ ∈ V while
∥P−P′∥ ≤ 2ε , so V lies Td-dense in B∪V . Since R is a Radon space, for ε > 0
and any Q ∈ V there exists a compact K such that |Q(A)−Q(A|K)| < ε for all
A. Therefore, also B lies Td-dense in B∪V . Since the collection of all probability
measures on R is completely metrizable in the Td topology, B∪V is a Baire space
and we conclude that there does not exist a pointwise test sequence for H0 versus
H1.

Cover’s rational mean problem can be called prototypical for non-testability of
hypotheses, at least, if we are willing to restrict the issue to models that are Polish
for T∞ (for examples, see remark 9.4.22 and corollary 9.4.23). In Polish models
we consider the potential testability of hypotheses that correspond to analytic sub-
sets. (A subset A is analytic if it is the continuous image of a Polish space ([149],
sections 7.F, 21.F.). The class of all analytic sets is very large; it contains all Borel
subsets of P .) To demonstrate how Cover’s problem makes an appearance when
non-testability is in play, we consider analytic subsets B and V of a Polish P =B∪V
that are not both Fσ -sets. Clearly B is not asymptotically pointwise testable versus
V . Hurewicz’s theorem [149] provides crucial insight.
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Theorem 9.4.15. (Hurewicz) Let P be a Polish space and let A be analytic in P .
If A is not Fσ , then there exists a Cantor subset C such that C \A is countably dense
in C, homeomorphic to [0,1]∩Q, while C∩A is closed in A, and homeomorphic to
[0,1]\Q.

On the basis of the (more general) Kechris-Louveau-Woodin theorem [148, 149] we
may say the following: suppose that P is Polish in the T∞-topology. If we have
two disjoint analytic model subsets B and V that are not both Fσ in T∞ (which is
necessary for testability), then there exists a sub-testing-problem, in the form of a
(Cantor) subset C ⊂ B∪V with a representation on [0,1] in which the testing of
B∩C versus V ∩C is represented on [0,1] as Cover’s rational mean problem. So
if, for example, we are in a model that has finite total-variational entropy numbers
(so that on the separable completion, total-variational and T∞ topologies coincide),
non-Fσ -ness of any analytic hypotheses can always be reduced to a non-testable
Cover sub-problem.

9.4.3 Pointwise testability in dominated models

For the following theorem, recall that the testing problem has a (uniform) represen-
tation on X , if there exists a T∞-(uniformly-)continuous surjective map f : B∪V →
X such that f (B)∩ f (V ) =∅.

Theorem 9.4.16. Let a dominated model P with hypotheses B,V B∩V = ∅ be
given. The following are equivalent,

i. there exists a pointwise test sequence for B versus V ;
ii. the testing problem has a representation f : B∪V → X on a normal space X

and there exist disjoint Fσ -sets B′,V ′ ⊂ X such that f (B)⊂ B′, f (V )⊂V ′;
iii. the testing problem has a uniform representation ψ : B∪V → X on a separable,

metrizable space X with ψ(B),ψ(V ) ∈ ∆ 0
2 (X).

The proof of this theorem requires some vector-space reasoning. Given the model
P in the T∞-topology, we define the linear space E of all bounded, continuous
f : P → R and the linear space F that is the linear span of the collection of all
degenerate (Borel) measures δP on P: for any λ ∈F , there exist m≥ 1, λ1, . . . ,λm ∈
R\{0} and distinct P1, . . . ,Pm ∈P such that λ can be written (uniquely) as:

λ =
m

∑
i=1

λi δPi . (9.11)

Definition of the bi-linear form ⟨·, ·⟩ : E×F → R,

⟨ f ,λ ⟩=
∫

P
f (P)dλ (P) =

m

∑
i=1

λi f (Pi),
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puts E and F in duality. This duality is separating for both E and F . (Because P is
a uniform space (hence regular), point-sets are separated by continuous functions.)
With the corresponding weak topologies σ(E,F) and σ(F,E), the spaces E and F
form a dual pair of Hausdorff locally convex spaces (see, [50], Ch. 4). Note that
the topology of pointwise convergence for bounded, continuous functions on P
coincides with σ(E,F). Within E, define,

H =
{

f ∈ E : 0≤ f ≤ 1, f U∞-unif. cont.
}
.

The bi-polar theorem guarantees that for H, the closure H equals the bi-polar H◦◦

which enables the following result.

Lemma 9.4.17. Every T∞-continuous f : P → [0,1] lies in the σ(E,F)-closure H
of H.

Proof. According to the bi-polar theorem (see theorem 1 of [50], Ch. II, § 6, No. 3),
the polar H◦◦ ⊂ E of the polar H◦ ⊂ F is equal to the closed convex envelope
of H ∪ {0}. Since H is convex and contains 0 ∈ E, H◦◦ = H. For given λ ∈ F
there exists an m ≥ 1, λ1, . . . ,λm ∈ R \ {0} and distinct P1, . . . ,Pm ∈P such that
λ is written uniquely as λ = Σiλi δPi . Fix some m ≥ 1 and distinct P1, . . . ,Pm ∈P
and consider the finite-dimensional subspace of F we obtain when we vary w =
(λ1, . . . ,λm) ∈ Rm. Any f ∈ H is represented on this subspace only through the
values v = ( f (P1), . . . , f (Pm)) ∈ [0,1]m and any λ supported on {P1, . . . ,Pm} lies in
H◦ whenever the inner product ⟨v,w⟩ in Rm is greater than or equal to −1. Because
the cube [0,1]m is the convex hull of its corner points, we see that if the coefficients
λ1, . . . ,λm are such that,

∑
i∈M

λi ≥−1, (9.12)

for any finite subset M of {1, . . . ,m}, then λ ∈ H◦. Conclude that if we define L to
be the subset of all λ ∈ F that satisfy (9.12) when decomposed according to (9.11),
then L ⊂ H◦. Conversely, let λ ∈ H◦ be given (again represented in the form λ =
Σiλi δPi ). For every 1≤ i < j≤m, define the Bn-measurable maps xn 7→ φi j,n(xn) to
be likelihood ratio tests (with µ = Pi +Pj and pi = dPi/dµ , p j = dPj/dµ):

φi j,n(Xn) = 1{pn
i (X

n)< pn
j(X

n)}.

Then, because the Hellinger distance H(Pi,Pj) between Pi and Pj is strictly positive,

Pn
i φi j,n +Pn

j (1−φi j,n)

=
∫ (

pn
i (x

n)1{pn
i (x

n)< pn
j(x

n)}+ p j(xn)1{pn
i (x

n)≥ pn
j(x

n)}
)

dµ
n(xn)

≤
∫ √

pn
i (xn)pn

j(xn)dµ
n(xn) = 1− 1

2

∫ (√
pn

i (xn)−
√

pn
j(xn)

)2
dµ

n(xn)

= 1−H2(Pn
i ,P

n
j )≤ e−nH2(Pi,Pj)→ 0.

(For the last inequality, see, for example, lemma 2.17 in Strasser [248].) Choose
some 0 < ε < 1/2 and N large enough such that PN

i φi j,N < ε and PN
j φi j,N > 1− ε .
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Then the function fi j : P → [0,1],

fi j(P) =
(PNφi j,N−PN

i φi j,N

PN
j φi j,N−PN

i φi j,N

)
∨0∧1,

is uniformly continuous with respect to UN (which coarsens U∞) and satisfies
fi j(Pi) = 0, fi j(Pj) = 1, so fi j lies in H and separates Pi and Pj. For every M ⊂
{1, . . . ,m}, we can construct an f ∈ H from the collection { fi j : 1 ≤ i < j ≤ m},
such that,

⟨ f ,λ ⟩= ∑
i∈M

λi,

so that H◦ ⊂ L as well. Conclude that H◦ = L. Next, consider the polar H◦◦ ⊂ E
of H◦: let λ ∈ H◦ and f : P → [0,1] in E be given. Reasoning like before we see
that ⟨ f ,λ ⟩ can be replaced by an inner product ⟨v,w⟩ in Rm and that ⟨ f ,λ ⟩ ≥ −1
because the coefficients λ1, . . . ,λm satisfy (9.12). Conclude that f ∈ H◦◦.

So any T∞-continuous f : P → [0,1] is approximated arbitrarily closely by U∞-
uniformly continuous functions, with respect to any of the semi-norms that define
σ(E,F). Although, for every continuous f , this implies the existence of nets of
uniform functions that converge to f , nothing is implied regarding the existence of
a convergent sequence of uniform functions. For that step, the conclusion of the next
lemma is sufficient, however.

Lemma 9.4.18. If P is dominated, H is separable and metrizable with respect to
σ(E,F).

Proof. Because we assume that the σ -algebra B is countably generated, Strasser’s
lemma 4.1 [248] says that P is separable with respect to the total-variational topol-
ogy. This implies that P is also separable in the T∞-topology (because Td refines
T∞, but see also theorems 4.4 and 21.3 in [248]). As the linear span of a set with
countable dense subset, F (has a total set and) is separable with respect to σ(F,E).
And as a consequence of that, E is first-countable at zero with respect to σ(E,F).
The total-variational norm ∥ · ∥TV makes F a normed space, with continuous dual
F ′, and F ′ can be equipped with the (weak-star) topology σ(F ′,F). If we define, for
every bounded T∞-continuous f : P → R, the linear map g f : F → R,

g f (λ ) =
∫

P
f (P)dλ (P) = ⟨ f ,λ ⟩, (9.13)

then, with 0≤ | f | ≤ ∥ f∥= supP∈P | f (P)|,∣∣g f (λ )
∣∣≤ ∥ f∥∥λ∥TV ,

so g f lies in F ′, for every f ∈ E. This map is one-to-one and a σ(E,F)-to-σ(F ′,F)
homeomorphism between E and E = {g f : f ∈ E} ⊂ F ′, and we conclude that E
is first-countable at zero. Also, every norm-bounded set in E (and in particular the
set H) is mapped to a norm-bounded subset of E (denoted G in the case of H)
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by (9.13), with norm-bounded closure G with respect to the norm-topology on F ′.
Then, according to cor. 2 of [50], Ch. III, § 3, No. 4, G is a compact, metrizable
space for σ(F ′,F), which implies that G is separable and metrizable with respect to
σ(F ′,F), which is equivalent to separability and metrizability of H for σ(E,F).

Now a diagonalization argument suffices to draw the conclusion that if B and V
are separated by a sequence of continuous functions (i.e. there exist continuous
ψn : B∪V → [0,1] such that ψn→ 1V ), then B is pointwise testable versus V . The
representation in terms of Fσ -sets on a normal space guarantees the existence of the
ψn through Urysohn’s lemma.

Proof. (of theorem 9.4.16)
Assume condition (ii). The disjoint sets B′ and V ′ can be written as countable unions
of closed sets and because X is a normal space there exists a sequence of continuous
gn : X → [0,1], (n ≥ 1) such that for each x ∈ B′ (resp. y ∈ V ′), there is an N ≥ 1
such that gn(x) = 0 (resp. gn(y) = 1) for all n≥ N. Composition with f : B∪V → X
gives rise to a sequence of T∞-continuous ψn = gn ◦ f : B∪V → [0,1] such that
ψn(P)→ 1V (P) for all P ∈ B∪V . For each n≥ 1, lemma 9.4.17 asserts that ψn lies
in H and, according to lemma 9.4.18, H is metrizable for σ(E,F), which implies
the existence of a sequence {ψn,m : m ≥ 1} ⊂ H such that ψn,m→ ψn with respect
to σ(E,F) as m→ ∞. Letting m(n) increase with n slowly enough, a ‘diagonal’
sequence {ψn,m(n) : n ≥ 1} is constructed such that ψn,m(n)(P)→ 1V (P) for all P ∈
B∪V . According to the Le Cam-Schwartz theorem, that implies the existence of
a consistent pointwise test for B versus V , i.e. condition (i) follows from condition
(ii).

Next, assume condition (i), that (φn) is a pointwise test sequence for B versus
V . Define the U∞-uniformly continuous maps ψn : B∪V → [0,1], ψn(P) = Pnφn,
and the mapping ψ : B∪V → ∏n[0,1], ψ(P) = (ψn(P) : n ≥ 1). The map ψ is
U∞-uniformly continuous and the image X = ψ(B∪V ) in the (separable, metriz-
able) product space ∏n[0,1] is separable and metrizable. Next, we reason similar
to proposition 9.4.8: let 0 < ε < 1/2 be given and consider the closed product sets
cn,wn ⊂∏n[0,1],

cn = [0,1]× . . .× [0,1]× [0,ε]× [0,1]× . . . ,

wn = [0,1]× . . .× [0,1]× [ε,1]× [0,1]× . . . ,

(with the ε-dependent intervals as the n-th factors) and the sets bN = ∩n≥N(cn∩X),
vN = ∩n≥N(wn∩X) for all N ≥ 1 which are closed in the subspace X . Note that for
any P∈B (resp. any Q∈V ), there exists an N≥ 1 such that ψ(P)∈ bN (resp. ψ(Q)∈
vN), so ψ(B) is a subset of the Fσ -set ∪NbN in X (resp. ψ(V ) is a subset of the Fσ -
set ∪NvN in X). Conversely, if x ∈ ∪NbN (resp. y ∈ ∪NvN), there exists a P ∈ B∪V
such that x=ψ(P) (resp. y=ψ(P)) and limn ψn(P)< 1/2 (resp. limn ψn(P)> 1/2),
which means that P ∈ B (resp. P ∈V ), i.e. ∪NbN ⊂ ψ(B) (resp. ∪NvN ⊂ ψ(V )). So
ψ(B) = X \ψ(V )∈ ∆ 0

2 (X). Condition (iii) follows from condition (i). Condition (ii)
follows from condition (iii) because metrizable spaces are normal spaces.
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Corollary 9.4.19. Suppose that P is dominated and there exist disjoint Fσ -sets
B′,V ′ in the completion P̂ (for U∞) such that B ⊂ B′, V ⊂ V ′. Then B is point-
wise testable versus V .

Proof. Since P is pre-compact for U∞, the completion P̂ is compact (and hence
normal) and the canonical embedding P → P̂ is continuous. Formulation ii. of
theorem 9.4.16 is then satisfied, and we conclude formulation i..

Remark 9.4.20. Based on corollary 9.4.19, it is tempting to conclude that testability
must be equivalent to the existence of disjoint Fσ -sets B′′,V ′′ such that B ⊂ B′′ and
V ⊂V ′′ in the original model P . But corollary 9.4.19 requires more: the existence
of disjoint Fσ -sets B′,V ′ in P̂ cannot be guaranteed from the existence of disjoint
B′′,V ′′ that are Fσ in P . For the same reason, the converse of corollary 9.4.19
does not follow from corollary 9.4.8. This observation does allow for the following
re-formulation, however: suppose that P is dominated and complete for U∞ with
disjoint subsets B,V . Then B is pointwise testable versus V , if and only if, there exist
disjoint Fσ -sets B′,V ′ ⊂P such that B⊂ B′, V ⊂V ′.

Although perhaps pleasantly succinct from a mathematical perspective, corollary 9.4.19
is not practical unless the model can easily be shown to be complete for U∞. More
common, for example, are models that describe a (possibly non-parametric) family
of Lebesgue densities as a metric space, where the metric is related in some way (e.g.
through inequalities) to the Hellinger or total-variational metrics. For the following
corollary, we think of the model P as a metric space with a metric d that (is equal
to or) refines the total-variational metric (e.g. for all P,Q∈P , ∥P−q∥≤ f (d(P,Q))
for some strictly increasing f : [0,∞)→ [0,∞)). The argument below gives an ex-
planation for the ubiquity in the mathematical statistics literature of the assumption
that the model has finite metric entropy numbers (e.g. for all ε > 0, the covering
number N(ε,P,d)< ∞).

Corollary 9.4.21. Suppose that P is dominated and totally bounded with respect
to the total-variational metric. Then B,V ⊂P , B∩V =∅ are pointwise testable, if
and only if, B,V are Fσ -sets for the total-variational topology in B∪V .

Proof. The closure P of P in M (X ,B) with respect to TTV is compact. Because
TTV refines T∞, the identity i : P →P is a TTV -to-T∞ homeomorphism. The
inverse i−1 is T∞-to-TTV continuous (and so is its restriction to B∪V ). Since the
subspace B∪V remains metrizable for TTV , i−1 : B∪V → B∪V is a representation
of the testing problem on a normal space.

Remark 9.4.22. To appreciate the role that metric entropy numbers play here, con-
sider a model P of Lebesgue densities p : [0,1]→R and equip it with the L∞-norm,
d(P,Q) = ∥p− q∥∞, then certainly, ∥P−Q∥TV ≤ d(P,Q). Hypotheses that involve
d, like testing for ∥ · ∥∞-neighbourhoods of a fixed Q ∈P ,

H0 : ∥p−q∥∞ < δ , H1 : ∥p−q∥∞ ≥ δ , (9.14)
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are, in principle, not testable because these hypotheses are Fσ -sets in a topology that
is strictly stronger than T∞. But if the model is totally bounded with respect to d,
the proof of corollary 9.4.21 extends because d refines total variation. That renders
the hypotheses of (9.14) testable, because now they correspond to Fσ sets in the
total-variational and T∞ topologies.

Because T∞ refines Prohorov’s weak topology TC, we may also weaken the model
topology to TC by imposing T∞-compactness. (Relative T∞-compactness is a
weaker requirement than relative compactness in total-variation.) The results of Er-
makov (2017) [94] are formulated under this assumption and the main result of
Dembo and Peres (1994) [71] relates to ours through the same construction.

Corollary 9.4.23. Suppose that P is dominated by a probability measure, with a
uniformly integrable family of densities. Then B,V ⊂P , B∩V = ∅ are pointwise
testable, if and only if, B,V are Fσ -sets for the weak topology in B∪V .

Proof. Consider the model P as a subspace of M (X ,B) equipped with the U1-
uniformity, and denote by P the T1-closure of P . Because P is dominated by a
probability measure Q, P is dominated by Q (see, e.g., lemma 4.3 and theorem 4.8
in [248]). Clearly, the resulting family PQ of Q-densities in L1(Q) is the weak
closure of PQ. In fact, embedding L1(Q) in M (X ,B) canonically, PQ with the
weak topology and P with T1 are homeomorphic. By assumption, PQ is relatively
weakly compact, so PQ is weakly compact and P is T1-compact. It is shown in
the proof of lemma 3 of section 17.5 of Le Cam (1986) [187] (in the somewhat
broader context of theorem 6 of appendix 8 in [187]) that weak convergence of a net
fα → f in L1(Q) implies weak convergence of product densities f n

α → f n weakly
in L1(Qn), as a result of the Dunford-Pettis theorem (see also lemma 3.8 in [248]).
Suppose that fα is an arbitrary net in PQ, then there exists a convergent subnet
fβ → f ∈PQ which implies that f n

β
→ f n weakly in L1(Qn). That means that the

set { f n ∈ L1(Qn) : f ∈PQ} is weakly compact and P is compact with respect
to Tn, for all n ≥ 1. Because compact spaces have unique uniformities compatible
with their topologies, Un = U1 for all n ≥ 1 and consequently U∞ = U1 = UC on
P . Therefore, the identity i : P →P is a U∞-to-UC homeomorphism of uniform
spaces. Since P is metrizable for TC, so is the subspace B∪V , which means that
i : B∪V → B∪V is a (uniform) representation of the testing problem on a normal
space. Theorem 9.4.16 then asserts the existence of a pointwise test of B versus V .

Corollary 9.4.23 is related to theorem 2 in Dembo and Peres (1994) [71], which
says that in a dominated model, a test sequence for B versus V exists if B and V
are contained in disjoint Fσ -sets for the TC-topology, while the converse holds true
whenever

∫
(dP/dQ)pdQ<∞ for some p> 1 and all P∈P (which implies uniform

integrability). Ermakov formulates the following strengthening of the Dembo-Peres
result.

Corollary 9.4.24. (Ermarkov (2014), theorem 3.2)
Suppose that P is dominated by a probability measure, with a uniformly integrable
family of densities. Then B,V ⊂P , B∩V =∅ are pointwise testable, if and only if,
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there exist sequences (Bm), (Vm) with ∪mBm = B and ∪mVm = V , and uniform test
sequences (φm,n : X n→ [0,1] : n≥ 1), (m≥ 1), such that,

sup
P∈Bm

Pn
φm,n + sup

Q∈Vm

Qn(1−φm,n)→ 0,

for all m≥ 1.

Proof. Assume that B is pointwise testable versus V ; according to proposition 9.4.8,
there exist sequences (Bm), (Vm), (m≥ 1) of sets that are closed in the subspace B∪
V . Since B∪V ⊂P is relatively T∞-compact, Bm and Vm are uniformly separated
by T∞ cf. proposition 9.3.4 and theorem 9.3.3 implies existence of a uniform test
sequence (φm,n) for Bm versus Vm. Conversely, given tests (φm,n), we choose m(n)
to traverse the sequence in m = 1,2, . . . slowly enough to guarantee that φm(n),n :
X n→ [0,1] is a pointwise test sequence for B versus V .

The above proof of Ermakov’s theorem relies in a crucial way on (relative) compact-
ness with respect to T∞, because the all-important existence assertion in the proof
follows from proposition 9.3.4.

Example 9.4.25. Are Cantor subsets of the right topological type to be testable?
Cover’s rational mean problem of hypotheses (9.2), concerning the parameter p ∈
[0,1] of and i.i.d. sequence X1,X2, . . . of coin-flips, may also be posed with other
hypotheses such as those of (9.4): can we test whether p lies in the Cantor sub-
set B = C ⊂ [0,1], or in its complement V = [0,1] \C? As we have seen in exam-
ple 9.4.12, the map [0,1]→P : p 7→ Pp is a T∞-homeomorphism. In particular, this
implies P is compact and metrizable for T∞. Because B is closed, B is Fσ in [0,1]
and so is its image in P . Because open sets in metrizable spaces are Fσ , V and its
image in P are Fσ . We may now use theorem 9.4.16 or corollary 9.4.19 to conclude
that C is testable versus its complement. More broadly, any (non-empty) topological
space is homeomorphic to C, if and only if, it is perfect, compact, totally discon-
nected and metrizable. So the above concrete example represents a whole class of
testing problems, those in which one of the hypotheses satisfies said characteristic
topological properties as a subspace of a model P = B∪V that is metrizable with
respect to T∞.

9.5 Bayesian test sequences

First of all, the existence of a Bayesian test sequence is linked directly to behaviour
of the posterior itself. In the following, P is a model for i.i.d. data Xn taking values
in a measurable space (X n,Bn). Assume that Xn ∼ Pn, for some P ∈P and all
n ≥ 1. Assume also that P has a σ -algebra G such that P 7→ Pn(A) is measurable
for all n≥ 1 and A ∈Bn, and a prior Π : G → [0,1].

Theorem 9.5.1. Let a model (P,G ,Π) with hypotheses B,V ∈ G be given, with
Π(B)> 0,Π(V )> 0. The following are equivalent,
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i. there exists a Bayesian test sequence for B versus V ,
ii. there are test functions φn : X n→ [0,1] such that for Π -almost-all P ∈ B,Q ∈

V ,
Pn

φn→ 0, Qn(1−φn)→ 0,

iii. there are test functions φn : X n→ [0,1] such that,∫
B

Pn
φn dΠ(P)+

∫
V

Qn(1−φn)dΠ(Q)→ 0,

iv. for Π -almost-all P ∈ B, Q ∈V ,

Π(V |Xn)
P−→0, Π(B|Xn)

Q−→0.

Proof. Because 0≤ φn ≤ 1, i. implies ii.; by dominated convergence, ii. implies iii.;
iii. leads to iv. through Martingale convergence and the inequality (see lemma 2.2 in
[163]), ∫

B
Pn

Π(V |Xn)dΠ(P)≤
∫

B
Pn

φn dΠ(P)+
∫

V
Qn(1−φn)dΠ(Q),

which holds for all n ≥ 1 and any test sequence (φn); iv. gives i. when we set φn =
Π(V |Xn). For details, see theorem 2.4 in [163].

An almost-sure version of definition 9.8 is also equivalent, through direct appli-
cation of proposition 9.4.2, pointwise in a set of prior mass one. The interpreta-
tion of this theorem is gratifying to supporters of the likelihood principle and pure
Bayesians: distinctions between model subsets are Bayesian testable, if and only if,
they are picked up by the posterior asymptotically and the posterior itself can be
viewed as the test function.

Breiman, Le Cam and Schwartz (1964) [51] provide a careful measurability ar-
gument to explain the essence of Doob’s consistency theorem. The astonishing gen-
erality of Doob’s theorem comes from the measure-theoretical (rather than topolog-
ical) answer to questions related to posterior convergence. (Although the original
reference for these notions is [51], a more complete exposé is found in Le Cam
(1986) [187].)

Definition 9.5.2. Let P be a model with prior Π . An event B ∈B(∞) is called a Π -
zero-one set, if P∞(B) = P∞(B)2, for Π -almost-all P ∈P . A model subset G ∈ G
is called a Π -one set if there exists a Π -zero-one set B such that G = {P ∈P :
P∞(B) = 1}.
The collection of all Π -one sets forms a sub-σ -algebra of G , which we denote by
G1. Let G0 denote the initial σ -algebra for the collection {P 7→P(A) : A∈B} (which
coincides with the initial σ -algebra for the collection {P 7→ P∞(A) : A ∈B∞}, see
lemma 3.10 in [248]). Then G0 is contained in the Borel σ -algebra for T1. In order
to make the next argument, we assume that the domain of the prior contains G0,
for example if the prior is Borel for T1, T∞ or total-variation. Asymptotic posterior
convergence is then fully specified by the following observation.
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Proposition 9.5.3. Let P be a model with prior Π that contains G0. Let V be a
Π -one set. Then,

Π(V |Xn)
P-a.s.−−−→1V (P), (9.15)

for Π -almost-all P ∈P .

Proof. Define the products Ωn =P×X n with full product σ -algebras σ(G ×Bn)
and sub-σ -algebras Fn = {∅,P}×Bn. The product Ω =P×X ∞ with full prod-
uct σ -algebra F = σ(G ×B∞) has a sub-σ -algebra F∞ = {∅,P}×B∞, and the
filtration {Fn : n ≥ 1} has limit F∞. Given a prior Π on (P,G ), a joint distri-
bution S : F 7→ [0,1] on Ω is fixed by defining S(A× B) =

∫
A P∞(B)dΠ(P) for

A ∈ G and B ∈B∞ (which requires measurability of P 7→ P∞(B) for B ∈B∞). For
any F -measurable g : Ω → [0,1] the conditional expectations {ES[g|Fn] : n ≥ 1}
form a martingale. If, with slight abuse of notation, we maintain 1V for the function
Ω → [0,1] : (P,x∞) 7→ 1V (P), we observe that the posteriors Π(V |Xn) = E[1V |Fn]
form a martingale relative to S. According to Doob’s martingale convergence theo-
rem there exists an F∞-measurable random variable fV such that Π(V |Xn)→ fV ,
S-almost-surely. Since V is a Π -one set, there exists an event B ∈ B∞ such that
1V (P) = 1B(x∞), S-almost-surely. Hence,

Π(V |Xn) = ES
[

1V
∣∣Fn

]
= ES

[
1B
∣∣Fn

]
→ ES

[
1B
∣∣F∞

]
= 1B = 1V ,

S-almost-surely, which amounts to, P-almost-surely for Π -almost-all P (by Fubini’s
theorem).

The remaining question, then, is whether the σ -algebra of Π -one sets is large
enough to be interesting. The answer is given in proposition 2 of section 17.7 in
Le Cam (1986) [187]: if the model is a Hausdorff space with Radon prior Π and
the σ -field B on X is countably generated, then G = G1. This implies Doob’s
consistency theorem (since any prior on a Polish space is Radon) and more, cf. the
corollary to proposition 2 of section 17.7 in [187] (beware of some typos and omis-
sions in the proofs). We summarize and conclude as follows.

Theorem 9.5.4. Let (P,G ) be a measurable model, with a prior Π that is a Radon
measure, and hypotheses B,V . There is a Bayesian test sequence for B versus V , if
and only if, B,V are G -measurable.

Proof. In order for the definition of Bayesian testing to make sense, it is necessary
that B and V are measurable. Conversely, if B is measurable and V ⊂P \B, then
φn(Xn) = Π(P \B|Xn) is a Bayesian test sequence for B versus V .

Example 9.5.5. Is Cover’s rational mean problem Bayesian testable?
Let’s revisit Cover’s rational mean problem to illustrate the Bayesian answer: con-
sider priors ΠB and ΠV for B = [0,1]∩Q and V = [0,1]\Q such that ΠB(B) = 1 and
ΠV (V ) = 1, (for example, enumerate [0,1]∩Q = {qi : i ≥ 1} and define, for every
measurable F ⊂ [0,1],

ΠB(F) = ∑
i≥1

2−i 1F(qi). (9.16)
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For ΠV we may simply choose Lebesgue measure. Set Π = 1
2 ΠB +

1
2 ΠV on [0,1].

As we have seen in example 9.4.12, the compact space [0,1] is homeomorphic to
the model P = {Pp : p ∈ [0,1]} with the T∞-topology through p 7→ Pp. There-
fore, P is Polish for T∞, which implies that Π is Radon. Since B is Borel measur-
able in [0,1], the corresponding subset of P is Borel measurable for T∞, implying
Bayesian testablility of B versus V . Proposition 9.5.3 even strengthens that to,

Π(p ∈V |Xn)
Pq-a.s.
−−−−→0, Π(p ∈V |Xn)

Pr-a.s.−−−→1,

for q ∈ [0,1]∩Q and r ∈ [0,1] \Q. So the tests φ(Xn) = Π(p ∈ V |Xn) (or the in-
dicators for posterior odds of proposition 9.6.2) have property (D), albeit with a Π -
null-set of exceptions. Indeed corollary 9.4.10 and example 9.4.12 establish that this
Π -null-set is non-empty. So Cover’s rational mean problem does have a Bayesian
type solution. (It appears [60] that D. Blackwell made Cover aware of a Bayesian
approach leading to a solution of the rational mean problem but failed to convince
him fully of the validity of his alternative.)

To conclude this section, we provide an unexpected frequentist consequence of
the Bayesian considerations of this section.

Theorem 9.5.6. Let P be a model that is countable. Any B,V ⊂P with B∩V =∅
are pointwise testable.

Proof. For any two P,Q ∈ P there exists a measurable 0 ≤ f ≤ 1 such that
P f ̸= Q f , so T1 is the discrete topology on P (and so is T∞). Any countable
discrete space is Polish and the corresponding Borel σ -algebra is the power set
of P . Pick any (Borel) prior Π on P such that Π({P}) > 0 for all P ∈ P .
Any V is Bayesian testable versus any disjoint B under Π and the test functions
φn(X1, . . . ,Xn) = Π(V |X1, . . . ,Xn) form a Bayesian test sequence for B versus V .
Because the only null-set of the prior is ∅, Bayesian test sequences under Π are
also pointwise test sequences.

That means that the example of hypotheses (9.3) has full validity as a frequentist
procedure.

Corollary 9.5.7. (Dembo and Peres (1994))
Regarding the parameter p∈ [0,1] for i.i.d.-Bernoulli-p distributed X1,X2, . . ., there
exists a pointwise test sequence that distinguishes,

H0 : p ∈ [0,1]∩Q, H1 : p ∈ [0,1]∩
√

2+Q,

asymptotically.

9.6 Bayesian testing power and model selection for frequentists

Proposition 9.5.3 settles the Bayesian question, but with Bayesian tests, more is
possible. In the frequentist, constructive answer to the testability question, we shall
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require control over the power of the tests. The following proposition from [163]
formulates a general upper bound based on barycentres. (Denote the density for the
local prior predictive distribution PΠ |B

n with respect to µn = PΠ |B
n +PΠ |V

n by pB,n,
and similar for PΠ |V

n .)

Proposition 9.6.1. Let (P,G ) be a model with priors (Πn) and two measurable
model subsets B,V with Π(B),Π(V )> 0. For every n≥ 1, there exists a φn : X n→
[0,1] such that,∫

B
Pn

φn dΠ(P)+
∫

V
Qn(1−φn)dΠ(Q)≤

∫ (
Π(B) pB,n(x)

)α(
Π(V ) pV,n(x)

)1−α

dµn(x),

(9.17)
for any 0≤ α ≤ 1.

Proof. See proposition 2.6 in [163].

The following demonstrates that a sequence of tests based on posterior odds (or
Bayes factors) is optimal, and thus obeys any upper bound for Bayesian testing
power, including that of proposition 9.6.1 and the exponential bounds that follow
from uniformly testable hypotheses and proposition 9.3.1.

Proposition 9.6.2. Let (P,G ) be a model with priors (Πn) and measurable model
subsets B,V . For every n≥ 1, the test φn(Xn) = 1{Xn : Π(V |Xn)≥Π(B|Xn)} based
on posterior odds has optimal Bayesian testing power.

Proof. Consider the decision-theoretic problem of setting the optimal φ ∈ [0,1] for
picking B or V based on the data, with loss ℓ : P× [0,1]→ [0,1],

ℓ(P,φ) =

{
0, if P ̸∈ B∪V ,∣∣φ −1V (P)

∣∣, if P ∈ B∪V .

Data-driven decisions φn(Xn) for all n ≥ 1 are test functions. The Bayesian risk
functions,

rn(φn,Π) =
∫

P
Pnℓ(P,φn)dΠ(P),

equal the Bayesian testing power,

rn(φn,Π) =
∫

B
Pn|φn−1V (P)

∣∣dΠ(P)+
∫

V
Qn|φn−1V (Q)

∣∣dΠ(Q)

=
∫

B
Pn

φn dΠ(P)+
∫

V
Qn(1−φn)dΠ(Q),

for all n≥ 1. Bayes’s rule implies that if, for all n≥ 1 and PΠ
n -almost-all xn ∈X n,

φn(xn) is the minimizer,∫
P

ℓ(P,φn(xn))dΠ(P|Xn = xn) = inf
ψ∈[0,1]

∫
P

ℓ(P,ψ)dΠ(P|Xn = xn),
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then φn(xn) optimizes Bayesian testing power:

rn(φn,Π) = inf
ψn

rn(ψn,Π),

(where the infimum runs over all possible choices ψn : X n→ [0,1] for the n-th test
function). To conclude, note that,∫

P
ℓ(P,ψn(xn))dΠ(P|Xn = xn)

=
∫

B
ψn(xn)dΠ(P|Xn = xn)+

∫
V
(1−ψn(xn))dΠ(Q|Xn = xn)

= ψn(xn)Π(B|Xn = xn)+(1−ψn(xn))Π(V |Xn = xn),

is minimal if we choose ψn(xn) = 1{xn : Π(V |xn)≥Π(B|xn)}.

We appeal to a theorem from [163] to make the final step in the proof that the exis-
tence of sufficiently powerful Bayesian tests, in combination with the requirement of
remote contiguity (see definition 3.1 in [163]) of the local prior predictive distribu-
tions PΠ |B

n with respect to the true distribution of the data Pn, implies that posteriors
select the correct underlying hypothesis with probability growing to one.

Theorem 9.6.3. For all n≥ 1, let the model be a measurable space (P,G ) with pri-
ors Πn : G → [0,1]. Consider disjoint, measurable B,V ⊂Θ with Πn(B),Πn(V )> 0
such that,

i. There exist Bayesian tests for B versus V of power an ↓ 0,∫
B

Pn
φn dΠn(P)+

∫
V

Qn(1−φn)dΠn(Q) = o(an),

ii. For every P ∈ B, Pn ◁a−1
n PΠn|B

n , and for every Q ∈V , Qn ◁a−1
n PΠn|V

n .

Then the indicators φn(Xn) = 1{Xn : Π(V |Xn)≥Π(B|Xn)} for posterior odds form
a pointwise test sequence for B versus V .

So if we can find a sequence of priors for which, (a.) we can prove the existence of
a suitably powerful Bayesian test sequence, and which, (b.) induces remote conti-
guity at the right rate, the resulting posterior forms a constructive means (through
posterior odds) to achieve consistent frequentist model selection.

9.7 Conclusions and discussion

Theorem 9.4.16 does not leave the model choice completely free, a dominated
model is required. This restriction, however annoying, is of an essential nature be-
cause it is ultimately due to the sequential nature of the i.i.d. experiment. The short-
est way to explain this is as follows. Using the Le Cam-Schwartz theorem to prove
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the existence of tests, the most peculiar aspect of the conditions is the fact that
a sequence of uniformly continuous functions is required. In the context of weak
topologies, which are not first-countable in general, requiring existence of a conver-
gent net or filter is natural but requiring existence of convergent sequences poses a
considerable extra burden. If the weak topology in question happens to be metriz-
able, like the weak topology and the σ(E,F)-topology on the norm-bounded subset
H of lemma 9.4.18, first-countability is recovered and sequential convergence co-
incides with net convergence, but T∞ is not first-countable in general. Earlier work
[71, 212, 94] solves this problem by requiring domination and uniform integrabil-
ity, using T∞-compactness cf. the Dunford-Pettis theorem to equate T∞ to the weak
topology. In our argument, the problem is lifted by the (admittedly only sufficient)
condition that the model is dominated. Given that the reason for this restriction (see
the proof of theorem 9.2.4) is the sequential nature of i.i.d. experiments, it seems
unlikely that there is a formulation of theorem 9.4.16 for non-dominated models of
the same or very similar form.

9.7.1 Model assumptions

“There are statistical questions that I shouldn’t even be thinking about... I can’t
afford to waste my time like that.”

9.7.2 Model selection

Let P be a model for i.i.d. data Xn ∼ Pn, (n ≥ 1), consisting of M ≥ 1 disjoint
sub-models, P = P1∪ . . .∪PM . Assume that P ∈P . The simplest form that the
model-selection question takes, is to require asymptotically consistent selection of
the sub-model Pi such that P ∈Pi.

9.8 Exercises

9.8.1. how that a topological space X is a Baire space, if and only if every residual
subset A of X is dense, if and only if, every non-empty open subset of X is of the
second categoryBaire category!second in X .





Chapter 10
Application: non-parametric errors-in-variables
regression

To demonstrate in a typical way how the methods presented in chapter 6 are ap-
plied in practice, we consider the asymptotic behaviour of the posterior distribution
for the errors-in-variables model, based on the analysis presented in Kleijn (2004)
[156, 159]. The model describes measurements consisting of paired observations
(X ,Y ) that are represented in terms of an unobserved Z. The random variable Z
is related to X directly and to Y through a regression function f , both perturbed
by Gaussian errors. We assume that Z falls into a (known) bounded subset of the
real line with probability one, but otherwise leave its distribution unconstrained. In
the semi-parametric literature, the regression function comes from a parametric (see
Taupin (2001) [252]), or even linear (see, e.g. Anderson (1984) [6]) class of func-
tions. In the following, we broaden that assumption to non-parametric regression
classes, discussing the errors-in-variables problem also for Lipschitz and smooth
functions.

Hence, the formulation we use involves two non-parametric components, the dis-
tribution of Z and the regression function f . We give Hellinger rates of convergence
for the posterior distribution of the errors-in-variables density in non-parametric and
parametric regression classes, using the posterior rate-of-convergence theorem 6.4.3
(or rather, a version based on the Hellinger metric entropy, cf. Ghosal et al. (2000)
[110]). Conditions that bound the rate of convergence can be decomposed into two
terms, one for each of the non-parametric components of the model. The rate is then
determined by the term that dominates the bound.

10.1 Errors-in-variables regression

When data is observed in pairs (X ,Y ) ∈ R2 and there is reason to assume that there
is some unknown functional relation f : R→R between X and Y , observed with an
additive regression error e ∈ R, the most straightforward model is,

Y = f (X)+ e. (10.1)

323
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Estimation then occurs in a family of possible regression functions f based on a
sample (Xi,Yi), i ≥ 1, usually assuming that the ei form an i.i.d. sample from some
error distribution, typically with expectation equal to 0 (and commonly a known
normal distribution). However popular, this model suffers from a serious shortcom-
ing: it assumes that X has been observed with infinite precision, while very often
there is some uncertainty in the observation of X . This uncertainty causes what is
known as attenuation bias: because the observed X are only a noisy reflection of
some unobserved quantity that determines the value of Y through f , the calculation
is “blurred” horizontally. In the common case of an unknown linear f (x) = ax+b,
estimation of a in the model (10.1) is biased towards 0, attenuating the regression
function and making it resemble a constant function more appears reasonable graph-
ically.

To prevent this, the errors-in-variables model studies a version of the regression
model that takes the error in observed X into account explicitly: pairs (X ,Y ) are
assumed to be distributed as,

X = Z + e1,

Y = f (Z)+ e2,
(10.2)

where (e1,e2) and Z are independent and f :R→R belongs to a family of regression
functions. Usually, the distribution of the errors (e1,e2) is assumed to be known up
to a (finite-dimensional) parameter σ whereas the distribution F of Z is completely
unknown in the most general case. The primary interest lies in estimation of the re-
gression function f from a i.i.d. sample of pairs (X1,Y1), (X2,Y2), . . . ,(Xn,Yn) in the
presence of the nuisance parameter F . Applications include all situations in which
a functional dependence between measurements with errors is to be established.

The primary difference between errors-in-variables and ordinary regression using
a set of design points x1, . . . ,xn, is the stochastic nature of the variable X . Regard-
ing X , the variable e1 is referred to as the “random error”, whereas the variability
of Z is said to be the “systematic error” (Anderson (1984) [6]). Kendall and Stu-
art (1979) [150] distinghuish between the “functional” errors-in-variables problem,
in which Z is non-stochastic, taking on the values of ‘design points’ z1, . . . ,zn, and
the “structural” errors-in-variables problem, in which Z is stochastic. Best known is
linear errors-in-variables regression, in which f is assumed to depend linearly on z
(see, e.g. [6] for an extensive overview of the literature). Efficient estimators for the
parameters of f have been constructed by Bickel and Ritov (1987) [28], Bickel et
al. (1998) [29] and Van der Vaart (1988, 1996) [257, 258]. Errors-in-variables re-
gression involving a parametric family of non-linear regression functions has been
analysed by Taupin and others (see Taupin (2001) [252] and references therein). In
Fan and Troung (1993) [97], the rate of convergence (in a weighted L2-sense) of
Nadaraya-Watson-type kernel estimators for the conditional expectation of Y given
Z (and hence for the regression function) are considered using deconvolution meth-
ods.

In this chapter we analyse the structural errors-in-variables problem for non-
parametric families of regression functions in a Bayesian setting; we consider the
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behaviour of posterior distributions for the parameter (σ , f ,F) in the asymptotic
limit. It is stressed that in this formulation, the errors-in-variables problem has two
non-parametric components, one being the distribution of the underlying variable Z
and the other the regression function. The emphasis lies on the interplay between
these two non-parametric aspects of the model, as illustrated by their respective
contributions to the rate of convergence (see, e.g. theorems 10.3.7 and 10.4.2).

10.1.1 Definition of the EIV model

We assume throughout this chapter that there is some known constant A > 0 such
that Z ∈ [−A,A] with probability one. Furthermore, we assume (unless indicated
otherwise) that the errors e1 and e2 are independent and distributed according to the
same normal distribution Φσ on R with mean zero and variance σ2 (i.e. a special
case of restricted Gaussian errors in the terminology of [28]). Writing ϕσ for the
normal density of both e1 and e2, the model consists of a family of distributions for
the observations (X ,Y ), parametrized by (σ , f ,F)∈ I×F ×D, where it is assumed
that:

(a) I is a closed interval in the positive reals, bounded away from zero and infinity,
i.e. I = [σ ,σ ]⊂ (0,∞).

(b) D is the collection of all probability distributions on the compact symmetric
interval [−A,A], parametrized by all corresponding Stieltjes functions F .

(c) F ⊂CB[−A,A]⊂C[−A,A] is a bounded family of continuous regression func-
tions f : [−A,A]→ [−B,B]. We shall distinguish various cases by further re-
quirements, including equicontinuity, Lipschitz- and smoothness-bounds. Also
considered is the parametric case, in which F is parametrized by a subset of
Rk.

For all (σ , f ,F) ∈ I×F ×D, we define the following convoluted density for the
distribution of observated pair (X ,Y ):

pσ , f ,F(x,y) =
∫
R

ϕσ

(
x− z

)
ϕσ

(
y− f (z)

)
dF(z), (10.3)

for all (x,y) ∈ R2.
It is stressed that when we speak of the errors-in-variables model P , we refer

to the collection of probability measures Pσ , f ,F on R2 defined by the Lebesgue-
densities parametrized in the above display (rather than the parameter space I×F×
D). In many cases we regard P as a metric space, using either the Hellinger metric
or L1(µ)-norm. As far as the parameter space is concerned, the model may not be
identifiable: if, for given F ∈ D, two regression functions f ,g ∈F differ only on a
set of F-measure zero, the corresponding densities pσ , f ,F and pσ ,g,F are equal on all
of R2 (for all σ ∈ I). Determination of the true regression function f0 based on an
i.i.d. P0-distributed sample can therefore be done only F0-almost-everywhere (where
P0 = Pσ0, f0,F0 ). Ultimately, the results we give are based on the Hellinger distance,
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which, in the present circumstances, gives rise to a semi-metric on the parameter
space I×F ×D for the same reason. The ‘well-known’ identifiability problems in
the linear errors-in-variables model (see e.g. Reiersøl (1950) [229]) arising due to
interchangability of Gaussian components of the distribution of Z with the error-
distribution (see also [6] and [28]) do not occur in our considerations, because we
assume the distribution of Z to be compactly supported.

10.1.2 Posterior concentration theorem

Conditions for the theorem on Bayesian rates of convergence are again formulated in
terms of the specific Kullback-Leibler neighbourhoods (6.12) of P0 ∈P . Recall the
Ghosh-Ghosal-van der Vaart theorem, which we write here with the help of entropy
condition (6.20), where N(ε,P,H) denote the covering numbers with respect to the
Hellinger metric on P , i.e. the minimal number of Hellinger balls of radius ε > 0
needed to cover P .

Theorem 10.1.1. Let P be a model and assume that the sample U1,U2, . . . is i.i.d.
P0-distributed for some P0 ∈P . For a given prior Π , suppose that there exists a
sequence of strictly positive numbers εn with εn → 0 and nε2

n → ∞ and constants
R1,R2 > 0, such that:

Π
(
B(εn;P0)

)
≥ e−R1nε2

n , (10.4)

logN
(
εn,P,H

)
≤ R2nε

2
n , (10.5)

for all large enough n. Then, for every sufficiently large constant M, the posterior
distribution satisfies:

Πn
(

P ∈P : H(P,P0)≥Mεn
∣∣U1, . . . ,Un

)
→ 0, (10.6)

as n→ ∞, in P0-expectation.

The assumption that the model is well-specified, i.e. P0 ∈P , can be relaxed. In
Kleijn and Van der Vaart (2006) [157], the above theorem is given in the case of a
misspecified model. We do not give misspecified versions of the results, although
we believe that the conditions of the necessary theorems in [157] are met in the
model we consider.
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10.2 Rates of posterior convergence in function spaces

10.2.1 Lipschitz and smoothness classes

We consider regression classes F contained within the class CB[−A,A] of all con-
tinuous functions f : [A,A]− → R bounded by a (known) constant B > 0. At the
very least, we also require equicontinuity of F , which guarantees compactness in
the topology of the uniform norm ∥ ·∥ according to the Arzelá-Ascoli theorem. Con-
sequently, covering numbers N(ε,F ,∥ · ∥) are finite and an important part of the
argument rests on bounds on these covering numbers we establish later. We distin-
guish several non-parametric and parametric examples of such classes below, but
remark that other regression classes for which bounds on covering numbers exist,
can also be used.

(i) LipM(α) (for some M > 0 and 0 < α ≤ 1), the class of all Lipschitz functions
f ∈CB[−A,A] with constant M and exponent α , i.e.∣∣ f (z)− f (z′)

∣∣≤M|z− z′|α , (10.7)

for all z,z′ ∈ [−A,A].
(ii) Dα,M(q) (for some 0 < α ≤ 1, M > 0 and an integer q ≥ 1), the class of all q

times differentiable functions f ∈CB[−A,A] for which the q-th derivative f (q)

belongs to LipM(α).
(iii) FΘ , a parametric class of regression functions which forms a subset of LipM(α)

for some α ∈ (0,1] and M > 0. We assume that there exists a bounded, open
subset Θ ⊂ Rk for some k ≥ 1 such that FΘ = { fθ : θ ∈Θ}. Furthermore, we
assume that the map θ 7→ fθ is Lipschitz-continuous, i.e. there exist constants
L > 0 and ρ ∈ (0,1] such that for all θ1,θ2 ∈Θ :

∥ fθ1 − fθ2∥ ≤ L∥θ1−θ2∥ρ

Rk . (10.8)

Often, it is more convenient to unify cases (i) and (ii) above, by considering the
family of classes Cβ ,L[−A,A] defined as follows. For given β > 0 and L > 0, we
define β to be the greatest integer such that β < β and we consider, for suitable
functions f : [−A,A]→ R, the norm:

∥ f∥β = max
k≤β

∥ f (k)∥+ sup
z1,z2

∣∣ f (β)(z1)− f (β)(z2)
∣∣

|z1− z2|β−β
,

where the supremum is taken over all pairs (z1,z2) ∈ [−A,A]2 such that z1 ̸= z2. The
class Cβ ,L[−A,A] is then taken to be the collection of all continuous f : [−A,A]→R
for which ∥ f∥β ≤ L. Note that for 0 < β ≤ 1, β = 0 and Cβ ,L[−A,A] is a Lipschitz
class bounded by L; if β > 1, differentiability of a certain order is implied, as well
as boundedness of all derivatives and a Lipschitz property for the highest derivative.



328 10 Application: non-parametric errors-in-variables regression

10.2.2 Competing entropy bounds

As indicated in subsection 10.1.2, the Hellinger rate of convergence εn is bounded
by two conditions, one related to the small-ε behaviour of the (Hellinger) entropy of
the model, the other by the small-ε behaviour of the prior mass in Kullback-Leibler
neighbourhoods of the form (6.12). The first condition is considered in section 10.3:
theorem 10.3.7 says that the Hellinger covering number of the errors-in-variables
model has an upper bound that consists of two terms, one resulting from the (σ ,F)-
part of the model and the other from minimal covering of the regression class:

logN(ε,P,H)≤ L0

(
log

1
ε

)3
+ logN(Lε,F ,∥ .∥), (10.9)

for small ε > 0 and some constants L,L0 > 0. If the regression class F is ‘small’
enough, in the sense that the first term in the entropy bound displayed above domi-
nates in the limit ε → 0, the candidate rates of convergence εn are parametric up to
a logarithmic factor.

Lemma 10.2.1. If there exists a constant L1 > 0 such that:

logN(ε,F ,∥ .∥)≤ L1

(
log

1
ε

)3
, (10.10)

for small enough ε > 0, then the entropy condition (10.5) is satisfied by the se-
quence:

εn = n−1/2(logn)3/2, (10.11)

for large enough n.

Proof. Under the above assumption, logN(ε,P,H) is upper bounded by the first
term in (10.9) with a larger choice for the constant. Note that the sequence εn as
defined in (10.11) satisfies εn ↓ 0 and nε2

n → ∞. Also note that εn ≥ 1/n for large
enough n, so that for some L > 0,

logN(εn,F ,∥ .∥)≤ logN(1/n,F ,∥ .∥)≤ L(logn)3,

and nε2
n = (logn)3, which proves that εn satisfies (10.5).

It is also possible that the small-ε behaviour of the errors-in-variables entropy is
dominated by the covering numbers of the regression class. In that case the r.h.s.
of (10.9) is replaced by a single term proportional to logN(Lε,F ,∥ .∥) for small
enough ε . If the regression functions constitute a Lipschitz or smoothness class,
lemma 10.5.1 gives the appropriate upper bound for the entropy, leading to the fol-
lowing candidate rates of convergence.

Lemma 10.2.2. For an errors-in-variables model P based on a regression class
Cβ ,M[−A,A], the entropy condition (10.5) is satisfied by the sequence:

εn = n−
β

2β+1 , (10.12)
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for large enough n.

Proof. As argued above, the Hellinger entropy of the errors-in-variables model is
upper-bounded as follows:

logN(ε,P,H))≤ K
ε1/β

,

for some constant K > 0 and small enough ε . The sequence εn satisfies εn ↓ 0 and
nε2

n → ∞. Furthermore, note that:

logN(εn,P,H)≤ K n1/(2β+1) = Kn ·n−
2β

2β+1 = Knε
2
n ,

for large enough n.

10.2.3 Competing lower bounds on prior mass

Similar reasoning applies to condition (10.4) for the small-ε behaviour of the prior
mass of Kullback-Leibler neighbourhoods of the form (6.12). Section 10.4 discusses
the necessary lemmas in detail. We define priors ΠI , ΠF and ΠD on the parametriz-
ing spaces I, F and D respectively and choose the prior Π on the model P as
induced by their product under the map (σ , f ,F) 7→ Pσ , f ,F (which is measurable, as
shown in lemma 10.4.1). The prior ΠI is chosen as a probability measure on I with
continuous and strictly positive density with respect to the Lebesgue measure on I.
Priors for the various regression classes discussed in the beginning of this section
are discussed in subsection 10.5.2. The prior ΠD on D is based on a Dirichlet pro-
cess with base measure α which has a continuous and strictly positive density on all
of [−A,A].

As with the covering numbers discussed above, we find (see theorem 10.4.2)
that (the logarithm of) the prior mass of Kullback-Leibler neighbourhoods is lower
bounded by two terms, one originating from the prior on the regression class and
the other from the priors on the remaining parameters in the model:

logΠ

(
B
(
Kδ log(1/δ );P0

))
≥−c

(
log

1
δ

)3
+ logΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
,

(10.13)
for some constants K,c > 0 and small enough δ > 0. If the prior mass in F around
the true regression function f0 does not decrease too quickly with decreasing δ , the
bound that dominates (10.13) is proportional to the first term on the r.h.s., which
leads to near-parametric candidate rates of convergence.

Lemma 10.2.3. If there exists a constant c′ > 0 such that:

logΠF

(
f ∈F : ∥ f − f0∥ ≤ ε

)
≥−c′

(
log

1
ε

)3
, (10.14)
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for small enough ε > 0, then the prior-mass condition (10.4) is satisfied by the
sequence (10.11) for large enough n.

Proof. Condition (10.14) implies that (10.13) holds with the lower bound on the
r.h.s. replaced by only its first term with a larger choice for the constant c. The
substitution ε = Kδ log(1/δ ) leads to a constant and a loglog(1/δ ) correction,
both of which are dominated by log(1/δ ) for small enough δ . (See the proof of
lemma 10.2.4, where a similar step is made.) It follows that:

logΠ
(
B(P0,ε)

)
≥−c′′

(
log

1
ε

)3
,

for some constant c′′> 0 and small enough ε . The remainder of the proof is identical
to that of lemma 10.2.1.

However, it is also possible that the prior mass around f0 in the regression class
decreases more quickly than (10.14). In that case the lower bound on the r.h.s. of
(10.13) is determined by the prior on F . The following lemma assumes a so-called
net-prior on the regression class F , a construction that is explained in subsec-
tion 10.5.2.

Lemma 10.2.4. For an errors-in-variables model P based on a regression class
Cβ ,M[−A,A] with a net-prior Π , the prior-mass condition (10.4) is satisfied by the
sequence:

εn = n−
β

2β+1 (logn)
1

2β , (10.15)

for large enough n.

Proof. Given β , the prior mass in neighbourhoods of the true regression function f0
for a net prior Π is lower bounded by the expression on the r.h.s. in (10.39). Since
this term dominates in the r.h.s. of (10.13) for small δ , the prior mass of Kullback-
Leibler neighbourhoods of P0 in P satisfies the following lower bound:

logΠ

(
B
(
Kδ log(1/δ );P0

))
≥−L

1
δ 1/β

,

for some constants K,L > 0 and small enough δ . Define ε = Kδ log(1/δ ) and note
that, for small enough δ :

1
ε1/β

(
log

1
ε

)1/β

= K−1/β 1
δ 1/β

(
log

1
δ

)−1/β(
log

1
δ
− logK− log log

1
δ

)1/β

≥ K−1/β 1
δ 1/β

(
log

1
δ

)−1/β(
1
2 log

1
δ

)1/β

≥
( 1

2

)1/β K−1/β 1
δ 1/β

.

For the first inequality in the above display, we have used that logK ≤ log log 1
δ
≤

1
4 log 1

δ
(for small enough δ ). We see that there exists a constant L′ > 0, such that,
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for small enough ε > 0:

logΠ
(
B(P0,ε)

)
≥−L′

1
ε1/β

(
log

1
ε

)1/β

.

The sequence εn satisfies εn ↓ 0 and nε2
n → ∞. Define the sequence an = n−β/(2β+1)

and note that εn ≥ an (for large enough n) so that for some constant R > 0:

logΠ
(
B(P0,εn)

)
≥ logΠ

(
B(an;P0)

)
≥−L′

1

a1/β
n

(
log

1
an

)1/β

=−Rn
1

2β+1 (logn)
1
β =−Rnε

2
n ,

for large enough n.

10.2.4 Various rates of posterior convergence

In the case of a parametric regression class (FΘ as defined under case (iii) in the
beginning of this section) and a prior on Θ with strictly positive and continuous den-
sity, the conditions of lemmas 10.2.1 and 10.2.3 are satisfied. From lemma 10.5.3,
we know that in the case of a parametric class of regression functions, covering
numbers satisfy (10.10). Furthermore, from lemma 10.5.5, we know that for a para-
metric class, the prior mass in neighbourhoods of f0 satisfies (10.14). The resulting
conclusion for the rate of convergence in parametric regression classes is given in
the theorem below.

We summarize the main results in the following theorem by stating the rates
of convergence for the classes defined in the beginning of this section. The proof
consists of combination of the preceding lemmas.

Theorem 10.2.5. For the specified regression classes, the assertion of theorem 10.1.1
holds with the following rates of convergence.

(i) If F = LipM(α) (for some α ∈ (0,1] and M > 0) with a net prior, the prior-
mass condition for neighbourhoods of f0 in the regression class determines the
rate, given by the sequence εn defined in lemma 10.2.4 with β = α:

εn = n−
α

2α+1 (logn)
1

2α .

(ii) If F = Dα,M(q) (for some M > 0 and integer q≥ 1) with a net prior, the prior-
mass condition for neighbourhoods of f0 again determines the rate, given by
the sequence εn defined in lemma 10.2.4 with β = q+α:

εn = n−
q+α

2q+2α+1 (logn)
1

2q+2α .
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(iii) If F =FΘ is a parametric class with a prior that has a continuous and strictly
positive density throughout Θ , the rate is determined by the posterior conver-
gence with regard to the parameter F and is given by:

εn = n−1/2(logn)3/2.

Concerning the parametric rate of convergence, it is stressed that this rate applies
to the full, non-parametric problem and can not be compared with semi-parametric
rates for estimation of the parameter θ in the presence of the nuisance parameter
F . With regard to the logarithmic corrections to the powers of n in the expressions
for the rate of convergence in Lipschitz- and smoothness-classes, we note that they
originate from (the proof of) lemma 10.2.4: the logarithm is introduced by the tran-
sition from δ to ε , which compensates for the logarithmic correction in the extent of
the Kullback-Leibler neighbourhoods B(Kδ log(1/δ );P0). When considering near-
parametric rates (as in lemmas 10.2.1 and 10.2.3), logarithmic corrections of this
kind do not influence the calculation, but they do play a role in non-parametric re-
gression. It is possible that these logarithmic corrections to the rate can be omitted,
the proof depending on a version of theorem 10.1.1 along the lines of theorem 2.4 of
Ghosal et al. (2000) [110], in which the prior-mass condition is replaced by a more
complicated, but less demanding bound on a ratio of prior masses. Note that the rate
(10.15) approaches that given in (10.12) for large values of β , i.e. for regression
classes with a high degree of differentiability.

Regarding classes with a high degree of differentiabilty, one might expect that
suitably restricted classes of analytic regression functions would allow for conver-
gence at the rate (10.15) in the limit β → ∞, i.e. 1/

√
n. However, in that case (10.9)

and (10.13) are dominated by the contribution from the parameter F ∈ D, so the
expected result would be the parametric rate of convergence given above, i.e. 1/

√
n

with logarithmic correction of the order (logn)3/2.

10.3 Model entropy

One of the two primary conditions in theorems on non-parametric Bayesian rates
of convergence (see, e.g. theorem 10.1.1), is an upper-bound on the covering num-
bers with respect to a metric on the model, in our case the Hellinger metric. In this
section, we relate the Hellinger metric entropy of the model to entropy numbers
of the three parametrizing spaces, i.e. I, F and D. Due to technical reasons (see
subsection 10.3.3, which contains the proofs of all lemmas in this section), we can
and shall express most results in terms of the L1(µ)-norm rather than the Hellinger
metric, demonstrating in the (proof of) theorem 10.3.7 that this does not influence
the entropy calculation.
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10.3.1 Nets in parametrizing spaces

We start the discussion by considering the L1(µ)-distance between densities in the
model that differ only in one of the three parameters (σ , f ,F), the goal being the
definition of an ε-net over P from ε-nets over the spaces I, F and D separately.

With the following lemma, we indicate the possibility of generalizing the discus-
sion that follows to situations in which less is known about the error distribution,
by a bound on the L1(µ)-difference under variation of the parameter for the error
distribution. For the next lemma only, we define {ψσ : σ ∈ Σ} to be a family of
Lebesgue densities of probability distributions on R2, parametrized by σ in some
(parametric or non-parametric) set Σ . The densities pσ , f ,F are still given by a con-
volution cf. (10.3) (because we maintain the assumption of independence of Z and
(e, f )).

Lemma 10.3.1. For every f ∈F and F ∈ D,

∥pσ , f ,F − pτ, f ,F∥1,µ ≤ ∥ψσ −ψτ∥1,µ ,

for all σ ,τ ∈ Σ .

Specializing back to the situation of interest, we find the following lemma.

Lemma 10.3.2. In the case of equally distributed, independent normal errors (e1,e2)
with mean zero and equal but unknown variance in the interval [σ ,σ ]:

∥ψσ −ψτ∥1,µ ≤ 4σσ
−2|σ − τ|.

Similar inequalities can be derived for other parametric families of kernels, for in-
stance the Laplace kernel. In the case of a non-parametric family of error distri-
butions, it may be necessary to derive a (sharper) bound, based on the Hellinger
distance between pσ , f ,F and pτ, f ,F . This generalized approach is not pursued here
and the rest of this chapter relies on the assumption that the errors (e1,e2) are as in
the above lemma.

Next we consider the dependence of densities in the model on the regression
function f .

Lemma 10.3.3. There exists a constant K > 0 such that for all σ ∈ I and all F ∈
D[−A,A]:

∥pσ , f ,F − pσ ,g,F∥1,µ ≤ K∥ f −g∥1,F , (10.16)

for all f ,g ∈F .

The bound depends on the distribution F for the underlying random variable Z and
proves the claim we made earlier, concerning identifiability of the regression func-
tion only up to null-sets of the distribution F . To derive a bound that is independent
of F , we note that for all F ∈ D and all f ,g ∈C[−A,A]:

∥ f −g∥1,F ≤ sup
{
| f −g|(z) : z ∈ [−A,A]

}
= ∥ f −g∥, (10.17)
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the right side being finite as a result of continuity of f and g and compactness of
the interval [−A,A]. Note that we cannot simply equate the uniform norm ∥ .∥ in
(10.17) to the L∞-norm because the Lebesgue measure on [−A,A] does not dominate
all F ∈ D.

The bound H2(P,Q) ≤ ∥p− q∥1,µ suggests that metric entropy numbers for the
Hellinger distance can safely be upper-bounded by those for the L1(µ)-norm. In
cases where the class of regression functions is non-parametric and in fact large
enough to dominate the metric entropy of the model, this line of reasoning is in-
sufficient for optimal rates of convergence in the Hellinger distance. The reason is
the fact that it is the squared Hellinger distance that is dominated by the L1(µ)-
distance and not the Hellinger distance itself. As long as L1(µ) entropy numbers
are logarithmic, transition from L1(µ)- to Hellinger coverings leads only to a larger
constant. However, if the small-ε behaviour of L1(µ) entropy numbers is dominated
by terms of the form (10.30)), the replacement of ε by ε2 influences the calculation.
Therefore, we also provide the following lemma.

Lemma 10.3.4. For all σ ∈ I, f ,g ∈F and F ∈ D:

H(Pσ , f ,F ,Pσ ,g,F)≤
1

2σ

(∫
[−A,A]

(
f (z)−g(z)

)2 dF(z)
)1/2

.

Although useful, the above bound depends on the particular values of σ ,F , which is
undesirable in situations below. The lower bound for the interval I and the uniform
bound on | f −g|(z) serve to prove a bound on the Hellinger distance proportional to
the uniform norm (as opposed to its square-root) of the difference between regres-
sion parameters.

Corollary 10.3.5. There exists a constant L > 0 such that for all σ ∈ I, f ,g ∈F
and F ∈ D:

H(Pσ , f ,F ,Pσ ,g,F)≤ L∥ f −g∥. (10.18)

The above two lemmas and the fact that approximation in the uniform norm of
subclasses of bounded continuous functions on closed intervals is well-understood,
strongly suggests that the class of regression functions is to be endowed with the
uniform norm to find nets. We do this in subsection 10.5.1 for the regression classes
mentioned earlier.

To bound the contribution of the parameter F to the covering numbers of the
model, we approximate F by a discrete distribution F ′ with a number of support
points that is bounded by the approximation error in L1(µ). Note that the number of
support points needed depends on a power of log(1/ε), so that a sharper bound in
terms of the Hellinger distance is not necessary (see above).

Lemma 10.3.6. There exist constants C,C′ > 0 such that for all (σ , f ) ∈ I×F and
F ∈ D, there is a discrete F ′ on [−A,A] with less than C(log(1/ε))2 support points
such that

∥pσ , f ,F − pσ , f ,F ′∥1,µ ≤C′ε.

We stress that the particular choice F ′ depends on the regression function f .
The above lemma implies that the set Dε of all discrete F ∈ D with less than
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C(log(1/ε))2 support points parametrizes an ε-net over P . For any fixed pair
(σ , f ) ∈ I ×F , the ε-net parametrized by Dε is a 2ε-net over the submodel
Pσ , f = {pσ , f ,F ∈P : F ∈ D} so that

N
(
ε,Pσ , f ,∥ .∥1,µ

)
≤ N

(
2ε,{pσ , f ,F ∈P : F ∈ Dε},∥ .∥1,µ

)
.

The direct nature of the above approximation (as opposed to the procedure for the
parameters σ and f , where we first bound by a norm on the parametrizing variable
and then calculate the entropy in the parametrizing space) circumvents the notori-
ously difficult dependence of mixture densities on their mixing distribution, respon-
sible for the (logarithmically) slow rate of convergence in deconvolution problems.
Indeed, problems of this nature plague the method of Fan and Truong (1993) [97],
which is based on a kernel-estimate for F and leads to a Nadaraya-Watson-type of
estimator for the regression function. Here we are only interested in covering the
model P , which allows us to by-pass the deconvolution problem by means of the
above lemma.

10.3.2 Metric entropy of the errors-in-variables model

This subsection is devoted entirely to the following theorem, which uses the lem-
mas of the previous subsection to calculate the Hellinger entropy of the errors-in-
variables model P .

Theorem 10.3.7. Suppose that the regression family F is one of those specified in
the beginning of section 10.2). Then there exist constants L,L′ > 0 such that the
Hellinger covering numbers of the model P satisfy:

logN(ε,P,H)≤ L′
(

log
1
ε

)3
+ logN(Lε,F ,∥ .∥), (10.19)

for small enough ε .

Proof. If the class of regression functions F is a Lipschitz-class with exponent in
(0,1), we set α equal to that exponent. In other cases we set α = 1.

Let ε > 0 be given, fix some σ ∈ I, f ∈ F . According to lemma (10.3.6) the
collection Pε

σ , f of all pσ , f ,F ′ where F ′ is a discrete distribution in D with at most

Nε = α2C
(
log(1/ε)

)2 support points, forms an εα -net over Pσ , f with respect to
the L1(µ)-norm. Therefore any εα -net Qε

σ , f over Pε
σ , f is a 2εα -net over Pσ , f .

Let Sε be a minimal εα -net for the simplex with ℓ1-norm in RNε . As is shown by
lemma A.4 in Ghosal and Van der Vaart (2001) [111], the order of Sε does not
exceed (5/εα)Nε . Next we define the grid Gε = {0,±ε,±2ε, . . .} ⊂ [−A,A] and
Qε

σ , f as the collection of all distributions on [−A,A] obtained by distributing the
weights in a vector from Sε over the points in Gε . We project an arbitrary pσ , f ,F ′ in
Pε

σ , f onto Qε
σ , f in two steps: given that F ′ = ∑

Nε

i=1 λiδzi , for some set of Nε points
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zi ∈ [−A,A] and non-negative weights such that ∑i λi = 1, we first project the vector
λ onto a vector in Sε and second, shift the resulting masses to the closest point in
Gε . One easily sees that the first step leads to a new distribution F ′′ such that:

∥pσ , f ,F ′ − pσ , f ,F ′′∥1,µ ≤ ε.

As for the second step, in which F ′′ = ∑
Nε

i=1 λ ′i δzi is ‘shifted’ to a new distribution
F ′′′ = ∑

Nε

i=1 λ ′i δz′i
such that |zi− z′i| ≤ ε , we note that:

∣∣pσ , f ,F ′′ − pσ , f ,F ′′′
∣∣(x,y)≤ Nε

∑
i=1

λ
′
i
∣∣ϕσ (x− zi)ϕσ (y− f (zi))−ϕσ (x− z′i)ϕσ (y− f (z′i))

∣∣
≤

Nε

∑
i=1

λ
′
i

(∣∣ϕσ (x− zi)−ϕσ (x− z′i)
∣∣ϕσ (y− f (zi))

+
∣∣ϕσ (y− f (zi))−ϕσ (y− f (z′i))

∣∣ϕσ (x− z′i)
)
,

which implies that the L1(µ)-difference satisfies:

∥pσ , f ,F ′′ − pσ , f ,F ′′′∥1,µ

≤
Nε

∑
i=1

λ
′
i

(∫ ∣∣ϕσ (x− zi)−ϕσ (x− z′i)
∣∣dx+

∫ ∣∣ϕσ (y− f (zi))−ϕσ (y− f (z′i))
∣∣dy
)
.

By assumption, the family of regression functions satisfies (10.7), which is used to
establish that there exists a constant K > 0 such that

∥pσ , f ,F ′′ − pσ , f ,F ′′′∥1,µ ,≤ Kε
α ,

(for small enough ε), along the same lines as the proof of lemma 10.3.3. Summariz-
ing, we assert that for some constant K3 > 0, Qε

σ , f is a K2
3 εα -net over Pσ , f . There

exist an εα -net Iε over I (with norm equal to absolute differences) and an εα/2-net
Fε over F in the uniform norm. (The order of Fε is bounded in lemmas 10.5.1
and 10.5.3.) By virtue of the triangle inequality and with the help of lemma 10.3.1
and corollary 10.3.5, we find that constants K1,K2 > 0 exist such that:

H(Pσ , f ,F ,Pτ,g,F ′)≤ H(Pσ , f ,F ,Pτ, f ,F)+H(Pτ, f ,F ,Pτ,g,F)+H(Pτ,g,F ,Pτ,g,F ′)

≤ ∥pσ , f ,F − pτ, f ,F)∥1/2
1,µ +K∥ f −g∥+∥pτ,g,F − pτ,g,F ′∥

1/2
1,µ

≤ K1|σ − τ|1/2 +K2∥ f −g∥+∥pτ,g,F − pτ,g,F ′∥
1/2
1,µ ,

for all σ ∈ I, τ ∈ Iε , f ∈ F , g ∈ Fε and F,F ′ ∈ D. For every fixed pair (τ,g) ∈
Iε ×Fε , we define the K2

3 εα -net Qε
τ,g like above and choose F ′ in the above dis-

play so that pτ,g,F ′ lies in Qε
τ,g and approximates pτ,g,F to within L1(µ)-distance

proportional to εα . This shows that the set:
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Qε =
⋃{

Qε
τ,g : τ ∈ Iε ,g ∈Fε

}
,

forms a Kεα/2-net over P with respect to the Hellinger distance, where K = K1 +
K2 +K3. The order of this net can be calculated and forms an upper bound for the
Hellinger covering number of the model.

logN(Kε
α/2,P,H)≤ logN(εα , I, | . |)+ logN(εα/2,F ,∥ .∥)+ logN(Qε

τ,g),

where N(Qε
τ,g) denotes the uniform bound on the number of points in the nets Qε

τ,g,
given by:

logN(Qε
τ,g) = L′′

(
log

1
ε

)3
,

for some constant L′′ > 0 as is easily checked from the above. Moreover, the cover-
ing numbers for the finite-dimensional, bounded space I satisfy, for some constant
L′′′ > 0:

logN(εα , I, | . |)≤ L′′′ log
1
ε
.

(Note that in the two displays above, any exponent for ε (e.g. α/2) is absorbed in the
constants L′ and L′′). Note that for small enough ε , the contribution from the mixing
parameter F dominates that of the parameter σ . Eventually, we find the bound:

logN(ε,P,H)≤ L′
(

log
1
ε

)3
+ logN(Lε,F ,∥ .∥),

for small enough ε > 0 and some L,L′ > 0.

10.3.3 Proofs of several lemmas

Proof. Proof of lemma 10.3.1 Fix f ∈F and F ∈D, let σ ,τ ∈ Σ be given. Consider
the L1(µ) difference:

∥pσ , f ,F− pτ, f ,F∥1,µ ≤
∫
R

∫
R2

∣∣∣ψσ

(
x−z,y− f (z)

)
−ψτ

(
x−z,y− f (z)

)∣∣∣dµ(x,y)dF(z),

by Fubini’s theorem. Translation invariance of the Lebesgue measure and the do-
main of integration R2 make it possible to translate over (z, f (z)) to render the inner
integral independent of z and integrate with respect to F with the following result:

∥pσ , f ,F − pτ, f ,F∥1,µ ≤
∫
R2

∣∣∣ψσ (x,y)−ψτ(x,y)
∣∣∣dµ(x,y),

thus leading to an upper bound that is independent of both f and F .

Proof. Proof of lemma 10.3.2 The L1(µ)-difference of the densities ψσ and ψτ

equals the total-variational difference between the corresponding distributions Ψσ

and Ψτ and can be expressed in terms of the event {ψσ > ψτ} as follows:
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∥ψσ −ψτ∥1,µ = 2
(
Ψσ (ψσ > ψτ)−Ψτ(ψσ > ψτ)

)
.

In the case of normally and equally distributed, independent errors (e1,e2) the kernel
is ψσ (x,y) = ϕσ (x)ϕσ (y), with σ ∈ I. Assuming that σ < τ , the event in question is
a ball in R2 of radius r0 centred at the origin (and its complement if σ > τ), where
r2

0 = (2σ2τ2/(τ2−σ2)) log(τ2/σ2). Integrating the normal kernels over this ball,
we find:

∥ψσ −ψτ∥1,µ = 2
∣∣∣e− 1

2 (r0/σ)2
− e−

1
2 (r0/τ)2

∣∣∣= 2e−
1
2 (r0/σ)2

∣∣∣1− σ2

τ2

∣∣∣≤ 4σ

σ2 |σ − τ|,

where we have used the upper and lower bounds for the interval I.

Proof. Proof of lemma 10.3.3 Let σ ∈ I, F ∈D[−A,A] and f ,g∈F be given. Since
the x-dependence of the densities pσ , f ,F and pσ ,g,F is identical and can be integrated
out, the L1(µ)-difference can be upper-bounded as follows:

∥pσ , f ,F − pσ ,g,F∥1,µ ≤
∫
R

∫
R

∣∣ϕσ

(
y− f (z)

)
−ϕσ

(
y−g(z)

)∣∣dydF(z).

Fix a y ∈ R and z ∈ [−A,A]. We note:

∣∣ϕσ (y− f (z))−ϕσ (y−g(z))
∣∣≤ ∣∣∣∫ y−g(z)

y− f (z)
ϕ
′
σ (u)du

∣∣∣≤ sup
u∈J
|ϕ ′σ (u)

∣∣ ∣∣ f (z)−g(z)
∣∣,

where J = [y− f (z)∨g(z),y− f (z)∧g(z)]. The uniform bound on the functions in
the regression class F guarantees that J⊂ J′ = [y−B,y+B]. If y≥ 2B, then y−B≥
1
2 y ≥ B > 0, so if, in addition, 1

2 y ≥ σ , we see that for all u ∈ J′, u ≥ 1
2 y ≥ σ , thus

restricting u to the region in which the derivative of the normal density decreases
monotonously: ∣∣ϕ ′σ (u)∣∣≤ ∣∣ϕ ′σ ( 1

2 y)
∣∣.

Symmetry of the normal density allows us to draw the same conclusion if y lies
below−2B and−2σ . Using the explicit form of the normal density and the constant
T = 2(B∨σ), we derive the following upper bound on the supremum:

sup
{∣∣ϕ ′σ (u)∣∣ : u ∈ J

}
≤ Ks(y),

where the function s is given by:

s(y) =

{
|y|ϕ2σ (y), if |y| ≥ T ,
∥ϕ ′σ∥∞, if |y|< T .

Note that s does not depend on the values of the parameters. Therefore:

∥pσ , f ,F − pσ ,g,F∥1,µ ≤
∫
R

∫
R

Ks(y)
∣∣ f (z)−g(z)

∣∣dydF(z).

Since the integral over s(y) is finite, the asserted bound follows.
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Proof. (Proof of lemma 10.3.4) Consider a binary experiment E1 =(R3,B(3),{P,Q}),
giving two possible distributions P,Q for the triplet (X ,Y,Z) that describes the
errors-in-variables model (cf. (10.2)). The map T that projects by T (X ,Y,Z) =
(X ,Y ) leads to another binary experiment E2 = (R2,B(2),{PT ,QT}) which is less
informative than E1. (The phrase “less informative” is defined in the sense of Le
Cam, i.e. for every test function φ2 in E2, there exists a test function φ1 in E1 such
that Pφ1 ≤ PT φ2 and Qφ1 ≥ QT φ2 (see, for instance, Strasser (1985) [248], defi-
nition 15.1).) This property follows from the fact that σ(X ,Y ) ⊂B(2) is such that
T−1

(
σ(X ,Y )

)
⊂ σ(X ,Y,Z) ⊂B(3), which makes it possible to identify every test

function in E2 with a test function in E1, while there may exist test functions on R3

that are not measurable with respect to T−1
(
σ(X ,Y )

)
. Corollary 17.3 in Strasser

(1985) [248] asserts that the Hellinger distance decreases when we make the tran-
sition from a binary experiment to a less informative binary experiment, so we see
that:

H(PT ,QT )≤ H(P,Q). (10.20)

In the case at hand, we choose PT = Pσ , f ,F and QT = Pσ ,g,F . From the definition of
the errors-in-variables model (10.2), we obtain the conditional laws:

LP
(

X ,Y
∣∣ Z
)
= N(Z,σ2)×N( f (Z),σ2),

LQ
(

X ,Y
∣∣ Z
)
= N(Z,σ2)×N(g(Z),σ2),

and, of course, LP(Z) = LQ(Z) = F . It follows that:

H2(P,Q) =
∫
R3

(
dP1/2−dQ1/2)2

=
∫
R3

ϕσ (x− z)
(

ϕσ

(
y− f (z)

)1/2−ϕσ

(
y−g(z)

)1/2
)2

dF(z)dxdy

=
∫
[−A,A]

H2(N( f (z),σ2),(N(g(z),σ2)
)

dF(z),

by Fubini’s theorem. A straightforward calculation shows that:

H2(N( f (z),σ2),(N(g(z),σ2)
)
= 2
(

1−e−
1
2

(
f (z)−g(z)

)2
/(2σ)2

)
≤ 1

4σ2

(
f (z)−g(z)

)2
,

where we use that 1− e−x ≤ x for all x ≥ 0. Upon combination of the above two
displays and (10.20), we obtain:

H2(Pσ , f ,F ,Pσ ,g,F)≤
1

4σ2

∫
[−A,A]

(
f (z)−g(z)

)2 dF(z),

which proves the assertion.

Proof. Proof of lemma 10.3.6 Let ε > 0, σ ∈ I, f ∈F be given, fix M ≥ 2A∨ 2B
and k ≥ 1. A Taylor-expansion up to order k− 1 of the exponential in the normal
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density demonstrates that:∣∣∣ϕσ (x− z)− 1
σ
√

2π

k−1

∑
j=0

1
j!
(− 1

2 )
j
(x− z

σ

)2 j∣∣∣≤ 1
σ
√

2π

1
k!
( 1

2 )
k
(x− z

σ

)2k

≤ 1
σ
√

2π

( e
2k

)k(x− z
σ

)2k
,

where we have used that k!≥ kke−k. Similarly, we obtain:∣∣∣ϕσ

(
y− f (z)

)
− 1

σ
√

2π

k−1

∑
j=0

1
j!
(− 1

2 )
j
(y− f (z)

σ

)2 j∣∣∣≤ 1
σ
√

2π

( e
2k

)k(y− f (z)
σ

)2k
.

Considering |x|, |y| ≤M and using that σ ≥σ > 0, we see that there exists a constant
C1 > 0 (independent of σ and f ) such that both residuals of the last two displays are
bounded above by (C1M2/k)k. So for all x,y like above,∣∣pσ , f ,F − pσ , f ,F ′

∣∣(x,y)
≤ 1

2πσ2

∣∣∣∫ k−1

∑
i, j=0

1
i! j!

(− 1
2 )

i+ j
(x− z

σ

)2i(y− f (z)
σ

)2 j
d(F−F ′)(z)

∣∣∣
+4
(C1M2

k

)k
+
(C1M2

k

)2k
.

(10.21)

Lemma A.1 in Ghosal and Van der Vaart (2001) [111] asserts that there exists a
discrete distribution F ′ on [−A,A] with at most (k2 +1) support points such that for
all functions ψ f ,i j(z) = z2i f 2 j(z) the F- and F ′-expectations coincide, i.e.:∫

[−A,A]
ψ f ,i j dF =

∫
[−A,A]

ψ f ,i j dF ′.

Thus choosing F ′, the first term in (10.21) vanishes and we see that (for large enough
k):

sup
|x|∨|y|≤M

∣∣pσ , f ,F − pσ , f ,F ′
∣∣(x,y)≤ 5

(C1M2

k

)k
. (10.22)

For points (x,y) outside [−M,M]× [−M,M], we note that there exists a constant
C2 > 0 such that for all |x| ≥ 2A, |y| ≥ 2B:

ϕσ (x− z)≤ ϕσ

( x
2

)
≤C2ϕσ

( x
2

)
,

ϕσ

(
y− f (z)

)
≤ ϕσ

( y
2

)
≤C2ϕσ

( y
2

)
,

(C2 = ∥ϕσ∥∞/∥ϕσ∥∞ will do). Since M≥ 2A∨2B, there exists a constants C3,C4 > 0
such that:
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|x|∨|y|>M

pσ , f ,F(x,y)dµ(x,y)≤C2

∫
|x|>M

ϕσ

( x
2

)
dx
∫ ∫

ϕσ

(
y− f (z)

)
dF(z)dy

+C2

∫
|y|>M

ϕσ

( y
2

)
dy
∫ ∫

ϕσ (x− z)dF(z)dx

= 4C2

∫
x>M

ϕσ

( x
2

)
dx≤ 4C2

∫
x>M

x
M

ϕσ

( x
2

)
dx

≤C3e−C4M2
,

(10.23)

where we have used Fubini’s theorem and translation invariance of Lebesgue mea-
sure in the second step and the fact that ϕ ′σ (x) =−(x/σ2)ϕσ (x) in the last. Now, let
ε > 0 be given. We decompose the domain of integration for the L1(µ)-difference
between pσ , f ,F and pσ , f ,F ′ into the region where |x| ∨ |y| ≤M and its complement.
Using the uniform bound (10.22) on the region bounded by M and (10.23) for the
tails, we find that there is a constant D1 such that:

∥pσ , f ,F − pσ , f ,F ′∥1,µ ≤ D1

(
M2
(C1M2

k

)k
+ e−C4M2

)
. (10.24)

In order to bound the r.h.s. by ε we fix M in terms of ε:

M =
√

1
C4

log 1
ε
,

and note that the lower bound M≥ 2A∨2B is satisfied for small enough ε . Upon sub-

stitution, the first term in (10.24) leads to (D1/C4)Dk
2 e(k+1) log log 1

ε e−k logk (where
D2 =C1/C4), so that the choice:

k ≥ D3 log 1
ε
,

(for some large D3 > D2) suffices to upper bound the L1(µ)-difference appropri-
ately. The smallest integer k above the indicated bound serves as the minimal num-
ber of support points needed.

Note that the f -dependence of the functions ψ f ,i j carries over to the choice for F ′,
which is therefore f -dependent as well.

10.4 Model prior

Assume that the model is well-specified and denote by P0 ∈P (corresponding to
some, not necessarily unique, σ0 ∈ I, f0 ∈F and F0 ∈ D) the true distribution un-
derlying the i.i.d. sample. We define a prior Π on P by defining priors on the pa-
rameter spaces I, F and D and taking Π equal to the probability measure induced
by the map (σ , f ,F) 7→ Pσ , f ,F from I×F ×D with product-measure to P . The
prior on I is denoted ΠI and is assumed to have a density πI , continuous and strictly
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positive at σ0. The prior ΠF on F is specified differently for each of the classes
defined in the beginning of section 10.2, but all have as their domain the Borel σ -
algebra generated by the norm topology on C[−A,A]. The definition of these priors
is postponed to subsection 10.5.2. The prior ΠD on D is based on a Dirichlet pro-
cess with base measure α which has a continuous and strictly positive density on all
of [−A,A]. The domain of ΠD is the Borel σ -algebra generated by the topology of
weak convergence.

The fact that these priors are defined on the product of the parameter spaces
rather than the errors-in-variables model P itself, necessitates a lemma asserting
appropriate measurability. So before we discuss the properties of priors, we show
that the map p̂ that takes parameters (σ , f ,F) into densities pσ , f ,F (cf. (10.3)) is
measurable.

Lemma 10.4.1. Endow I and F with their norm topology and D with the topology
of weak convergence. Then the map p̂ : I×F ×D→ L1(µ) is continuous in the
product topology.

Proof. The space D with the topology of weak convergence is metric, so the product
topology on I×F ×D is a metric topology as well. Let (σn, fn,Fn) be a sequence,
converging to some point (σ , f ,F) in I×F ×D as n→∞. As a result of the triangle
inequality and lemmas 10.3.1–10.3.3, the L1(µ)-distance satisfies:∥∥pσn, fn,Fn− pσ , f ,F

∥∥
1,µ ≤K1|σn−σ |+K2∥ fn− f∥+

∥∥pσ , f ,Fn− pσ , f ,F
∥∥

1,µ , (10.25)

for some constants K1,K2 > 0. Since Fn converges to F weakly, the continuity of
the regression function f , combined with the continuity and boundedness of the
Gaussian kernel and the portmanteau lemma guarantee that∫

[−A,A]
ϕσ

(
x− z

)
ϕσ

(
y− f (z)

)
dFn(z)→

∫
[−A,A]

ϕσ

(
x− z

)
ϕσ

(
y− f (z)

)
dF(z),

as n→ ∞ for all (x,y) ∈ R2. Using the (µ-integrable) upper-envelope for the model
P and dominated convergence, we see that∥∥pσ , f ,Fn − pσ , f ,F

∥∥
1,µ → 0,

and hence the r.h.s. of (10.25) goes to zero. We conclude that p̂ is continuous in the
product topology.

Note that the L1(µ)- and Hellinger topologies on the model P are equivalent, so
that the above lemma implies continuity of p̂ in the Hellinger topology. Hence p̂−1

is a well-defined map between the Borel σ -algebras of the model with the Hellinger
topology and the product I×F ×D.

The following lemma establishes that the prior-mass condition (10.4) can be anal-
ysed for the regression class and the parameter space for (σ ,F) separately. Lower
bounds for the prior mass in appropriate neighbourhoods of the point (σ0,F0) are
incorporated immediately.
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Theorem 10.4.2. Suppose that the regression family F is one of those specified in
the beginning of section 10.2. Assume that the prior Π on P is of the product form
indicated above. Then there exist constants K,c,C > 0 such that:

Π

(
B
(
Kδ log(1/δ );P0

))
≥C exp

(
−c
(
log(1/δ )

)3
)

ΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
,

for small enough δ .

Proof. If the class of regression functions F is a Lipschitz-class with exponent in
(0,1), we set α equal to that exponent. In other cases we set α = 1.

Let ε > 0 be given. By lemma 10.3.6 there exists a discrete F ′0 in D with at
most Nε =C(log(1/ε))2 support points z1, . . . ,zNε

of the form F ′0 = ∑
Nε

i=1 piδzi with
∑

Nε

i=1 pi = 1, such that:

∥pσ0, f0,F ′0
− pσ0, f0,F0∥1,µ ≤C′εα ,

for some constant C′ > 0. Although the assertion of lemma 10.3.6 is stronger, we
include the power of α because we assume (without loss of generality) that the
set of support points for F ′0 is 2ε-separated. If this is not the case, take a maximal
2ε-separated subset and shift the masses of other support points of F ′0 to points
in the chosen subset within distance 2ε , to obtain a new discrete distribution F ′′0 .
Arguing as in the proof of theorem 10.3.7, we see that the corresponding change
in L1(µ)-distance between pσ0, f0,F ′0

and pσ0, f0,F ′′0
is upper-bounded by a multiple

of εα , since the family of regression functions satisfies (10.7) by assumption. The
distribution function F ′′0 so obtained may then replace F ′0. By lemma 10.4.3, there
exists a constant K3 > 0 such that for all F ∈ D:

∥pσ0, f0,F − pσ0, f0,F ′∥1,µ ≤ K3

(
ε

α +
Nε

∑
i=1

∣∣F [zi− ε,zi + ε]− pi
∣∣).

Let (σ , f ,F) be a point in the parameter space of the model. The Hellinger distance
between pσ , f ,F and pσ0, f0,F0 is upper-bounded as follows (for constants K1,K2 > 0):

H(Pσ , f ,F ,Pσ0, f0,F0)≤ H(Pσ , f ,F ,Pσ0, f ,F)+H(Pσ0, f ,F ,Pσ0, f0,F)+H(Pσ0, f0,F ,Pσ0, f0,F0)

≤
∥∥pσ , f ,F − pσ0, f ,F

∥∥1/2
1,µ +H(Pσ0, f ,F ,Pσ0, f0,F)+

∥∥pσ0, f0,F − pσ0, f0,F0

∥∥1/2
1,µ

≤ K1
∣∣σ −σ0

∣∣1/2
+K2

∥∥ f − f0
∥∥

+
(∥∥pσ0, f0,F − pσ0, f0,F ′0

∥∥
1,µ +

∥∥pσ0, f0,F ′0
− pσ0, f0,F0

∥∥
1,µ

)1/2
,

(10.26)

where we have used lemmas 10.3.1, 10.3.2 and corollary 10.3.5. Moreover, we see
that there exists a constant K4 > 0 such that for small enough η > 0 and P∈P such
that H(P,P0)≤ η :
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−P0 log
p
p0
∨P0

(
log

p
p0

)2
≤ K2

4 η
2
(

log
1
η

)2
,

as a result of lemma 10.4.4. Combining the last two displays and using definition
(6.12), we find that, for some constants K5,K6 > 0, the following inclusions hold:{

(σ , f ,F) ∈ I×F ×D :

|σ −σ0|1/2 ≤ ε
α , ∥ f − f0∥ ≤ ε

α/2,
Nε

∑
j=1

∣∣F [z j− ε,z j + ε]− p j
∣∣≤ ε

α

}
⊂
{
(σ , f ,F) ∈ I×F ×D : H(Pσ , f ,F ,P0)≤ K5ε

α/2
}

{
P ∈P : H(P,P0)≤ K5ε

α/2
}
⊂ B

(
K6ε

α/2 log(1/ε);P0
)
,

(10.27)

for small enough ε and with the notation p0 for the density of P0 (p0 = pσ0, f0,F0 )).
Using the fact that the prior measure of the rectangle set on the l.h.s. of the first
inclusion above factorizes, we find that:

Π

(
B
(
K6ε

α/2 log(1/ε);P0
))
≥ΠI

(
σ ∈ I : |σ −σ0|1/2 ≤ ε

α
)

ΠF

(
f ∈F : ∥ f − f0∥ ≤ ε

α/2)
×ΠD

(
F ∈ D :

Nε

∑
j=1

∣∣F [z j− ε,z j + ε]− p j
∣∣≤ ε

α

)
.

Note that εα ≥ ε for small enough ε , so that

ΠD

( Nε

∑
j=1

∣∣F [z j− ε,z j + ε]− p j
∣∣≤ ε

α

)
≥ΠD

( Nε

∑
j=1

∣∣F [z j− ε,z j + ε]− p j
∣∣≤ ε

)
.

According to lemma 6.1 in Ghosal et al. (2000) [110] (also given as lemma A.2 in
Ghosal and Van der Vaart (2001) [111]), there are constants C′,c′ > 0 such that

ΠD

( Nε

∑
j=1

∣∣F [z j−ε,z j+ε]− p j
∣∣≤ ε

)
≥C′ exp

(
−c′Nε log(1/ε)

)
≥C′ exp

(
−c′C

(
log(1/ε)

)3)
.

Furthermore, continuity and strict positivity of the density of the prior ΠI imply that
(see the proof of lemma 10.5.5):

ΠI(σ ∈ I : |σ −σ0| ≤ ε
α)≥ π1 ε

α = π1 exp
(
−α log(1/ε)

)
,

for some constant π1 > 0. Note that the exponent on the r.h.s. falls above all mul-
tiples of −(log(1/ε))3 for small enough ε . Substitution of δ = εα/2 leads to the
conclusion that there exist constants K,c,C > 0 such that:
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Π

(
B
(
Kδ log(1/δ );P0

))
≥C exp

(
−c
(
log(1/δ )

)3
)

ΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
,

for small enough δ .

If the model is not identifiable in the parameter space I×F ×D, the above condi-
tions are more stringent than necessary. The point (σ0, f0,F0) may not be the only
one that is mapped to P0, so the first inclusion in (10.27) may discount parts of
the parameter space that also contribute to the Kullback-Leibler neighbourhoods
B(P0,ε). However, the methods we use to lower-bound the prior mass rely on unifor-
mity in the sense that neighbourhoods of every point in the parameter space receive
a certain minimal fraction of the total prior mass. Therefore, identifiability issues do
not affect the argument.

10.4.1 Lemmas

In the following lemma, it is assumed that the regression class F is one of those
specified in the beginning of section 10.2. If the class of regression functions is a
Lipschitz-class with exponent in (0,1), we set α equal to that exponent. In other
cases we set α = 1.

Lemma 10.4.3. Let ε > 0 be given and let F ′ = ∑
N
i=1 piδzi be a convex combination

of point-masses, where the set {zi : i = 1, . . . ,N} is 2ε-separated. Then there exists
a constant K > 0 such that for all σ ∈ I, f ∈F and all F ∈ D:

∥pσ , f ,F − pσ , f ,F ′∥1,µ ≤ K
(

ε
α +

N

∑
i=1

∣∣F [zi− ε,zi + ε]− pi
∣∣),

for small enough ε .

Proof. Let F be given. We partition the real line by R= ∪iAi∪B, with B =
(
∩iBi

)
,

where
Ai =

{
z : |z− zi| ≤ ε

}
, Bi =

{
z : |z− zi|> ε

}
,

and decompose the absolute difference between pσ , f ,F and pσ , f ,F ′ accordingly:∣∣pσ , f ,F − pσ , f ,F ′
∣∣(x,y) = ∣∣∣∫

R
ϕσ (x− z)ϕσ

(
y− f (z)

)
d(F−F ′)(z)

∣∣∣
=
∣∣∣ N

∑
i=1

∫
Ai

ϕσ (x− z)ϕσ (y− f (z))d(F−F ′)(z)+
∫

B
ϕσ (x− z)ϕσ (y− f (z))dF(z)

∣∣∣,
for all (x,y) ∈ R2. Integrating this expression over R2, we find that the L1(µ)-
difference is bounded as follows:
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∥∥

1,µ ≤
N

∑
i=1

∣∣F [zi− ε,zi + ε]− pi
∣∣+F

( N⋂
i=1

Bi

)
+

N

∑
i=1

∫
Ai

∫
R2

∣∣ϕσ (x− z)ϕσ (y− f (z))−ϕσ (x− zi)ϕσ (y− f (zi))
∣∣dµ(x,y)dF(z),

by Fubini’s theorem and the triangle inequality. To upper-bound the last term on the
r.h.s. in the above display, we use that for all x,y ∈ R and z ∈ [−A,A]:∣∣ϕσ (x− z)ϕσ (y− f (z))−ϕσ (x− zi)ϕσ (y− f (zi))

∣∣
≤
∣∣ϕσ (x− z)−ϕσ (x− zi)

∣∣ϕσ (y− f (z))+
∣∣ϕσ (y− f (z))−ϕσ (y− f (zi))

∣∣ϕσ (x− zi),

and argue as in the proof of lemma 10.3.3, to see that the integrand is bounded by a
multiple of |z− zi|α for small enough ε . Noting that the intervals [zi− ε,zi + ε] are
disjoint due to 2ε-separation of the set {zi : i = 1, . . . ,N}, we see that there exists a
constant L′ > 0 such that

∥∥pσ , f ,F − pσ , f ,F ′
∥∥

1,µ ≤ L′εα +
N

∑
i=1

∣∣F [zi− ε,zi + ε]− pi
∣∣+F

( N⋂
i=1

Bi

)
.

Furthermore, by De Morgan’s law and the disjointness of the intervals [zi−ε,zi+ε]:

F
( N⋂

i=1

{
z : |z− zi|> ε

})
= 1−F

( N⋃
i=1

{
z : |z− zi| ≤ ε

})
=

N

∑
i=1

pi−
N

∑
i=1

F [zi− ε,zi + ε]≤
N

∑
i=1

∣∣F [zi− ε,zi + ε]− pi
∣∣,

which proves the assertion.

Lemma 10.4.4. Let P,Q ∈P be given. There exists a constant K > 0 such that for
small enough H(P,Q):∫

p log
p
q

dµ ≤ K2H2(P,Q)
(

log
1

H(P,Q)

)2
,

∫
p
(

log
p
q

)2
dµ ≤ K2H2(P,Q)

(
log

1
H(P,Q)

)2
.

(10.28)

The constant K does not depend on P,Q.

Proof. Fix δ ∈ (0,1] and consider the integral:

M2
δ
=
∫

p
( p

q

)δ

dµ.

We shall prove that for a suitable choice of δ , M2
δ
< ∞. Since all densities involved

are bounded away from zero and infinity on compacta, we consider only the domain
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O = R2 \ [−C,C]× [−C,C], for some large constant C ≥ A∨B. Note that:∫
O

p
( p

q

)δ

dµ ≤
∫

O
U
(U

L

)δ

dµ,

where (L,U) forms an envelope for the model. This envelope follows from the fact
that the regression densities (10.3) fall in the class of mixture densities obtained
by mixing the normal kernel ϕσ (x)ϕσ (y) on R2 by means of a two-dimensional
distribution that places all its mass in the rectangle [−A,A]× [−B,B]. There exists a
lower bound for this envelope which factorizes into x- and y-envelopes (LX ,UX ) and
(LY ,UY ) that are constant on sets that include [−A,A] and [−B,B] respectively and
have Gaussian tails. The domain O can therefore be partitioned into four subdomains
in which either x or y is bounded and four subdomains in which both coordinates are
unbounded. Reflection-symmetries of the envelope functions suffice to demonstrate
that integrals of U(U/L)δ can be expressed as products of trivially finite factors and
integrals of the form:∫

∞

L
UX (x)

(UX

LX

)δ

(x)dµ(x),
∫

∞

L
UY (y)

(UY

LY

)δ

(y)dµ(y).

For large enough C, the envelope functions LX (x) and UX (x)) are equal to multiples
of ϕσ (x+A) and ϕσ (x−A)) on the domain (C,∞) and hence, for some constants
c,K > 0: ∫

∞

L
UX (x)

(UX

LX

)δ

(x)dµ(x)≤ K
∫

∞

L
ecδx2

ϕσ (x−A)dx,

which is finite for small enough δ > 0. Similarly, one can prove finiteness of the
integrals over y. This proves that the condition for theorem 5 in Wong and Shen
(1995) [270] is satisfied. Note that the choice for δ is independent of p,q. Further-
more, the value of Mδ can be upper-bounded independent of p,q, as is apparent
from the above. Hence, for small enough η > 0, (10.28) holds.

10.5 Regression classes

Theorems 10.3.7 and 10.4.2 demonstrate that both the entropy and prior-mass con-
ditions in theorem 10.1.1 can be decomposed in a term that pertains to the regression
function f and a term pertaining to the parameters (σ ,F). This makes it possible to
consider entropy and prior-mass restricted to the regression class separately.

In the first subsection, we state a bound on the metric entropy of the classes
Cβ ,M[−A,A] due to Kolmogorov, who derived it shortly after his introduction of the
concept of covering numbers. This bound is used in the second subsection to demon-
strate that so-called net priors can be used for non-parametric regression classes in
this situation. Also discussed is an alternative approach, that uses (adapted versions
of) Jackson’s approximation theorem. Up to a logarithmic correction, the second ap-
proach reproduces Kolmogorov’s bound for the metric entropy, but upon application
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in the form of so-called sieve priors, the resulting lower bounds for the prior mass
in neighbourhoods of the true regression function are sub-optimal in a more grave
manner. Nevertheless, we indulge in an explanation of the second approach, because
it provides a good example of the methods and subtleties of Bayesian procedures in
non-parametric problems. We also give the necessary bounds on the entropy and
prior mass of parametric regression classes.

10.5.1 Covering numbers of regression classes

The usefulness of bounds (10.17) and (10.18) indicates that the class of regres-
sion functions parametrizing the model is best chosen within the (Banach-)space
C[−A,A] of continuous functions on the closed interval [−A,A] with the uniform
norm ∥ .∥. According to the Weierstrass approximation, polynomials are dense
in C[−A,A]; bounded families of polynomials can therefore be used to approxi-
mate regression families F as characterised in point (c) at the beginning of sub-
section 10.1.1. The Ascoli-Arzelà theorem asserts that if, in addition, F is equi-
continuous, it is relatively compact. Hence bounded, equi-continuous families F
are totally bounded in the norm-topology, rendering covering numbers finite,

N(ε,F ,∥ .∥)< ∞, (10.29)

for all ε > 0. However, since we are interested in rates of convergence, finiteness
of covering numbers is not enough and a more detailed analysis of the behaviour of
N(ε,F ,∥ .∥) for small ε is needed. We reproduce here a result due to Kolmogorov
and Tikhomirov (1961) [167] (in a version as presented in Van der Vaart and Wellner
(1996) [259]), that gives the required bound:

Lemma 10.5.1. Let β > 0, M > 0 be given. There exists a constant K depending
only on β and A, such that:

logN
(
ε,Cβ ,M[−A,A],∥ · ∥

)
≤ K

(1
ε

)1/β

, (10.30)

for all ε > 0.

The proof of this lemma is a special version of the proof of theorem 2.7.1 in [259],
which consists of a fairly technical approximation by polynomials. To improve our
understanding of the above result, we briefly digress on an approach that is based
on Jackson’s approximation theorem.

Fix an n≥ 1; Jackson’s approximation theorem (see Jackson (1930) [?]) says that
if f ∈ LipM(α), there exists an n-th order polynomial pn such that:

∥ f − pn∥ ≤
K
nα

, (10.31)
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where K > 0 is a constant that depends only on A and M. Moreover, if f ∈Dα,M(q),
there exists a polynomial pn of degree n such that:

∥ f − pn∥ ≤
K′

nq+α
, (10.32)

where K′> 0 is a constant that depends on A, q, α and M. Indeed, in its most general
formulation, Jackson’s theorem applies to arbitrary continuous functions f , relating
the degree of approximation to the modulus of continuity. As such, it provides a
more precise version of Weierstrass’ theorem.

The class of all n-th degree polynomials is larger than needed for the pur-
pose of defining nets over the bounded regression classes we are interested in. Let
B > 0 denote the constant that bounds all functions in F . With given γ > 0, define
P′n = {p∈ Pn : ∥p∥≤ (1+γ)B}. By virtue of the triangle inequality, any polynomial
used to approximate f as in (10.31) or (10.32) satisfies a bound slightly above and
arbitrarily close to B with increasing n. Hence, for large enough n, P′n is a L/nβ -net
over Cβ ,M[−A,A], where L> 0 is a constant that depends only on the constants defin-
ing the regression class. For these finite-dimensional, bounded subsets of C[−A,A],
the order of suitable nets can be calculated. The upper-bound for the metric entropy
of Lipschitz and smoothness classes based on Jackson’s theorem takes the following
form.

Lemma 10.5.2. Let β > 0 and M > 0 be given. There exists a constant K′ > 0 such
that:

logN(ε,Cβ ,M[−A,A],∥ .∥)≤ K′
(1

ε

)1/β

log
1
ε
,

for small enough ε > 0.

Proof. Let ε > 0 be given and choose n to be the smallest integer satisfying nβ ≥
1/ε . Define P′′n = {p ∈ Pn : ∥p∥ ≤ L} for some L > B. As argued after (10.32), there
is a uniformly bounded set P′n of polynomials of degree n that forms an ε-net over
Cβ ,M[−A,A]. If n is chosen large enough, P′n is a proper subset of P′′n . To calculate an
upper bound for the covering number of P′n, let δ > 0 be given and let p1, . . . , pD be
a (maximal) set of δ -separated polynomials in P′n, where D is the packing number
D(δ ,P′n,∥ .∥). Note that the balls Bi = {p ∈ P′n : ∥p− pi∥ < 1

2 δ}, (i = 1, . . . ,D), do
not intersect. If δ is chosen small enough, Bi ⊂ P′′n . The linear map p̂ : Rn+1→ Pn
that takes a vector (a0, ...,an) into the polynomial ∑

n
m=0 amzm is Borel measurable

and is used to define the sets Ci = p̂−1(Bi). Note that the sets Ci are obtained from
C = p̂−1(P′′n ) by rescaling and translation for all i. By the same argument as used
in the proof of lemma 10.33, we conclude that there is a constant L such that the
packing number satisfies:

D(δ ,P′n,∥ .∥)≤
(L

δ

)n+1
,

for small enough δ > 0, which serves as an upper bound for the covering number
as well. Choosing δ equal to a suitable multiple of n−β for large enough n, we find
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a constant K′ > 0 and a net over Cβ ,M[−A,A] in Pn of order bounded by (K′nβ )n+1.
The triangle inequality then guarantees the existence of a slightly less dense net over
Cβ ,M[−A,A] inside Cβ ,M[−A,A] of the same order. We conclude that there exists a
constant K′′ > 0 such that:

logN(ε,Cβ ,M[−A,A],∥ .∥)≤ K′′n lognβ ,

for large enough n, which leads to the stated bound upon substitution of the relation
between ε and n.

The power of ε in the bound asserted by the above lemma is that of lemma 10.5.1.
The logarithmic correction can be traced back to the n-dependence of the radius of
the covering balls Bi, i.e. the necessity of using finer and finer nets over P′n to match
the n-dependence in the degree of approximation. Therefore, there is no obvious
way of adapting the above proof to eliminate the log(1/ε)-factor and Kolmogorov’s
approach gives a strictly smaller bound on the entropy. However, the above illus-
trates the origin of the β -dependence in the power of ε more clearly.

For parametric classes (as given under (iii) in the beginning of section 10.2), the
entropy is bounded in the following lemma.

Lemma 10.5.3. For a parametric class FΘ , there exists a constant K > 0 such that
the metric entropy is bounded as follows:

logN(ε,FΘ ,∥ .∥)≤ K log
1
ε
, (10.33)

for small enough ε > 0.

Proof. Since, by assumption, Θ ⊂ Rk is bounded by some constant M′ > 0, the
covering numbers of Θ are upper-bounded by the covering numbers of the ball
B(0,M′)⊂Rk of radius M′ centred on 0. Let δ > 0 be given. Since covering numbers
are bounded by packing numbers, we see that:

N(δ ,Θ ,∥ .∥Rk)≤ D(δ ,B(0,M′),∥ .∥Rk).

Let θ1, . . . ,θD (with D = D(δ ,B(0,M′),∥ .∥Rk)) be a maximal δ -separated subset of
B(0,M′). The balls Bi = B(θi,

1
2 δ ) do not intersect and are all contained in the ball

B(0,M′+ 1
2 δ ) by virtue of the triangle inequality. Therefore, the sum of the volumes

of the balls Bi (which are all equal and proportional to ( 1
2 δ )k, due to translation

invariance and scaling behaviour of the Lebesgue measure) lies below the volume
of the ball B(0,M′+ 1

2 δ ). We conclude that:

D(δ ,B(0,M′),∥ .∥Rk)( 1
2 δ )k ≤ (M′+ 1

2 δ )k.

Assuming that δ < 2M′, we see that:

D(δ ,B(0,M′),∥ .∥Rk)≤
(4M′

δ

)k
. (10.34)
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Next, note that due to (10.8), any δ -net over Θ leads to a Lδ ρ -net over the regression
class FΘ , whence we see that:

N(Lδ
ρ ,FΘ ,∥ .∥)≤ N(δ ,Θ ,∥ .∥Rk). (10.35)

Let ε > 0 be given and choose δ = (ε/L)1/ρ . Combining (10.34) and (10.35), we
find that there exists a constant K > 0 such that:

logN(ε,FΘ ,∥ .∥)≤ K log
1
ε
,

for small enough ε .

These bounds on the small-ε behaviour of the entropy are incorporated in the cal-
culation of bounds for the entropy of the errors-in-variables model through theo-
rem 10.3.7.

10.5.2 Priors on regression classes

This subsection is devoted to the definition of a suitable prior ΠF on the regression
class F . The challenge is to show that ΠF places ‘enough’ mass in small neigh-
bourhoods of any point in the regression class. More specifically, a lower bound is
needed for the prior mass of neighbourhoods of the (unknown) regression function
f0 ∈F :

ΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
, (10.36)

for small enough δ > 0 (refer to theorem 10.4.2).
Jackson’s theorem suggests that a natural definition of a prior on F entails the

placement of prior mass on all (finite-dimensional) linear spaces of n-th degree poly-
nomials Pn on [−A,A], since their union is dense in C[−A,A] and therefore also in
F . Fix the regression class F . For all n≥ 1 we define:

Fn = F ∩Pn,

i.e. the subsets of n-th degree polynomials in the regression class. Note that Fn ⊂
Fn+1 for all n, and that F lies in the closure of their union. The linear map p̂ :
Rn+1 → Pn that takes a vector (a0, ...,an) into the polynomial ∑

n
m=0 amzm can be

used to define a subset p̂−1(Fn) ⊂ Rk with Lebesgue measure strictly above zero.
Normalizing the Lebesgue measure to 1 on p̂−1(Fn), the inverse map p̂−1 serves to
define a probability measure Πn on Fn. Any sequence (bn)n≥0 such that bn ≥ 0 and
∑

∞
n=0 bn = 1, may be used to define a prior ΠF by the infinite convex combination:

ΠF (A) =
∞

∑
n=0

bnΠn(A) =
∞

∑
n=0

bnΠn(A∩Fn), (10.37)
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for all A in the Borel σ -algebra generated by the norm topology on F . Following
Huang [134], we refer to priors obtained in this manner as sieve priors.

With a sieve prior, a proof of (10.4) amounts to showing that neighbourhoods
of f0 have intersections with the sets Fn and that the sum of the masses of these
intersections is large enough. Obviously, Jackson’s approximation provides a useful
way to assert that balls centred on f0 intersect with all P′n from a certain minimal
n onward. However, as is apparent from (10.36), this is not sufficient, because the
relevant neighbourhoods are restricted to the regression class F . One would have
to show that these restricted neighbourhoods intersect with the sets Fn.

Jackson’s theorem does not assert anything concerning Lipschitz-bounds of the
approximating polynomial or derivatives thereof. The assertion that pn approxi-
mates f in uniform norm leaves room for very sharp fluctuations of pn on small
scales, even though it stays within a bracket of the form [ f −K/nβ , f +K/nβ ]. It is
therefore possible that pn lies far outside Fn, rendering neighbourhoods of pn in Pn
unfit for the purpose. Although it is possible to adapt Jackson’s theorem in such a
way that the approximating polynomials satisfy a Lipschitz condition that is arbitrar-
ily close to that of the regression class, this adaptation comes at a price with regard
to the degree of approximation. As it turns out, this price leads to substantial correc-
tions for the rate of convergence and ultimately to sub-optimality (with respect to the
power of ε rather than logarithmically). That is not to say that sieve priors are in any
sense sub-optimal. (Indeed, sieve priors have been used with considerable success
in certain situations; for an interesting example, see the developments in adaptive
Bayesian estimation, for instance in Huang [134].) The calculation underlying the
claims made above merely shows that the construction via adapted versions of Jack-
son’s theorem does not lead to optimal results, leaving the possibility that a sieve
prior satisfies (10.4) open. What it does show, however, is that this may be very hard
to demonstrate.

Therefore, we define the prior on the regression class in a different fashion (first
proposed in Le Cam (197X) [186], based on ideas from Le Cam (1973) [185]),
based on the upper bounds for covering numbers obtained in the previous subsec-
tion. Let the regression class F be a bounded, equi-continuous subset of C[−A,A],
so that the covering numbers N(ε,F ,∥ .∥) are finite for all ε > 0. Let (am)m≥1 be
a monotonically decreasing sequence, satisfying am > 0 (for all m≥ 1), and am ↓ 0.
For every m ≥ 1, there exists an am-net { fi ∈ F : i = 1, . . . ,Nm} over F , where
Nm = N(am,F ,∥ .∥). We define, for every m ≥ 1, a discrete probability measure
Πm that distributes its mass uniformly over the set { fi : i = 1, . . . ,Nm}:

Πm =
Nm

∑
i=1

1
Nm

δ fi .

Any sequence (bn)n≥0 such that bn ≥ 0 and ∑
∞
n=0 bn = 1, may be used to define a

prior ΠF on F by the infinite convex combination:

ΠF (A) =
∞

∑
m=0

bmΠm(A), (10.38)
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for all A in the Borel σ -algebra generated by the norm topology on F . Priors defined
in this manner are referred to as a net priors and resemble those defined in Ghosal,
Ghosh and Ramamoorthi (1997) [108], (see also, Ghosal et al. (2000) [110]).

Note that for all m≥ 1 and every f ∈F , there is an fi satisfying ∥ f − fi∥ ≤ am.
So for every f0 ∈F and all δ > 0, we have:

Πm
(
∥ f − f0∥ ≤ δ

)
≥ 1

Nm
,

if am ≤ δ , i.e. for all m large enough. This means that the priors Πm satisfy lower
bounds for the mass in neighbourhoods of points in the regression class, that are
inversely related to upper bounds satisfied by the covering numbers. As is demon-
strated below, choices for the sequences am and bm exist such that this property
carries over to a prior of the form (10.38).

Lemma 10.5.4. Let β > 0 and M > 0 be given and define F to be the class
Cβ ,M[−A,A]. There exists a net prior ΠF and a constant K > 0 such that

logΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
≥−K

1
δ 1/β

, (10.39)

for small enough δ .

Proof. Define, for all m≥ 1, am = m−β . Then the covering number Nm satisfies, for
some constant K′ > 0:

logNm = logN(am,F ,∥ .∥)≤ K′a−1/β
m = K′m,

according to lemma 10.5.1. Let δ > 0 be given and choose the sequence bm =
(1/2)m. Let M be an integer such that:

1
δ 1/β

≤M ≤ 1
δ 1/β

+1.

Then for all m ≥ M, am ≤ δ and, due to the inequality (10.38), the net prior ΠF

satisfies:

ΠF

(
f ∈F : ∥ f − f0∥ ≤ δ

)
≥ ∑

m≥M
bmΠm

(
∥ f − f0∥ ≤ δ

)
≥ ∑

m≥M

(e−K′

2

)m

≥ 1
2 e−K′M ≥ 1

2 e−K′(δ−1/β+1) ≥ 1
2 e−2K′δ−1/β

,

(10.40)

for small enough δ .

For parametric classes, the prior mass in neighbourhoods of f0 is lower-bounded
in the following lemma.

Lemma 10.5.5. Assume that the regression class F is parametric: F = FΘ . Any
prior ΠΘ on Θ induces a prior ΠF with the Borel σ -algebra generated by the
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topology of the norm ∥ .∥ as its domain. Furthermore, if ΠΘ is dominated by the
Lebesgue measure and has a density that is strictly positive at θ0, then there exists
a constant R > 0 such that the prior mass in neighbourhoods of f0 is bounded as
follows:

logΠF

(
f ∈F : ∥ f − f0∥ ≤ ε

)
≥−R log

1
ε
, (10.41)

for small enough ε > 0.

Proof. The Lipschitz condition (10.8) ensures that the map f̂ : Θ →FΘ : θ 7→ fθ

is continuous, implying measurability with respect to the corresponding Borel σ -
algebras. So composition of ΠΘ with f̂−1 induces a suitable prior on FΘ . As for the
second assertion, let δ > 0 be given. Since ΠΘ has a continuous Lebesgue density
π : Θ → R that satisfies π(θ0) > 0 by assumption and since θ0 is internal to Θ ,
there exists an open neighbourhood U ⊂Θ of θ0 and a constant π1 > 0 such that
π(θ)≥ π1 for all θ ∈U . Therefore, for all balls B(δ ,θ0)⊂U (i.e. for small enough
δ > 0), we have:

ΠΘ

(
B(δ ,θ0)

)
=
∫

B(δ ,θ0)
π(θ)dθ ≥Vkπ1δ

k,

where Vk is the Lebesgue measure of the unit ball in Rk. Note that due to property
(10.8), {

θ ∈Θ : ∥θ −θ0∥ ≤ δ
}
⊂
{

θ ∈Θ : ∥ fθ − f0∥ ≤ Lδ
ρ
}
,

so that, for given ε > 0 and the choice δ = (ε/L)1/ρ :

logΠF

(
f ∈F : ∥ f − f0∥ ≤ ε

)
≥ logΠΘ

(
θ ∈Θ : ∥θ −θ0∥ ≤ (ε/L)1/ρ

)
≥ log

(
Vkπ1(ε/L)k/ρ

)
≥−R log

1
ε
,

for some constant R > 0 and small enough ε .

The bounds on the small-ε behaviour of prior mass presented in this subsection are
incorporated in the calculation of bounds for the prior mass of Kullback-Leibler
neighbourhoods B(P0,ε) through theorem 10.4.2.

10.6 Asymptotic uncertainty quantification with Hellinger balls

Theorem 10.2.5 says the posterior converges at rate εn. This can be combined di-
rectly with theorem 2.3.14, to arrive at the following conclusion.

Theorem 10.6.1. Let B̂n = Bn(θ̂n, r̂n) be level-1− ε credible balls of minimal radii
and Cn = Bn(θ̂n, r̂n + εn)⊂ Bn(θ̂n,2(1+o(1))εn).

F = LipM(α) with a net prior, the sets C(Xn) have asymptotic coverage, and
shrink at rate,
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εn = n−
α

2α+1 (logn)
1

2α .

F = Dα,M(q) with a net prior, the sets C(Xn) have asymptotic coverage, and
shrink at rate,

εn = n−
q+α

2q+2α+1 (logn)
1

2q+2α .

F = FΘ with Lebesgue prior with continuous and strictly positive density, the
sets C(Xn) have asymptotic coverage, and shrink at rate,

εn = n−1/2(logn)3/2.

Regarding the discrete nature of net priors, it is noted that credible sets live on
the countable set of points in definition (10.38), while their metric enlargements
‘fill in’ the space in between those points. Also note that the assertion of theo-
rem 10.2.5, based on the Ghosal-Ghosh-van der Vaart theorem, theorem 10.1.1, is
not strong enough to actually construct Hellinger confidence balls. The unknown
constant M weakens the conclusion to, there exists a constant M > 0 such that the
Mεn-enlargements (where εn represents the rates of theorem 10.2.5) of credible balls
B̂n are frequentist asymptotic confidence sets. This is not the case with posterior con-
vergence as formulated in theorem 7.5.1 (provided the sets Vn are complements of
balls of known radii, of course).





Chapter 11
Application: community detection in the planted
bi-section model

To demonstrate how the methods presented in chapter 7 are applied in practice, we
consider a sparse stochastic block model, focussing on the questions of commu-
nity recovery, detection and uncertainty quantification. The work presented in this
chapter is based on Kleijn and van Waaij (2023) [164].

11.1 Communities in random graphs

The stochastic block model is a generalization of the Erdős-Rényi random graph
model [93] where one studies a version Xn of the complete graph between n ver-
tices under percolation, with edge probability pn ∈ [0,1]. Stochastic block models
[132] are similar but concern random graphs with vertices that belong to one of sev-
eral classes and edge probabilities that depend on those classes. If we think of the
graph Xn as data and the class assignments of the vertices as unobserved, an inter-
esting statistical challenge presents itself regarding estimation of (and other forms
of inference on) the vertices’ class assignments, a task referred to as community
detection [117]. The stochastic block model and its generalizations have applica-
tions in physics, biology, sociology, image processing, genetics, medicine, logistics,
etcetera and are widely employed as canonical models for the study of clustering
and community detection [100, 1]; [274] even state that, “Community detection for
the stochastic block model is probably the most studied topic in network analysis.”

In an asymptotic sense one may wonder under which conditions on edge proba-
bilities, community detection can be done in a ‘statistically consistent’ way as the
number of vertices n grows; particularly, whether it is possible to estimate the true
class assignments correctly (exact recovery), or correctly for a fraction of the ver-
tices that goes to one (almost-exact recovery), with high probability (see defini-
tions 11.2.1 and 11.2.2 for details). Note that the Erdős-Rényi graph already displays
very rich asymptotic behaviour: edge probabilities pn ≥ An−1 logn lead to a con-
nected graph with high probability, if and only if A > 1; a giant component occurs
with high probability, if and only if pn ≥C/n with C > 1; below the 1/n-threshold,

357
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the graph Xn fragments into many disconnected sub-graphs of order no larger than
O(logn) with high probability. At the boundaries 1/n and n−1 logn, the Erdős-Rényi
graph is said to undergo phase transitions [43], from the fragmented phase to the
sparse Kesten-Stigum phase and then to the less sparse Chernoff-Hellinger phase.

Here and in [2, 198, 208], the community detection problem is studied in the
context of the so-called planted bi-section model, which is a stochastic block model
with two classes, each of n vertices and edge probabilities pn (within-class) and qn
(between-class). A famous sufficient condition for exact recovery of the class as-
signment in the planted bi-section model comes from [86]: if there exists a constant
A > 0 such that, pn− qn ≥ An−1 logn, then community detection by minimization
of the number of edges between estimated classes achieves exact recovery. In in
[68, 69], it was conjectured that almost-exact recovery is possible in block models,
if n(pn−qn)

2 > 2(pn+qn). [208] prove a definitive assertion: almost-exact recovery
is possible (by any estimator or algorithm), if and only if,

n(pn−qn)
2

pn +qn
→ ∞. (11.1)

An analogous claim in the Chernoff-Hellinger phase was first considered more rig-
orously in [198] and later confirmed, both from a probabilistic/statistical perspec-
tive in [206, 208], and independently from an information theoretic perspective in
[2]. Defining an and bn by npn = an logn and nqn = bn logn and assuming that
C−1 ≤ an,bn ≤C for all but finitely many n≥ 1, the class assignment in the planted
bi-section model can be recovered exactly, if and only if,

(an +bn−2
√

anbn−1) logn+ 1
2 log logn→ ∞, (11.2)

(see [208]). Conditions (11.1) and (11.2) not only lower-bound the degree of edge-
sparsity, but also guarantee sufficient distance [7] from the Erdős-Rényi graph (pn =
qn), in which communities are not identifiable.

Estimation methods used for the community detection problem include spectral
clustering (see [171] and many others), maximization of the likelihood and other
modularities [117, 30, 57, 5], semi-definite programming [124, 123], and penal-
ized ML detection of communities with minimax optimal misclassification ratio
[274, 106]. More generally, we refer to [1] and the very informative introduction of
[106] for extensive bibliographies and a more comprehensive discussion. Bayesian
methods have been popular throughout, e.g. the original work [?], the work of
[68, 69] and more recently, [250], based on an empirical prior choice, and [207]. The
machine learners’ interest in the stochastic block model has generated a wealth of
algorithms that estimate the class assignment. We mention only maximization of the
likelihood or other modularities [117, 30] and refer to the discussions in [274, 106].

In this paper, the first goal is to explore the limits of what is possible from the sta-
tistical point of view, similar to what Mossel et al. do from the probabilistic point of
view and Abbe et al. from the information theoretic point of view. So first of all, in
section 11.3 it is shown that posteriors recover underlying class assignments exactly
and almost-exactly, under conditions on (pn) and (qn) that are sharp. To be more
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precise: condition (11.1) is found to be sufficient for almost-exact recovery with
posteriors with uniform priors. This implies that if there exists an estimator or algo-
rithm that recovers the class assignment almost-exactly, then posteriors also recover
the class assignment almost exactly. Similarly, (a slight variation on) the necessary
condition 11.2 is shown to be sufficient for posteriors to recover the community
assignment exactly.

The second goal concerns a far more important advantage posteriors offer over
other estimation methods: in section 11.5, credible sets for community assignment
are shown to be (or can be enlarged to form) asymptotic confidence sets. Since
sampling distributions of other estimators are mostly prohibitively hard to analyse,
obtaining (asymptotic) confidence sets for community assignment in other ways
may prove very hard. Frequentist uncertainty quantification with confidence sets for
class assignment has not been addressed in the literature. We conclude that, in the
context of the planted bi-section model and also much wider, the relatively high
computational cost of simulating a posterior is quite justifiable if one is interested
in uncertainty quantification. Section 11.4 provides a sharp calculation of testing
power for likelihood ratio tests; section 11.5 applies remote contiguity to convert
credible sets to asymptotic confidence sets as in chapter 7.

11.2 The planted bi-section model

In a stochastic block model, each vertex is assigned to one of K ≥ 2 classes through
an unobserved class assignment vector θ ′. Each vertex belongs to a class and any
edge occurs (independently of others) with a probability depending on the classes
of the vertices that it connects. In the planted bi-section model, there are only two
classes (K = 2) and, at the n-th iteration (n≥ 1), there are 2n vertices (labelled with
indices 1 ≤ i ≤ 2n), n in each class, with class assignment vector θ ′ ∈ Θ ′n (with
components θ ′1, . . . ,θ

′
2n ∈ {0,1}), where Θ ′n is the subset of {0,1}2n of all finite

binary sequences that contain as many ones as zeroes. Denote that space in which
the random graph Xn takes its values by Xn (e.g. represented by its adjacency matrix
with entries {Xi j : 1≤ i, j≤ 2n}). The (n-dependent) probability of an edge occuring
(Xi j = 1) between vertices 1≤ i, j≤ 2n within the same class is denoted pn ∈ (0,1);
the probability of an edge between classes is denoted qn ∈ (0,1),

Qi j(θ
′) := Pθ ,n(Xi j = 1) =

{
pn, if θ ′n,i = θ ′n, j,
qn, if θ ′n,i ̸= θ ′n, j,

(11.3)

Note that if pn = qn, Xn is the Erdős-Rényi graph G(2n, pn) and the class assign-
ment θn ∈Θ ′n is not identifiable. Another identifiability issue that arises is that the
model is invariant under interchange of class labels 0 and 1. This is expressed in
the parameter spaces Θ ′n through equivalence relations: θ ′1 ∼n θ ′2, if θ ′2,n =¬θ ′1,n (by
componentwise negation). To prevent non-identifiability, we parametrize the model
for Xn in terms of a parameter θn in a quotient space Θn =Θ ′n/∼n, for every n≥ 1.
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For θ ′n ∈Θ ′n we denote the equivalence class {θ ′n,¬θ ′n} by θn. Note that the set Θn
can be identified with the set of partitions of {1, . . . ,2n} consisting of exactly two
sets with n elements, via the identification

θn←→
{{

i : θ
′
n,i = 0

}
,
{

i : θ
′
n,i = 1

}}
,

and note that this is independent of the choice of the representation.
The probability measure for the graph Xn corresponding to parameter θ is de-

noted Pθ ,n. The likelihood is given by,

pθ ,n(Xn) = ∏
i< j

Qi, j(θ)
Xi j(1−Qi, j(θ))

1−Xi j .

For the sparse versions of the planted bi-section model, we also define edge prob-
abilities that vanish with growing n: take (an) and (bn) such that an logn = npn
and bn logn = nqn for the Chernoff-Hellinger phase; take (cn) and (dn) such that
cn = npn and dn = nqn for the Kesten-Stigum phase. The fact that we do not allow
loops (edges that connect vertices with themselves) leaves room for 2 · 1

2 n(n−1)+
n2 = 2n2−n = 1

2 · (2n)(2n−1) possible edges in the random graph Xn observed at
iteration n.

The statistical question of interest in this model is to reconstruct the unobserved
class assignment vectors θn consistently, that is, (close to) correctly with probability
growing to one as n→ ∞. Consistency can be stated in various ways, as defined
below.

Definition 11.2.1. Let θ0,n ∈Θn be given. An estimator sequence θ̂n : Xn→Θn is
said to recover the class assignment θ0,n exactly if,

Pθ0,n

(
θ̂n(Xn) = θ0,n

)
→ 1,

that is, if θ̂n indicates the correct communities with high probability.

We also relax this consistency requirement somewhat in the form of the following
definition, cf. [208] and others: for n ≥ 1 and two class assignments θ0,n,θn ∈Θn,
let k(θn,θ0,n) denote the minimal number of pair exchanges needed to transform θn
into θ0,n (for further details, see the definition of k, just before eq. (11.6) below).

Definition 11.2.2. Let θ0,n ∈Θn be given. An estimator sequence θ̂n : Xn→Θn is
said to recover θ0,n almost-exactly, if k(θ̂n,θ0,n) is of order oP(n) under Pθ0,n . If, for
some sequence ln = o(n),

Pθ0,n

(
k(θ̂n,θ0,n)≤ ln

)
→ 1.

we say that θ̂n recovers θ0,n with error rate ln.

Below, we specialize to the Bayesian approach: we choose prior distributions πn for
all Θn, (n≥ 1) and calculate the posterior: denoting the likelihood by pθ ,n(Xn), the
posterior for the parameter θn is written as a fraction of sums, for all A⊂Θn,
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Π(A|Xn) = ∑
θn∈A

pθ ,n(Xn)πn(θn)

/
∑

θn∈Θn

pθ ,n(Xn)πn(θn),

where πn : Θn → [0,1] is the probability mass function for the prior Πn. Here, we
only consider uniform priors (Πn) for θn ∈Θn, so for all n≥ 1 and θn ∈Θn, π(θn) =
πn := (|Θn|)−1.

11.3 Exact and almost-exact recovery with posteriors

Consider the sequence of experiments in which we observe random graphs Xn ∈Xn
generated by the planted bi-section model of definition (11.3). Assuming for every
n≥ 1, that the prior is uniform, we have πn = ( 1

2

(2n
n

)
)−1.

Given true parameters θ0,n ∈Θn (n ≥ 1), choose representations θ ′0,n ∈Θ ′n and
define Zn(θ

′
0) ⊂ {1, . . . ,2n} to be class zero (the set of all those i such that θ ′0,i =

0) and call the complement Zc
n(θ
′
0) class one. For the questions concerning exact

recovery and detection, we are interested in the sets V ′n,k ⊂Θ ′n, defined to contain all
those θ ′n that differ from θ ′0,n by exactly k exchanges of pairs: for θ ′n ∈Θ ′n we have
θ ′n ∈V ′n,k, if the set of vertices in class zero cf. θ ′0,n, Z(θ ′0,n)= {1≤ i≤ 2n : θ ′0,n,i = 0},
from which we leave out the set of vertices in class zero cf. θ ′n, Z(θ ′n) = {1 ≤ i ≤
2n : θ ′n,i = 0}, has k elements. Conversely, for any θ ′1,n and θ ′2,n in Θ ′n, we denote the
minimal number of pair-exchanges necessary to take θ ′1,n into θ ′2,n by k′(θ ′1,n,θ

′
2,n).

Note that k′(θ ′1,n,¬θ ′2,n) = n− k′(θ ′1,n,θ
′
2,n), which leads to the metric between two

representation classes,

k(θ1,n,θ2,n) = k′(θ ′1,n,θ
′
2,n)∧ k′(θ ′1,n,¬θ

′
2,n) (11.4)

and note that this is independent of choice of the representations and that this func-
tion k takes values in {0, . . . ,⌊n/2⌋}. Now define,

Vn,k =Vn,k(θ0,n) = {θn : k(θn,θ0,n) = k}=
{

θn : θ
′
n ∈V ′n,k

}
, (11.5)

for k ∈ {1, . . . ,⌊n/2⌋}. Given some sequence (kn) of positive integers we then define
Vn as the disjoint union,

Vn =

⌊n/2⌋⋃
k=kn

Vn,k (11.6)

Since we can choose two subsets of k elements from two sets of size n in
(n

k

)2 ways,

the cardinality of Vn,k is
(n

k

)2, when k < n/2 and 1
2

( n
n/2

)2 when n is even and k = n/2.

In both cases the number of elements in Vn,k is therefore bounded by
(n

k

)2.
According to lemma 2.2 in [163] (with Bn = {θ0,n}), for any test sequences φk,n :

Xn→ [0,1] (k ≥ 1,n≥ 1), we have,



362 11 Application: community detection in the planted bi-section model

Pθ0,nΠ(Vn|Xn) =
⌊n/2⌋

∑
k=kn

Pθ0,nΠ(Vn,k|Xn)

≤
⌊n/2⌋

∑
k=kn

(
Pθ0,nφk,n(Xn)+ ∑

θn∈Vn,k

Pθn,n(1−φk,n(Xn))
)

for every n≥ 1. Suppose that for any k≥ 1 there exists a sequence (an,k)n≥1, an,k ↓ 0
and, for any θn ∈Vn,k, a test function φθn,n that distinguishes θ0,n from θn as follows,

Pθ0,nφθn,n(X
n)+Pθn,n(1−φθn,n(X

n))≤ an,k, (11.7)

for all n ≥ 1. Then using test functions φk,n(Xn) = max{φθn,n(X
n) : θn ∈ Vn,k}, as

well as the fact that,

Pθ0,nφk,n(Xn)≤ ∑
θn∈Vn,k

Pθ0,nφθn,n(X
n),

we see that,

Pθ0,nΠ(Vn|Xn)≤
⌊n/2⌋

∑
k=kn

∑
θn∈Vn,k

(
Pθ0,n,nφθn,n(X

n)+Pθn,n(1−φθn,n(X
n))
)

≤
⌊n/2⌋

∑
k=kn

(
n
k

)2

ak,n.

This inequality forms the basis for the results in the next two subsections, on exact
recovery and almost-exact recovery.

11.3.1 Posterior consistency: exact recovery

We are interested in the expected posterior masses of subsets of Θn of the form:

Vn = {θn ∈Θn : θn ̸= θ0,n}=
⌊n/2⌋⋃
k=1

Vn,k.

The theorem states a sufficient condition for (pn) and (qn), which is related to re-
quirement (11.2) in the Chernoff-Hellinger phase.

Theorem 11.3.1. For some θ0,n ∈Θn, assume that Xn ∼ Pθ0,n, for every n≥ 1. If we
equip every Θn with its uniform prior and (pn) and (qn) are such that,(

1+
(
1− pn−qn +2pn qn +2

√
pn(1− pn)qn(1−qn)

)n/2
)2n
→ 1, (11.8)

as n→ ∞, then,
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Π
(

θn = θ0,n
∣∣ Xn ) Pθ0,n−−−→1, (11.9)

as n→ ∞, i.e. the posterior recovers the community assignment exactly.

Proof. According to lemma 11.4.1, for every n ≥ 1, k ≥ 1 and given, θ0,n, there
exists a test sequence satisfying (11.7) with an,k = (1− µn)

2k(n−k) and µn = pn +

qn−2pn qn−2(pn(1− pn)qn(1−qn))
1/2 ∈ [0,1]. Therefore, with zn = (1−µn)

n/2,

Pθ0,nΠ(Vn|Xn)≤
⌊n/2⌋

∑
k=1

(
n
k

)2

(1−µn)
2k(n−k) ≤

⌊n/2⌋

∑
k=1

(
n
k

)2

(1−µn)
nk

≤
⌊n/2⌋

∑
k=1

(
2n
2k

)
(1−µn)

nk ≤
2n

∑
l=1

(
2n
l

)
zl

n = (1+ zn)
2n−1

The right-hand side goes to zero if (11.8) is satisfied.

Example 11.3.2. Consider (11.8) in the sparse Chernoff-Hellinger phase, where
npn = an logn, nqn = bn logn with an,bn = O(1). In that case,(

1+
(
1− pn−qn +2pn qn +2

√
pn(1− pn)qn(1−qn)

)n/2
)2n

=

(
1+
(

1−
(
an +bn−2

√
anbn +o(n−1 logn)

) logn
n

)n/2
)2n

≈
(

1+n−
1
2 (an+bn−2

√
anbn))

)2n
=

(
1+

1
n

n−
1
2 (an+bn−2

√
anbn−2)

)2n

≈ exp
(
2e−

1
2 (an+bn−2

√
anbn−2) logn)

(11.10)

Accordingly, in the Chernoff-Hellinger phase (11.8) amounts to the sufficient con-
dition,

(an +bn−2
√

anbn−2) logn→ ∞, (11.11)

which closely resembles (but is not exactly equal to) (11.2), the requirement of
[208]. In fact there is a trade-off: (11.2) is slightly weaker than (11.11) but applies
only if there exists a C > 0 such that C−1 ≤ an,bn ≤C for large enough n [208, 274].
This bound excludes some interesting examples in which one of the sequences (an)
and (bn) may fade away with growing n or equal zero outright. For instance, if bn = 0
and liminfn an > 2, edges between classes are completely absent but, separately,
the Erdős-Rényi graphs spanned by vertices in Zn(θ

′
0) and Zc

n(θ
′
0) respectively are

connected with high probability. Similarly, if an = 0 and liminfn bn > 2, the posterior
succeeds in exact recovery: possibly, with bn above 2, edges between classes are
abundant enough to guarantee the existence of a path in Xn that visits all vertices at
least once, with high probability. It is tempting to state the following, well-known
[2, 208] sufficient condition for the sequences an > 0 and bn > 0:

(
√

an−
√

bn)
2 > c, for some c > 2 and n large enough, (11.12)
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(even though it ignores the logarithm in (11.11)).

Corollary 11.3.3. Under the conditions of (11.3.1), the MAP-/ML-estimator recov-
ers θ0,n exactly.

Proof. Due to the uniformity of the prior, for every n ≥ 1, maximization of the
posterior density (with respect to the counting measure) on Θn, is the same as max-
imization of the likelihood. Due to (11.9), the posterior density in the points θ0,n in
Θn converges to one in Pθ0,n-probability. Accordingly, the point of maximization is
θ0,n with high probability.

11.3.2 Posterior consistency: almost-exact recovery

For the case of almost-exact recovery, the requirement of convergence is less strin-
gent: as said, [208, proposition 2.9] states that condition (11.1) is necessary and
sufficient for almost-exact recovery. Below we show that posteriors with uniform
priors recover the true class assignment almost exactly if (11.1) holds.

We are interested in the expected posterior masses of subsets of Θn of the form:

Wn =

⌊n/2⌋⋃
k=kn

Vn,k,

for a sequence kn of order o(n) or O(n): the posterior concentrates on class assign-
ments θn that differ from θ0,n by no more than kn pair exchanges.

Theorem 11.3.4. For some θ0,n ∈Θn, let Xn ∼ Pθ0,n for every n≥ 1. If we equip all
Θn with uniform priors and edge-probabilities (pn), (qn) and error rates (kn) are
such that,

n
kn

(
1− pn−qn +2pn qn +2

√
(pn(1− pn)qn(1−qn))

)n/2
→ 0, (11.13)

as n→ ∞, then,
Π(Wn|Xn)

P0−→0, (11.14)

as n→ ∞, i.e. the posterior recovers θ0,n with error rate kn.

Proof. According to lemma 11.4.1, for every n ≥ 1, k ≥ 1 and given θ0,n, there
exists a test sequence satisfying (11.7) with an,k = (1−µn)

2k(n−k). Therefore, using

the inequalities
(2n

k

)
≤ (2n)k

k! and (n+m)!≥ n!m!, the Stirling lower bound formula,
and finally our assumption n(1−µn)

n/2/kn→ 0, we see that for big enough n,
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Pθ0,nΠ(Wn|Xn)≤
⌊n/2⌋

∑
k=kn

(
n
k

)2

(1−µn)
2k(n−k)

≤
n

∑
k=2kn

(
2n
k

)
(1−µn)

k(n−k/2) ≤
∞

∑
k=2kn

1
k!
(2n)k(1−µn)

kn/2

≤
(
2n(1−µn)

n/2
)2kn

(2kn)!
e2n(1−µn)

n/2
.

We then see that,

Pθ0,nΠ(Wn|Xn)≤ 1√
4πkn

(
n(1−µn)

n/2

kn

)2kn

e2kn+2n(1−µn)
n/2

≤ 1√
4πkn

(
n(1−µn)

n/2

kn
e1+n(1−µn)

n/2/kn

)2kn

≤ n(1−µn)
n/2

kn
e1+n(1−µn)

n/2/kn

which converges to zero as n→ ∞.

Example 11.3.5. Note that as pn,qn = O(n−1) = o(1), we may expand,

√
pn−
√

qn =
1

2
√

1
2 (pn +qn)

(pn−qn)+O(|pn−qn|2).

which means that,

µn = (
√

pn−
√

qn)
2 +O(n−2) =

(pn−qn)
2

2(pn +qn)
+O(n−2)

Assuming only that n(pn− qn)
2 > 2(pn + qn), as in [68, 69], we would arrive at

the conclusion that nµn > 1 + O(n−1), which is insufficient in the proof of the-
orem 11.3.4. Note that a non-divergent choice kn = O(1) forces us back into the
Chernoff-Hellinger phase where exact recovery is possible.

Corollary 11.3.6. Under the conditions of theorem 11.3.4 with (pn) and (qn) such
that,

n
(

pn +qn−2pn qn−2
√

(pn(1− pn)qn(1−qn))
)
→ ∞, (11.15)

as n→ ∞, posteriors recover θ0,n partially,

Π
(

k(θn,θ0,n)≥ βn
∣∣ Xn ) P0−→0,

for any fraction β ∈ (0, 1
2 ), which implies that the posterior recovers θ0,n almost-

exactly.
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Proof. Let β ∈ (0, 1
2 ) be given. Follow the proof of theorem 11.3.4 with kn = βn

and note that,

Pθ0,nΠ
(

k(θn,θ0,n)≥ βn
∣∣ Xn )≤ 1

β
(1−µn)

n/2e1+β−1(1−µn)
n/2

.

Due to eq. (11.15),

(1−µn)
n/2 =

(
1− pn−qn +2pn qn +2

√
(pn(1− pn)qn(1−qn))

)n/2→ 0,

so Pθ0,nΠ(k(θn,θ0,n)≥ βn
∣∣Xn)→ 0. For almost-exact recovery, let βm ↓ 0 be given;

if we let m(n) go to infinity slowly enough, posterior convergence continues to hold
with β equal to βm(n).

The condition that nµn→∞ is not just sufficient for almost-exact posterior recovery;
as said [208, proposition 2.10], it is also necessary for any form of almost-exact
recovery. A somewhat provocative way of re-phrasing this, is as follows.

Corollary 11.3.7. If there exist any estimators θ̂n : Xn→Θn that recover the class
assignment almost exactly, then posteriors with uniform priors also recover the
class assignment almost-exactly.

The latter result is encouraging to the Bayesian and to the frequentist who use
Bayesian methods in this model and in models like it, e.g. the stochastic block
model.

11.4 Existence of suitable tests

Given n ≥ 1 and two class assignment vectors θ0,n,θn ∈ Θn, we are interested in
calculation of the likelihood ratio dPθ ,n/dPθ0,n, because it determines testing power
as well as the various forms of remote contiguity that play a role.

Choose representations θ ′0 of θ0 and θ ′ of θ so that k′(θ ′0,θ
′) = k(θ0,θ), where

k and k′ are as in section 11.3. Recall that, Zn(θ
′
0)⊂ {1, . . . ,2n} is class zero and the

complement Zc
n(θ
′
0) class one. For the sake of presentation (in figure 11.1 below), re-

label the vertices such that Z(θ ′0) = {1, . . . ,n} and Zc(θ ′0) = {n+1, . . . ,2n}. In the
case n = 4, figure 11.1 shows edge probabilities in the familiar block arrangement.

Recall that the likelihood under θ0 is given by,

pθ0,n(X
n) = ∏

i< j
Qi, j(θ0)

Xi j(1−Qi, j(θ0))
1−Xi j .

If we assume that θ ′0,n and θ ′n differ by k pair-exchanges among respective members
of the zero- and one-classes, then a look at figure 11.1 reveals that the likelihood-
ratio depends only on the edges for which exactly one of its end-points changes
class. Define,
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Z(θ ′0,n)

Zc(θ ′0,n)

Z(θ ′0,n) Zc(θ ′0,n)

Z(θ ′n)

Zc(θ ′n)

Z(θ ′n) Zc(θ ′n)

Fig. 11.1 Class assignments and edge probabilitites according to θ ′0,n and
to θ ′n for n = 4 and k = 1. Vertex sets Z(·) and Zc(·) correspond to zero-
and one-classes for the given class assignment. Dark squares correspond
to edges that occur with (within-class) probability pn, and light squares to
edges that occur with (between-class) probability qn.

An = {(i, j) ∈ {1, . . . ,2n} : i < j, θ
′
0,n,i = θ

′
0,n, j, θ

′
n,i ̸= θ

′
n, j},

Bn = {(i, j) ∈ {1, . . . ,2n} : i < j, θ
′
0,n,i ̸= θ

′
0,n, j, θ

′
n,i = θ

′
n, j}.

Also define,

(Sn,Tn) :=
(
∑{Xi j : (i, j) ∈ An},∑{Xi j : (i, j) ∈ Bn}

)
,

and note that the likelihood ratio can be written as,

pθ ,n

pθ0,n
(Xn) =

(
1− pn

pn

qn

1−qn

)Sn−Tn

(11.16)

where,

(Sn,Tn)∼

{
Bin(2k(n− k), pn)×Bin(2k(n− k),qn), if Xn ∼ Pθ0,n,

Bin(2k(n− k),qn)×Bin(2k(n− k), pn), if Xn ∼ Pθ ,n.
(11.17)

Based on that, we derive the following lemma.

Lemma 11.4.1. Let n≥ 1, θ0,n,θn ∈Θn be given. Assume that θ0,n and θn differ by
k pair-exchanges. Then there exists a test function φn : Xn→ [0,1] such that,

Pθ0,nφn(Xn)+Pθ ,n(1−φn(Xn))≤ an,k,

with testing power,

an,k =
(
1− pn−qn +2pn qn +2

√
pn(1− pn)

√
qn(1−qn))

)2k(n−k)
.

Proof. The likelihood ratio test φn(Xn) has testing power bounded by the so-called
Hellinger transform,



368 11 Application: community detection in the planted bi-section model

Pθ0,nφn(Xn)+Pθ ,n(1−φn(Xn))≤ inf
0≤α≤1

Pθ0,n

( pθ ,n

pθ0,n
(Xn)

)α

,

(see, e.g. [187] and proposition 2.6 in [163]). Using α = 1/2 (which is the mini-
mum), we find that,

Pθ0,n

(
pθ ,n

pθ0,n
(Xn)

) 1
2
= Pθ0,n

(
pn

1− pn

1−qn

qn

) 1
2 (Tn−Sn)

= Pe
1
2 λnSn Pe−

1
2 λnTn

where λn := log(1− pn)− log(pn) + log(qn)− log(1− qn) and (Sn,Tn) are dis-
tributed binomially, as in the first case of (11.17). Using the moment-generating
function of the binomial distribution, we conclude that,

Pθ0,n

(
pθ ,n

pθ0,n
(Xn)

)1/2

=

((
1− pn + pn

(1− pn

pn

qn

1−qn

)1/2)
×
(

1−qn +qn

( pn

1− pn

1−qn

qn

)1/2))2k(n−k)

=

((
(1− pn)+ p1/2

n q1/2
n

(1− pn

1−qn

)1/2)
×
(
(1−qn)+ p1/2

n q1/2
n

( 1−qn

1− pn

)1/2))2k(n−k)

=
(
(1− pn)(1−qn)+2

(
pnqn(1− pn)(1−qn)

)1/2
+ pnqn

)2k(n−k)

which proves the assertion.

11.5 Uncertainty quantification

The most immediate results on uncertainty quantification are obtained with the help
of the results in the previous section: if we know that the sequences (pn) and (qn)
satisfy requirements like (11.8) or (11.13), so that exact or almost-exact recovery is
guaranteed, then a consistent sequence of confidence sets is easily constructed from
credible sets, as shown in subsection 11.5.1 and the sizes of these credible sets as
well as the sizes of associated confidence sets are controlled. If the sequences (pn)
and (qn) are unknown, or if we require explicit confidence levels, confidence sets
can still be constructed from credible sets under conditions requiring that credible
levels grow to one quickly enough. Enlargement of credible sets may be used to
mitigate this condition, whenever we are close to the Erdős-Rényi submodel, as
discussed in subsection 11.5.2.
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Regarding the sizes of credible sets, the most natural way to compile a minimal-
order credible set En(Xn) in a discrete space like Θn, is to calculate the posterior
weights Π({θn}|Xn) of all θn ∈Θn, order Θn by decreasing posterior weight into
a finite sequence {θn,1,θn,2, . . . ,θn,|Θn|} and define En(Xn) = {θn,1, . . . ,θn,m}, for
the smallest m≥ 1 such that Π(En(Xn)|Xn) is greater than or equal to the required
credible level. To provide guarantees regarding the sizes of credible sets, one would
like to show that these En(Xn) are of an order that is upper bounded with high
probability. (Although it is not so clear what the upper bound should be, ideally.)

Here we shall follow a different path based on the smallest number k(θn,ηn) of
pair-exchanges between two representations θ ′n and η ′n in Θ ′n of θn and ηn respec-
tively, see (11.4). The map k : Θn×Θn → {0,1, . . . ,⌊n/2⌋} is interpreted in a role
similar to that of a metric on larger parameter spaces: the diameter diamn(C) of a
subset C ⊂Θn is,

diamn(C) = max
{

k(θn,ηn) : θn,ηn ∈C
}
.

by definition.

11.5.1 Posterior recovery and confidence sets

If the posteriors concentrate amounts of mass on {θ0,n} arbitrarily close to one with
growing n, then a sequence of credible sets of a certain, fixed level contains θ0,n for
large enough n. If such posterior concentration occurs with high Pθ0,n-probability,
then the sequence of credible sets is also an asymptotically consistent sequence of
confidence sets.

Theorem 11.5.1. Let cn ∈ [0,1] be given, with cn > ε > 0 for large enough n. Sup-
pose that the posterior recovers the communities exactly,

Π
(

θ = θ0,n
∣∣ Xn ) Pθ0,n−−−→1. (11.18)

Then any sequence (Dn) of (PΠ
n -almost-sure) credible sets of levels cn satisfies,

Pθ0,n
(

θ0,n ∈ Dn(Xn)
)
→ 1,

i.e. (Dn) is a consistent sequence of confidence sets. Credible sets of minimal or-
der/diameter equal {θ0} with high Pθ0,n -probability.

Proof. Note that with uniform priors Πn, Pθ0,n ≪ PΠ
n for all n ≥ 1, so that PΠ

n -
almost-surely defined credible sets Dn of credible level at least ε , also satisfy,

Pθ0,n
(

Π(Dn(Xn)|Xn)≥ ε
)
= 1.

So if, in addition,
Pθ0,n

(
Π({θ0,n}|Xn)> 1− ε

)
→ 1,
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then θ0,n ∈ Dn(Xn) with high Pθ0,n-probability. Since all posterior mass is concen-
trated at θ0,n with high probability, the {θ0,n} form a sequence of unique credible
sets of minimal order (or minimal diameter kn = 0) with confidence levels greater
than ε > 0 for large enough n.

In the Kesten-Stigum phase, enlargement of credible sets is sufficient to obtain con-
fidence sets. Recall the definition of the Vn,k(θn) in (11.5) (with θ0,n replaced by
θn). Given some fixed underlying θ0,n ∈Θn, we write Vn,k for Vn,k(θ0,n). Making a
certain choice for the upper bounds kn ≥ 1, we arrive at,

Bn(θn) =
kn⋃

k=0

Vn,k(θn), (11.19)

for every n ≥ 1 and θn ∈ Θn. Similar as for Vn,k we write Bn for Bn(θ0,n). Given
a subset Dn of Θn, the set Cn ⊂ Θn associated with Dn under Bn(θn) (see defini-
tion 7.7.5) then is the set of θn ∈Θn whose k-distance from some element of Dn is
at most kn,

Cn = {θn ∈Θn : ∃ηn∈Dn , k(ηn,θn)≤ kn},

the kn-enlargement of Dn. If we know that the sequences (pn) and (qn) satisfy re-
quirement (11.13), posterior concentration occurs around {θ0,n} in ‘balls’ of diam-
eters 2kn with growing n, and there exist credible sets D′n of levels greater than 1/2
and of diameters 2kn centred on θ0,n. The credible sets Dn of minimal diameters of
any level greater than 1/2 must intersect Dn. Then the kn-enlargements Cn of the Dn
contain θ0,n.

Theorem 11.5.2. Suppose that the posterior recovers communities with error rate
(kn),

Π
(

k(θn,θ0,n)≤ kn
∣∣ Xn ) Pθ0,n−−−→1.

Let cn ∈ [0,1] be given, with cn > ε > 0 for large enough n and let (Dn) denote a
sequence of (PΠ

n -almost-sure) credible sets of levels cn. Then the kn-enlargements
Cn(Xn) of the Dn(Xn) satisfy,

Pθ0,n
(

θ0,n ∈Cn(Xn)
)
→ 1,

i.e. the kn-enlargements (Cn) form a consistent sequence of confidence sets. If the
sets Dn have minimal diameters, then diamn(Dn(Xn))≤ 2kn and diamn(Cn(Xn))≤
4kn with high Pθ0,n-probability.

Proof. As in the proof of theorem 11.5.1, PΠ
n -almost-surely defined credible sets

Dn of credible level at least cn also satisfy,

Pθ0,n
(

Π(Dn(Xn)|Xn)≥ cn
)
= 1.

Convergence of the posterior implies that with growing n, the balls Bn(θ0,n) of radii
kn centred on θ0,n contain an arbitrarily large fraction of the total posterior mass, so



11.5 Uncertainty quantification 371

assuming that n is large enough, cn > ε > 0 and Π(Bn(θ0,n)|Xn)> 1− ε with high
Pθ0,n -probability. Conclude that,

Bn(θ0,n)∩Dn(Xn) ̸=∅,

with high Pθ0,n -probability, which amounts to asymptotic coverage of θ0,n for the
kn-enlargement Cn(Xn) of Dn(Xn). Now fix n ≥ 1. For every θn ∈ Θn and every
xn ∈Xn, let kn(θn,xn) denote the minimal radius of balls B in Θn centred on θn of
posterior mass Π(B|xn)≥ cn. Let θ̂n(xn) ∈Θn be such that,

kn(θ̂n(xn)) = min
{

kn(θn,xn) : θn ∈Θn
}
,

i.e. the centre point of a smallest level-cn credible ball in Θn. To conclude, note
kn(θ̂n(Xn))≤ kn with high Pθ0,n -probability and if the Dn(Xn) are of minimal diam-
eters, then they are contained in kn(θ̂n(Xn))-balls centred on some θ̂n(Xn).

11.5.2 Confidence sets directly from credible sets

To use theorems 11.5.1 or 11.5.2, the statistician needs to know that the se-
quences (pn) and (qn) satisfy (11.8) or (11.13), basically to satisfy the testing con-
dition (11.7). Particularly, condition (11.15) is not strong enough to apply theo-
rem 11.5.2. But even if that knowledge is not available and testing cannot serve as a
condition, the use of credible sets as confidence sets remains valid, as long as cred-
ible levels grow to one fast enough. The following proposition also provides lower
bounds for confidence levels of credible sets. (Write bn = |Θn|−1 = ( 1

2

(2n
n

)
)−1.)

Proposition 11.5.3. Let θ0,n in Θn with uniform priors Πn, n ≥ 1, be given and let
Dn be a sequence of credible sets, such that,

Π(Dn(Xn)|Xn)≥ 1−an,

for some sequence (an) with an = o(bn). Then,

Pθ0,n
(

θ0 ∈ Dn(Xn)
)
≥ 1−b−1

n an.

Proof. If θ0,n ̸∈ Dn(Xn) then Π({θ0,n}|Xn)≤ an, PΠ
n -almost-surely. Then,

Pθ0,n
(
θ0 ∈Θ \Dn(Xn)

)
= PΠ |{θ0}

n
(
θ0 ∈Θ \Dn(Xn)

)
= b−1

n

∫
{θ0,n}

Pθ ,n
(
θ0 ∈Θ \Dn(Xn)

)
dΠn(θ)

= b−1
n PΠ

n
(
1{θ0 ∈Θn \Dn(Xn)}Π({θ0,n}|Xn)

)
≤ b−1

n an,

by Bayes’s Rule (A.4).
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Note that only the bn is specific to the planted bi-section model; the proposition as
stated holds with any discrete (Θn) with a uniform prior.

But as we have seen in chapter 7, remote contiguity enables conversion of se-
quences of credible sets to asymptotic confidence sets more generally, as in theo-
rem 7.7.6. Until this point, theorem 7.7.6’s sets Bn are simply chosen as singletons,

Bn(θn) = {θn},

for every n ≥ 1 and every θn ∈Θn, so that the confidence sets Cn associated with
any credible sets Dn ⊂ Θn under Bn are simply equal to Dn. In that case, Pθ0,n ◁

c−1
n PΠ |B(θ0)

n for any rate (cn), cn ↓ 0, so all sequences an = o(bn) are permitted. Since
the prior mass in Bn(θ0,n) is fixed, theorem 7.7.6 says that, if we have a sequence of
credible sets Dn(Xn)⊂Θn of high enough credible levels 1−an, then these Dn(Xn)
are also asymptotically consistent confidence sets (see proposition 11.5.3).

Next we consider bigger sets Bn = Bn(θ0,n) like in (11.19); there are two compet-
ing influences when enlarging: on the one hand, the prior masses bn = Πn(Bn(θ0,n))
become larger, relaxing the lower bounds for credible levels. On the other hand, en-
largement leads to likelihood ratios with random fluctuations that take them further
away from one, thus interfering with notions like contiguity and remote contigu-
ity. Whether proposition 11.5.3 is useful and whether enlargement of credible sets
helps, depends on the sequences (pn) and (qn). We shall consider the ‘statistical
phase’ where distinctions between within-class and between-class edges become
less-and-less pronounced:

pn−qn = o
(
n−1), (11.20)

while satisfying also the condition that,

p1/2
n (1− pn)

1/2 +q1/2
n (1−qn)

1/2 = o
(
n|pn−qn|

)
. (11.21)

In this regime, pn,qn→ 0 or pn,qn→ 1. If pn,qn→ 0 as in the sparse phases, (11.21)
amounts to,

n(p1/2
n −q1/2

n )→ ∞, (11.22)

so differences between pn and qn may not converge to zero too fast. (Note however
that extreme sparsity levels of order pn,qn ∝ n−γ with 1 < γ < 2 are allowed.) For
the following lemma we define,

ρn = min
{(1− pn

pn

qn

1−qn

)
,
( pn

1− pn

1−qn

qn

)}
= e−|λn|.

where λn := log(1− pn)− log(pn)+ log(qn)− log(1−qn), and,

αn =
∫

2k(θ0,n,θn)(n− k(θ0,n,θn))dΠn(θn|Bn) =
1
|Bn|

kn

∑
k=0

(
n
k

)2

2k(n− k)

with the following rate for remote contiguity (see definition 7.2.1):
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dn = ρ
Cαn|pn−qn|
n , (11.23)

for some C > 1.

Lemma 11.5.4. Let (kn) be given and assume that (11.21) holds. Then for any θ0,n ∈
Θn,

Pθ0,n ◁d−1
n PΠ |B

n ,

with Bn = Bn(θ0,n) like in (11.19).

Proof. Let (kn) and θ0,n ∈Θn be given. We denote Pn = PΠ |B
n , Qn = Pθ0,n and apply

Jensen’s inequality (see, proposition B.4.8) to obtain,

dPn

dQn
(Xn) =

1
|Bn| ∑

θn∈Bn

(
1− pn

pn

qn

1−qn

)Sn(θn)−Tn(θn)

≥ exp
(

λn

|Bn| ∑
θn∈Bn

(
Sn(θn)−Tn(θn)

))
where (Sn(θn),Tn(θn)) is distributed as in (11.17). By invariance of the sum under
permutations of the vertices, we re-sum as follows for any k ≥ 1,

1
|Vn,k| ∑

θn∈Vn,k

Sn(θn) =
2k(n− k)
n(n−1)

Sn,
1
|Vn,k| ∑

θn∈Vn,k

Tn(θn) =
2k(n− k)

n2 Tn,

where, with the notation Zn = Z(θ ′0,n)⊂{1, . . . ,2n}, for a certain representation θ ′0,n
of θ0,n, for the zero elements of θ ′0,n,

Sn = ∑
i, j∈Zn

Xi j + ∑
i, j∈Zc

n

Xi j ∼ Bin(n(n−1), pn),

Tn = ∑
i∈Zn, j∈Zc

Xi j + ∑
i∈Zc

n, j∈Z
Xi j ∼ Bin(n2,qn)

which gives us the upper bound,

dPn

dQn
(Xn)≥ ρ

∑
kn
k=0 2k(n−k)

|Vn,k |
|Bn | |S̄n−T̄n|

n = ρ
αn|S̄n−T̄n|
n ,

where S̄n = Sn/(n(n−1)) and T̄n = Tn/n2. By the central limit theorem,(
n(S̄n− pn)

p1/2
n (1− pn)1/2

,
n(T̄n−qn)

q1/2
n (1−qn)1/2

)
Qn-w.−−−→N(0,1)×N(0,1),

which implies that for every ε > 0 there exists an M > 0 such that,

sup
n≥1

Qn

(
n(S̄n− pn)

p1/2
n (1− pn)1/2

∨ n(T̄n−qn)

q1/2
n (1−qn)1/2

> M

)
< ε
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Conclude that,

sup
n≥1

Qn

(( dPn

dQn

)−1
≤ ρ

−αn

(
M
n (p1/2

n (1−pn)
1/2+q1/2

n (1−qn)
1/2)+|pn−qn|

)
n

)
≥ 1− ε.

Note that the term in the exponent proportional to M is dominated by |pn− qn| by
(11.21). Hence for every C > 1 and every ε > 0,

Qn

(( dPn

dQn
(Xn)

)−1
≤ ρ

−Cαn|pn−qn|
n

)
≥ 1− ε,

for large enough n. Based on Prokhorov’s theorem, conclude that Pθ0,n ◁d−1
n PΠ |B

n .

This amounts to a proof for the following theorem (immediate from theorem 7.7.6).

Theorem 11.5.5. Let (kn) be given and assume that (pn) and (qn) satisfy (11.20)
and (11.21). Let θ0,n in Θn with uniform priors Πn be given and let Dn be a sequence
of credible sets of credible levels 1−an, for some sequence (an) such that b−1

n an =
o(dn). Then the sets Cn, associated with Dn under Bn as in (11.19) satisfy,

Pθ0,n
(

θ0 ∈Cn(Xn)
)
→ 1,

i.e. the Cn are asymptotic confidence sets.

Consider the possible choices for (an) if we assume kn = β n for some fixed
β ∈ (0, 1

2 ) (as in the proof of corollary 11.3.6), which leads to the type of expo-
nential correction factor in the prior mass sequence bn that is required to move the
restriction on the credible levels 1−an substantially. First of all, Stirling’s approx-
imation gives rise to the following approximate lower bound on the factor between
prior mass and prior mass without enlargement:

Πn(Bn)

Πn({θ0,n}))
=

kn

∑
k=0

(
n
k

)2

≥
(

n
kn

)2

≥ 1
2πn

1
β (1−β )

f (β )n,

where f : (0, 1
2 )→ (1,4) is given by,

f (β ) = (1−β )−2(1−β )
β
−2β .

Approximating αn ≈ 2kn(n− kn) for large n and using (11.20), we also have,

dn = ρ
Cαn|pn−qn|
n ≈ ρ

2Cn2β (1−β )|pn−qn|
n = e−|λn|o(n).

So if we assume that λn = O(1), dn is sub-exponential and does not play a role for
the improvement factor.

Conclude as follows: (let an = o(|Θn|−1) ≈ o(4−n) denote the rates appropriate
in proposition 11.5.3 and assume λn = O(1)) if we have credible sets Dn(Xn) of
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credible levels 1− an f (β )n(1+o(1)), then the sequence of enlarged confidence sets
(Cn(Xn)), associated with Dn(Xn) through Bn with kn = βn, covers the true value
of the class assignment parameter with high probability. Credible levels that had to
be of order 1−an ≈ 1−o(4−n) previously, can be of approximate order 1−o(c−n)
for any 1 < c < 4 by enlargement by Bn if conditions (11.20) and (11.21) hold; the
closer 0 < β < 1

2 is to 1
2 , the closer c is to 1.





Appendix A
Notation, definitions and conventions

Because we take the perspective of a frequentist using Bayesian methods, we are
obliged to demonstrate that Bayesian definitions continue to make sense under the
assumptions that the data X is distributed according to a true, underlying P0.

Remark A.0.1. We assume given for every n ≥ 1, a measurable (sample) space
(Xn,Bn) and random sample Xn ∈ Xn, with a model Pn of probability distri-
butions Pn : Bn → [0,1]. It is also assumed that there exists an n-independent
parameter space Θ with a Hausdorff, completely regular topology T and asso-
ciated Borel σ -algebra G , and, for every n ≥ 1, a bijective model parametriza-
tion Θ →Pn : θ 7→ Pθ ,n such that for every n ≥ 1 and every A ∈ Bn, the map
Θ → [0,1] : θ 7→ Pθ ,n(A) is measurable. Any prior Π on Θ is assumed to be a Borel
probability measure Π : G → [0,1] and can vary with the sample-size n. (Note: in
i.i.d. setting, the parameter space Θ is P1, θ is the single-observation distribution
P and θ 7→ Pθ ,n is P 7→ Pn.) As frequentists, we assume that there exists a ‘true,
underlying distribution for the data; in this case, that means that for every n ≥ 1,
there exists a distribution P0,n from which the n-th sample Xn is drawn.

Often one assumes that the model is well-specified: that there exists a θ0 ∈ Θ

such that P0,n = Pθ0,n for all n≥ 1. We think of Θ as a topological space because we
want to discuss estimation as a procedure of sequential, stochastic approximation
of and convergence to such a ‘true parameter value θ0. In theorem 7.1.4 and defi-
nition 6.1.1 we assume, in addition, that the observations Xn are coupled, i.e. there
exists a probability space (Ω ,F ,P0) and random variables Xn : Ω →Xn such that
P0((Xn)−1(A)) = P0,n(Xn ∈ A) for all n≥ 1 and A ∈Bn.

Definition A.0.2. Given n,m ≥ 1 and a prior probability measure Πn : G → [0,1],
define the n-th prior predictive distribution on Xm as follows:

PΠn
m (A) =

∫
Θ

Pθ ,m(A)dΠn(θ), (A.1)

for all A ∈Bm. If the prior is replaced by the posterior, the above defines the n-th
posterior predictive distribution on Xm,
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PΠn|Xn

m (A) =
∫

Θ

Pθ ,m(A)dΠ(θ |Xn), (A.2)

for all A ∈Bm. For any Bn ∈ G with Πn(Bn) > 0, define also the n-th local prior
predictive distribution on Xm,

PΠn|Bn
m (A) =

1
Πn(Bn)

∫
Bn

Pθ ,m(A)dΠn(θ), (A.3)

as the predictive distribution on Xm that results from the prior Πn when conditioned
on Bn. If m is not mentioned explicitly, it is assumed equal to n.

The prior predictive distribution PΠn
n is the marginal distribution for Xn in the

Bayesian perspective that considers parameter and sample jointly (θ ,Xn)∈Θ×Xn
as the random quantity of interest.

Definition A.0.3. Given n ≥ 1, a (version of) the posterior is any map Π( · |Xn =
·) : G ×Xn→ [0,1] such that,

(i) for B ∈ G , the map Xn→ [0,1] : xn 7→Π(B|Xn = xn) is Bn-measurable,
(ii) for all A ∈Bn and V ∈ G ,∫

A
Π(V |Xn)dPΠn

n =
∫

V
Pθ ,n(A)dΠn(θ). (A.4)

Bayes’s Rule is expressed through equality (A.4) and is sometimes referred to as
a ‘disintegration’ (of the joint distribution of (θ ,Xn)). If the posterior is a Markov
kernel, it is a PΠn

n -almost-surely well-defined probability measure on (Θ ,G ). But
it does not follow from the definition above that a version of the posterior actually
exists as a regular conditional probability measure. Under mild extra conditions,
regularity of the posterior can be guaranteed: for example, if sample space and pa-
rameter space are Polish, the posterior is regular; if the model Pn is dominated
(denote the density of Pθ ,n by pθ ,n), the fraction of integrated likelihoods,

Π(V |Xn) =
∫

V
pθ ,n(Xn)dΠn(θ)

/ ∫
Θ

pθ ,n(Xn)dΠn(θ), (A.5)

for V ∈ G , n ≥ 1 defines a regular version of the posterior distribution. (Note also
that there is no room in definition (A.4) for Xn-dependence of the prior, so ‘empirical
Bayes’ methods must be based on data Y n independent of Xn, i.e. sample-splitting.)

Remark A.0.4. As a consequence of the frequentist assumption that Xn ∼ P0,n for
all n ≥ 1, the PΠn

n -almost-sure definition (A.4) of the posterior Π(V |Xn) does not
make sense automatically: null-sets of PΠn

n on which the definition of Π( · |Xn) is ill-
determined, may not be null-sets of P0,n. To prevent this, we impose the domination
condition,

P0,n≪ PΠn
n , (A.6)

for every n≥ 1.
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To understand the reason for (A.6) in a perhaps more familiar way, consider a dom-
inated model and assume that for certain n, (A.6) is not satisfied. Then, using (A.1),
we find,

P0,n

(∫
pθ ,n(Xn)dΠn(θ) = 0

)
> 0,

so the denominator in (A.5) evaluates to zero with non-zero P0,n-probability. A suf-
ficient condition for (A.6) is obtained with the help of the topologies Tn (see also
remark 3.6 (2) in Strasser (1985) [248]).

Definition A.0.5. For all n≥ 1, let Fn denote the class of all bounded, Bn-measurable
f : Xn → R. The topology Tn is the initial topology on Pn for the functions
{P 7→ P f : f ∈ Fn}.
If we model single-observation distributions P∈P for an i.i.d. sample, the topology
Tn on Pn = Pn induces a topology on P (which we also denote by Tn) for each
n ≥ 1. The union T∞ = ∪nTn is an inverse-limit topology that allows formulation
of conditions for the existence of consistent estimates that are not only sufficient,
but also necessary [181], offering a precise perspective on what is estimable and
what is not in i.i.d. context. The associated strong topology is that generated by
total variation (or, equivalently, the Hellinger metric).

For more on these topologies, the reader is referred to Strasser (1985) [248] and
to Le Cam (1986) [187]. We note explicitly the following fact, which is a direct
consequence of Hoeffding’s inequality.

Proposition A.0.6. (Uniform Tn-tests)
Consider a model P of single-observation distributions P for i.i.d. samples (X1,X2, . . . ,Xn)∼
Pn, (n≥ 1). Let m≥ 1, ε > 0, P0 ∈P and a measurable f : X m→ [0,1] be given.
Define B =

{
P ∈P : |(Pm−Pm

0 ) f |< ε
}

, and V =
{

P ∈P : |(Pm−Pm
0 ) f | ≥ 2ε

}
.

There exist a uniform test sequence (φn) such that,

sup
P∈B

Pn
φn ≤ e−nD, sup

Q∈V
Qn(1−φn)≤ e−nD,

for some D > 0.

Proof. The proof is an application of Hoeffding’s inequality for the sum ∑
n
i=1 f (Xi)

and is left to the reader.

The topologies Tn also play a role for condition (A.6).

Proposition A.0.7. Let (Πn) be Borel priors on the Hausdorff uniform spaces
(Pn,Tn). For any n≥ 1, if P0,n lies in the Tn-support of Πn, then P0,n≪ PΠn

n .

Proof. Let n≥ 1 be given. For any A ∈Bn and any U ′ ⊂Θ such that Πn(U ′)> 0,

P0,n(A)≤
∫

Pθ ,n(A)dΠn(θ |U ′)+ sup
θ∈U ′
|Pθ ,n(A)−P0,n(A)|.

Let A ∈Bn be a null-set of PΠn
n ; since Πn(U ′) > 0,

∫
Pθ ,n(A)dΠn(θ |U ′) = 0. For

some ε > 0, take U ′ equal to the Tn-basis element {θ ∈Θ : |Pθ ,n(A)−Pθ0,n(A)|< ε}
to conclude that Pθ0,n(A)< ε for all ε > 0.
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In many situations, priors are Borel for the Hellinger topology, so it is useful to ob-
serve that the Hellinger support of Πn in Pn is always contained in the Tn-support.

Notation and conventions

l.h.s. and r.h.s. refer to left- and right-hand sides respectively. For given probabil-
ity measures P,Q on a measurable space (Ω ,F ), we define the Radon-Nikodym
derivative dP/dQ : Ω → [0,∞), P-almost-surely, referring only to the Q-dominated
component of P, following [187]. We also define (dP/dQ)−1 : Ω → (0,∞] : ω 7→
1/(dP/dQ(ω)), Q-almost-surely. Given a σ -finite measure µ that dominates both
P and Q (e.g. µ = P+Q), denote dP/dµ = q and dQ/dµ = p. Then the measurable
map p/q1{q > 0} : Ω → [0,∞) is a µ-almost-everywhere version of dP/dQ, and
q/p1{q > 0} : Ω → [0,∞] of (dP/dQ)−1. Define total-variational and Hellinger
distances by ∥P−Q∥= supA |P(A)−Q(A)| and H(P,Q)2 = 1/2

∫
(p1/2−q1/2)2 dµ ,

respectively. Given random variables Zn ∼ Pn, weak convergence to a random vari-
able Z is denoted by Zn

Pn-w.−−−→Z, convergence in probability by Zn
Pn−→Z and almost-

sure convergence (with coupling P∞) by Zn
P∞-a.s.−−−−→Z. The integral of a real-valued,

integrable random variable X with respect to a probability measure P is denoted
PX , while integrals over the model with respect to priors and posteriors are always
written out in Leibniz’s notation. For any subset B of a topological space, B̄ denotes
the closure, B̊ the interior and ∂B the boundary. Given ε > 0 and a metric space
(Θ ,d), the covering number N(ε,Θ ,d) ∈ N∪{∞} is the minimal cardinality of a
cover of Θ by d-balls of radius ε . Given real-valued random variables X1, . . . ,Xn,
the first order statistic is X(1) = min1≤i≤n Xi. The Hellinger diameter of a model sub-
set C is denoted diamH(C) and the Euclidean norm of a vector θ ∈ Rn is denoted
∥θ∥2,n. The cardinality of a set B is denoted N(B) (or |B|). The space of all bounded,
real-valued, continuous maps defined on a Hausdorff completely regular space X
is denoted Cb(X ).



Appendix B
Measure theory

In this appendix we collect some important notions from measure theory. The goal
is not a self-contained presentation but rather to establish the basic definitions and
theorems from the theory for reference in the main text. As such, the presentation
omits certain existence theorems and many of the proofs of other theorems (although
references are given). The focus is strongly on bounded (e.g. probability-)measures,
in places at the expense of generality. Some background in elementary set-theory
and analysis is required. As comprehensive references and sources for all proofs we
note Kingman and Taylor (1966) [153], Dudley (1989) [83] and Billingsley (1986)
[31], among many others.

B.1 Sets and sigma-algebras

It is assumed that the reader is familiar with the following notions in set theory: set,
subset, empty set, union, intersection, complement, symmetric difference and dis-
jointness. Let Ω be a set. The powerset 2Ω is the collection of all subsets of Ω . A
partition of Ω is an A ⊂ sΩ such that Ω =∪A∈A A and A∩A′=∅ for any A,A′ ∈A
such that A ̸= A′. Let (An) be a sequence of subsets of Ω . We say that (An) is mono-
tone decreasing (resp. monotone increasing) if An+1 ⊂ An (resp. An ⊂ An+1) for all
n ≥ 1. A monotone decreasing (resp. increasing) sequence (An) has a set-theoretic
limit limAn defined as ∩n≥1An (resp. ∪n≥1An). For any sequence of subsets (An),
the sequence (∪m≥nAm)n≥1 (resp. (∩m≥nAm)n≥1) is monotone decreasing (resp. in-
creasing) and, accordingly, for any sequence (An) we define

limsupAn = ∩n≥1∪m≥n Am, liminfAn = ∪n≥1∩m≥n Am.

The sequence (An) is said to converge, if limsupAn = liminfAn.

Definition B.1.1. Let Ω be a non-empty set. A non-empty collection R of subsets
of Ω is called a ring, if R has the following properties.

1. If A,B ∈R, then A∪B ∈R,
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2. If A,B ∈R, then A\B ∈R.

Note that any ring R contains ∅, and for any A,B ∈R, A∩B = A\ (A\B), so rings
are not only closed under finite unions, but also under finite intersections.

Definition B.1.2. Let Ω be a non-empty set. A non-empty collection F of subsets
of Ω is called a σ -algebra, if F has the following properties.

1. ∅ ∈F ,
2. If A ∈F , then Ω \A ∈F ,
3. If (An)⊂F , then ∪n≥1An ∈F .

Example B.1.3. Let X be a topological space. The collection R of all open sets in X
is a ring and so is the collection of all closed sets in X . Neither of these collections
is a σ -algebra. Namely, finite intersections and unions of open (resp. closed) sets
are open (resp. closed), but countable intersections of open sets are not necessarily
open, nor are countable unions of closed sets always closed.

Lemma B.1.4. If I is any set and Fi, (i ∈ I) are σ -algebra’s of subsets of a non-
empty set Ω , then ∩i∈IFi is also a σ -algebra.

Definition B.1.5. A measurable space (Ω ,F ) consists of a non-empty set Ω and a
σ -algebra F of subsets of Ω .

A subset A of a measurable space (Ω ,F ) is called measurable if A ∈ F . It can
be shown that a σ -algebra is a monotone class which means that if (An) ⊂F is a
monotone sequence, then limAn ∈F .

Definition B.1.6. Let Ω be a non-empty set and let C be a collection of subsets of
Ω . The σ -algebra generated by C , denoted σ(C ) is the smallest σ -algebra that
contains C . Then,

σ(C ) =
⋂{

Σ ⊂ 2Ω : C ⊂ Σ , Σ is a σ -algebra
}
.

Definition B.1.7. Let X be a topological space with topology T . The Borel σ -
algebra is the σ -algebra σ(T ) generated by the open (or closed) sets. The Borel
σ -algebra on X is denoted B(X ) (or simply B if it is clear what the underlying
space X is).

Example B.1.8. Let X = R and let R be the ring consisting of ∅ and all finite
unions of half-open intervals (a,b] with a,b∈R, a < b. Then R generates the Borel
σ -algebra B. Indeed, the same holds if we restrict to half-open intervals (a,b] with
rational end-points a,b ∈ Q. In that case the ring R has a countable number of
elements, and we say that B is countably generated.
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B.2 Measures

From here on, let (Ω ,F ) denote a measurable space. A set-function ν is any map-
ping F → R.

Definition B.2.1. A set-function ν : F →R is said to be (finitely) additive if, for any
k ≥ 1 and any A = {A1, . . . ,Ak} ⊂F such that Ai∩A j =∅ for all 1≤ i < j ≤ k,

ν

( k⋃
i=1

Ai

)
=

k

∑
i=1

ν(Ai). (B.1)

A set-function ν is said to be countably additive (or σ -additive) if, for any countable
A = {An : n≥ 1} ⊂F such that Ai∩A j =∅ for all i, j ≥ 1, i ̸= j:

ν

(⋃
i≥1

Ai

)
= ∑

i≥1
ν(Ai). (B.2)

Definition B.2.2. Given a measurable space (Ω ,F ), a set-function µ : F → R is
a signed measure if µ is countably additive and µ is a (positive) measure if µ is
countably additive and µ ≥ 0. A (signed) measure with a Borel σ -algebra for a
domain is called a (signed) Borel measure. If µ is a measure, (Ω ,F ,µ) is called a
measure space.

Whenever we refer to a measure, it is implied that the measure is positive; if a
measure is signed, this is mentioned explicitly. For the construction of measures,
the following theorem is instrumental.

Theorem B.2.3. (Carathéodory extension)
Let Ω be a non-empty set and let R be a ring of of subsets of Ω . Denote by F the
σ -algebra generated by R. If µ̂ : R → R is a measure on R (that is, if countable
additivity holds for any sequence of disjoint sets in R whose union lies in R), then
there exists a measure µ : F →R that extends µ̂ from R to F . If µ̂ is σ -finite, then
the extension µ is σ -finite and unique.

The Carathéodory extension is used to define a measure on a σ -algebra, by con-
structing it only on generating ring (where countable additivity is relatively easy to
verify) and then to infer existence of its (unique) extension to the full sigma-algebra.

Example B.2.4. Consider the real line R and the collection of all half-open intervals
of the form (a,b], for some a,b ∈ R with a < b. Taking all finite unions and com-
plements, we generate a ring R of subsets of R. It is easily seen that the σ -algebra
generated by R coincides with the Borel σ -algebra B for R (with its usual (norm)
topology). On R we may define, µ̂(∅) = 0,

µ̂
(
(a,b]

)
= b−a,
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extend µ̂ by finite additivity to all finite unions, and by µ̂(C) = ∞ for any comple-
ments C thereof. One verifies easily that the resulting set function µ̂ : R → [0,∞]
is positive, countably additive and σ -finite, and the Carathéodory extension guar-
antees existence of a unique positive, σ -finite Borel measure µ : B→ [0,∞] that is
usually called Lebesgue measure on R.

The extension theorem holds only for positive measures, but signed measures can
be defined like this as well, if we decompose them into positive and negative parts,
as per the following definition.

Definition B.2.5. Let (Y ,F ) be a measurable space. Given a signed measure
ν : F → R, the total-variation norm of ν is defined as follows. We decompose
ν into positive and negative parts ν = ν+− ν− uniquely, where ν+,ν− are posi-
tive measures (the so-called Hahn-Jordan decomposition). Then we define the total
variation measure as the positive measure |ν |= ν++ν− and assign ∥ν∥= |ν |(Y ).
The signed measure ν is said to be bounded if its total variation is finite. A signed
measure ν : F → R is said to be σ -finite if there exists a measurable countable
partition (An) of Ω such that |ν |(An) < ∞ for all n ≥ 1. A positive measure ν such
that ∥ν∥ = ν(Y ) = 1 is a probability measure. Then the triple (Y ,B,ν) is called
a probability space.

The Hann-Jordan decomposition adds that for any signed measure ν , there exist
A+,A− ∈B such that A+∩A− =∅, and ν+(B) = ν(B∩A+), ν−(B) =−ν(B∩A−),
for any B∈B. The map ν 7→ ∥ν∥ defines a norm on the linear space of all bounded,
signed measure and for any two probability measures P,Q, the total-variational dis-
tance (or total-variational metric) is defined as,

∥P−Q∥TV = sup
A∈F
|P(A)−Q(A)|= 1

2∥P−Q∥.

(Note the norm-like notation for this metric and the relative factor 2 which can lead
to confusion. A note of caution: for bounded, signed measures µ,ν , ∥µ −ν∥ does
not equal 2supA∈F |µ(A)−ν(A)| in general.) We also make frequent use of another
metric on spaces of probability measures, the Hellinger metric,

H(P,Q)2 = 1/2
∫
(p1/2−q1/2)2 dµ,

(where µ is any measure that dominates both P and Q, e.g. µ = P+Q.). The total
variational and Hellinger metrics generate the same metric topology on a space of
probability measures.

A null-set of a measure µ on (Y ,F ) is an A ∈ F such that µ(A) = 0. If a
property holds for all points in Y , except in a null-set A ⊂ Y of a measure µ ,
we say that the property holds (µ-)almost-everywhere (notation: µ-a.e.) or, if µ is
a probability measure, (µ-)almost-surely) (notation: µ-a.s.). For any two positive
measures µ and ν on (Y ,F ), we say that µ dominates ν (notation: ν ≪ µ), if
µ(A) = 0 implies ν(A) = 0 for all A ∈ F . We say that µ and ν are (mutually)
singular (notation: µ ⊥ ν), if there exists a measurable partition {A,B} of Y such
that µ(C) = 0 for any measurable C ⊂ B and ν(D) = 0 for any measurable D⊂ A.



B.2 Measures 385

Proposition B.2.6. Let (Ω ,F ) be a measurable space. The collection of all bounded
signed measures on F forms a linear space M (Ω ,F ) which is a Banach space for
the total variation norm. The linear subspace of all bounded positive measures on
F is denoted M+(Ω ,F ), and the space of all probability measures by M 1(Ω ,F ).

(See definition C.7.2 for the notion of a Banach space.) Observe the notational dif-
ference with the space of definition C.8.1. As a result of countable additivity, mea-
sures display a form of continuity expressed by the following theorem.

Theorem B.2.7. Let (Ω ,F ) be a measurable space with measure µ : F → [0,∞].
Then,

(i) for any monotone decreasing sequence (Fn) in F such that µ(Fn)< ∞ for some
n,

lim
n→∞

µ(Fn) = µ

( ∞⋂
n=1

Fn

)
, (B.3)

(ii) for any monotone increasing sequence (Gn) in F ,

lim
n→∞

µ(Gn) = µ

( ∞⋃
n=1

Gn

)
, (B.4)

Theorem B.2.7 is sometimes referred to as the continuity theorem for measures,
because if we view ∩nFn as the monotone limit limFn, (B.3) can be read as
limn µ(Fn) = µ(limn Fn), expressing continuity from below. Similarly, (B.4) ex-
presses continuity from above. Note that theorem B.2.7 does not guarantee con-
tinuity for arbitrary sequences in F . It should also be noted that theorem B.2.7 is
presented here in simplified form: the full theorem states that continuity from below
is equivalent to countable additivity of µ (for a more comprehensive formulation
and a proof of theorem B.2.7, see [153], theorem 3.2).

Example B.2.8. Let Ω be a discrete set and let F be the powerset 2Ω of Ω , i.e. F is
the collection of all subsets of Ω . The counting measure n : F → [0,∞] on (Ω ,F )
is defined simply to count the number n(F) of points in F ⊂ Ω . If Ω contains a
finite number of points, n is a bounded measure; if Ω contains a countably infinite
number of points, n is σ -finite. The counting measure is countably additive.

Example B.2.9. We consider R with any σ -algebra F (for example the power-set
2R), let x ∈ R be given and define the measure δx : F → [0,1] by,

δx(A) = 1{x ∈ A},

for any A ∈F . The probability measure δx is called the Dirac measure (or delta
measure, or atomic measure) degenerate at x and it concentrates all its mass in the
point x. Clearly, δx is bounded and countably additive. Convex combinations of
Dirac measures, i.e. measures of the form

P =
m

∑
j=1

p jδx j , (B.5)



386 B Measure theory

for some m ≥ 1 (where m = ∞ is permitted) with (p1, . . . , pm) ∈ Sm (see (1.4)) and
any x1, . . . ,xm ∈ R, can be used as a statistical model for an observation X that take
values in a discrete (but unknown) subset {x1, . . . ,xm} of R. The resulting model is
not dominated. For later reference, we introduce the set of all discrete probability
measures (or purely atomic probability measures) D(R) = {P : P = ∑

∞
j=1 p jδx j} for

sequences (x j)⊂ R and (p j)⊂ [0,1] such that ∑
∞
j=1 p j = 1.

Example B.2.10. In the context of i.i.d. samples of data X1, . . . ,Xn ∈X distributed
according to the product distribution Pn

0 , an obvious estimator for the single-
observation distribution P0 ∈M 1(X ,B) is the so-called empirical distribution,

Pn =
1
n

n

∑
i=1

δXi ,

which is of the form (B.5).

Theorem B.2.11. (Law of large numbers)
For any P0-integrable function f : X → R,

Pn f (X) =
1
n

n

∑
i=1

f (Xi)
P0-a.s.−−−−→P0 f (X).

So the sequence of estimators (Pn) converges in the Le Cam-Schwartz topology
(see definition C.9.5) to the true distribution of a single observation, almost-surely.
To study this convergence more closely, we consider the following theorem.

Theorem B.2.12. (Central limit theorem)
For every P0-square-integrable f : X → R

√
n
(
Pn f (X)−P0 f (X)

) P0-w.−−−→N(0,σ2( f )),

where σ2( f ) = P0( f (X)−P0 f (X))2.

Often, one has a sequence of events (An) and one is interested in the probability of a
limiting event A, for example the event that An occurs infinitely often. The following
lemmas pertain to this situation.

Lemma B.2.13. (First Borel-Cantelli lemma)
Let (Ω ,F ,P) be a probability space with a sequence (An) ⊂F and denote A =
limsupAn. If ∑n≥1 P(An)< ∞, then P(A) = 0.

In the above lemma, the sequence (An) is general. To draw the converse conclu-
sion, the sequence needs to exist of independent events: A,B ∈ F are said to be
independent under P if P(A∩B) = P(A)P(B).

Lemma B.2.14. (Second Borel-Cantelli lemma)
Let (Ω ,F ,P) be a probability space and let (An)⊂F be independent and denote
A = limsupAn. If
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∑
n≥1

P(An) = ∞,

then P(A) = 1.

Together, the Borel-Cantelli lemmas assert that for a sequence of independent events
(An), P(A) equals zero or one, according as ∑n P(An) converges or diverges. As
such, this corollary is known as a zero-one law.

To conclude this section, we consider a property of random vectors called ex-
changeability.

Definition B.2.15. A random vector (X1, . . . ,Xn) ∈ Rn with distribution Pn is said
to be exchangeable, if, for any permutation π of {1, . . . ,n}, the random vector
(Xπ(1), . . . ,Xπ(n)) also has distribution Pn.

This property is a generalization of i.i.d.-ness: note that if (X1, . . . ,Xn) ∼ Pn
0 then

(X1, . . . ,Xn) is exchangeable. The converse does not hold but exchangeable distri-
butions can be characterized in terms of i.i.d. distributions, as the following result
demonstrates. In the following theorem, the space M 1(R,B) is endowed with the
Borel σ -algebra corresponding to the weak topology (see definition C.8.8), which
makes all functions P 7→ P(A), (A ∈B), measurable.

Theorem B.2.16. (De Finetti’s theorem) The random vector (X1, . . . ,Xn) ∈ Rn dis-
tributed according to a probability measure Pn is exchangeable if and only if there
exists a unique Borel probability measure Π on the collection M 1(R,B) of all
Borel probability measures on R such that,

Pn(A1× . . .×An) =
∫

M (R)

n

∏
i=1

P(Ai)dΠ(P),

for all A1, . . . ,An ∈B(R).

B.3 Measurability, random variables and integration

In this section we consider random variables and their expectation values. Through-
out this section, let (Ω ,F ,P) denote a probability space.

Definition B.3.1. Given a map X : A→ B and a subset C ⊂ B, the pre-image of C
under X , is defined as,

X−1(C) = {a ∈ A : X(a) ∈C} ⊂ A.

Given two measurable spaces (Ω ,F ) and (X ,B), a map X : Ω →X is called
measurable if, for all B ∈ B, X−1(B) ∈ F . These subsets form a sub-σ -algebra
σ(X) = {X−1(B) : B ∈B} called the σ -algebra generated by X .

Essentially, measurability makes it possible to speak of “the probability that X lies
in B”:
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P(X ∈ B) = P
(
{ω ∈Ω : X(ω) ∈ B}),

is well-defined only if X−1(B) belongs to the domain of P. Specializing to real-
valued measurable maps, it follows from elementary manipulation of set-limits that
suprema of sequences of measurable maps are again measurable. This statement can
be framed in the following central theorem in measure theory.

Theorem B.3.2. (Monotone class theorem) For every n ≥ 1, let fn : Ω → R be
measurable and assume that fn+1(ω) ≥ fn(ω) for all n ≥ 1 and ω ∈ Ω . Then
f (ω) = limn→∞ fn(ω) defines a measurable map f : Ω → R.

This means that the set of all measurable f : Ω → R forms what is know as a
monotone class, an partially ordered set that is closed for limits over monotone se-
quences. Although measurability is preserved under linear combinations, the space
of all measurable f : Ω → R is not a linear space because if, for some ω ∈ Ω ,
f (ω) = ∞ and g(ω) = −∞, then ( f +g)(ω) = ∞−∞ is ill-defined. No such prob-
lems arise when we restrict to the set of all measurable f ≥ 0, which form a cone.
Restriction to measurable f : Ω → R, on the other hand, invalidates the monotone
class theorem.

Definition B.3.3. Let (Ω ,F ,P) be a probability space. A random variable is a mea-
surable map X : Ω → R with the property that P(|X | = ∞) = 0. Therefore, every
random variable can be represented by a real-valued X ′ : Ω → R, up to null-sets of
P, i.e. P(X = X ′) = 1.

Note that random variables do not form a monotone class (take fn = n), but they do
form a linear space. To define expectations (integrals with respect to P), we extend
by monotone limit starting from the following definition.

Definition B.3.4. A measurable map f : Ω 7→ R is called simple if there exists a
k ≥ 1, a k-set partition A1, . . . ,Ak of Ω and a1, . . . ,ak ∈ R such that,

f (ω) =
k

∑
i=1

ai 1Ai(ω).

The integral of a simple f with respect to P is defined as,

∫
f dP =

k

∑
i=1

ai P(Ai).

A straightforward construction shows that for every measurable f ≥ 0, there exists
an increasing sequence ( fn) of non-negative, simple functions such that fn(ω) ↑
f (ω) for all ω ∈ Ω . By the monotony of ( fn), this defines an integral for every
non-negative, measurable f , ∫

f dP = lim
n→∞

∫
fn dP,

(after one demonstrates that the l.h.s. does not depend on the particular ( fn) we
choose to approximate f ). Extension to real-valued measurable functions that take
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on negative values as well is done by treating negative f− and non-negative f+ parts
of f separately. Extension to Rd with d > 1 proceeds component-wise. The most
important result in integration theory is the following elementary theorem.

Theorem B.3.5. (Monotone convergence) Let ( fn) be a monotone sequence of mea-
surable maps Ω → R. Then limn

∫
fn dP =

∫
(limn fn)dP.

Before we can state Fatou’s lemma and the dominated convergence theorem, we
define integrability of measurable maps.

Definition B.3.6. Let (Ω ,F ,P) be a probability space. A real-valued measurable
function f : Ω → R is said to be integrable with respect to P if∫

Ω

| f |dP < ∞. (B.6)

It follows immediately from the definition that an integrable f is a random variable.
Note that any sequence of measurable fn is dominated by the sequence (supm≥n fm).
By the monotone class theorem the suprema are measurable and the resulting se-
quence of maps is monotone decreasing.

Lemma B.3.7. (Fatou’s lemma) Let fn : Ω →R be a sequence of measurable maps
such that fn ≤ g, P-almost-surely for all n ≥ 1, for some P-integrable g : Ω → R.
Then,

limsup
n→∞

∫
fn dP≤

∫
(limsup

n→∞

fn)dP.

An obvious extension provides an inequality for the limes inferior. When combined,
the limsup and liminf versions of Fatou’s lemma imply the following result, known
as Lebesgue’s (dominated convergence) theorem.

Theorem B.3.8. (Dominated convergence) Let fn : Ω → R be a sequence of mea-
surable maps such that limn fn : Ω → R exists and | fn| ≤ g, P-almost-surely for all
n≥ 1, for some P-integrable g : Ω → R. Then,

lim
n→∞

∫
fn dP =

∫
( lim

n→∞
fn)dP.

For any two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), the set Ω1×Ω2
can be endowed with the σ -algebra generated by products of the form A1×A2 where
A1 ∈F1, A2 ∈F2, which is called the product σ -algebra, denoted F = σ(F1×
F2) and a product measure P = P1×P2, to arrive at a probability space (Ω ,F ,P),
for which the following elementary theorem on the interchangability of integrals
applies.

Theorem B.3.9. (Fubini’s theorem) Let (Ω1,F1,P1) and (Ω2,F2,P2) be proba-
bility spaces and denote their product by (Ω ,F ,P). For any non-negative, F -
measurable f : Ω → R and any ω1 ∈ Ω1, f (ω1, ·) : Ω2 → R̄ is F2-measurable.
Furthermore, for any A1 ∈F1 and A2 ∈F2,
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A1×A2

f (ω1,ω2)dP(ω) =
∫

A1

(∫
A2

f (ω1,ω2)dP2(ω2)
)

dP1(ω1)

=
∫

A2

(∫
A1

f (ω1,ω2)dP1(ω1)
)

dP2(ω2).

Another central result from integration theory forms the foundation for the proba-
bility density we associate with many distributions.

Theorem B.3.10. (Radon-Nikodym theorem) Let (Ω ,F ) be a measurable space
and let µ,ν : F → [0,∞] be two σ -finite measures on (Ω ,F ). There exists a unique
decomposition

µ = µ∥+µ⊥,

such that µ∥≪ ν and µ⊥ and ν are mutually singular. Furthermore, there exists a
F -measurable function f : Ω → R such that for all F ∈F ,

µ∥(F) =
∫

F
f dν . (B.7)

The function f is ν-almost-everywhere unique.

The function f : Ω → R in the above theorem is called the Radon-Nikodym
derivative of µ with respect to ν . If µ is a probability distribution, then f is called the
(probability) density (function) for µ with respect to ν . The Radon-Nikodym deriva-
tive is sometimes denoted dµ/dν . The assertion that f is “ν-almost-everywhere
unique” means that if there exists a measurable function g : Ω → R such that (B.7)
holds with g replacing f , then f = g, (ν-a.e.), i.e. f and g may differ only on a set
of ν-measure equal to zero. Through a construction involving increasing sequences
of simple functions, we see that the Radon-Nikodym theorem has the following
implication.

Corollary B.3.11. Assume that the conditions for the Radon-Nikodym theorem are
satisfied. Let X : Ω → [0,∞] be measurable and µ-integrable. Then the product X f
is ν-integrable and ∫

X dµ =
∫

X f dν .

Remark B.3.12. Integrability is not a necessary condition here, but the statement of
the corollary becomes rather less transparent if generalized.

B.4 Conditional distributions

In this section, we consider conditioning of probability measures. In first instance,
we consider straightforward conditioning on events and illustrate Bayes’s rule, but
we also cover conditioning on σ -algebras and random variables, to arrive at the
posterior distribution and Bayes’s rule for densities.
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Definition B.4.1. Let (Ω ,F ,P) be a probability space and let B ∈F be such that
P(B) > 0. For any A ∈F , the conditional probability of the event A given event B
is defined:

P(A|B) = P(A∩B)
P(B)

. (B.8)

Conditional probability given B describes a set-function on F and one easily checks
that this set-function is a probability measure that assigns probability one to B. The
conditional probability measure P( · |B) : F → [0,1] can be viewed as the restric-
tion of P to F -measurable subsets of B, normalized to be a probability measure.
Definition B.4.1 gives rise to a relation between P(A|B) and P(B|A) (in case both
P(A)> 0 and P(B)> 0, of course), which is called Bayes’s Rule.

Proposition B.4.2. (Bayes’s Rule)
Let (Ω ,F ,P) be a probability space and let A,B∈F be such that P(A)> 0, P(B)>
0. Then

P(A|B)P(B) = P(B|A)P(A).

However, only being able to condition on events B of non-zero probability is too
restrictive. Moreover, B above is a definite event; it is desirable also to be able to
discuss probabilities conditional on events that have not been measured yet, i.e. to
condition on a whole σ -algebra of events like B above.

Definition B.4.3. Let (Ω ,F ,P) be a probability space, let C be a sub-σ -algebra of
F and let X be a real-valued P-integrable random variable. The conditional expec-
tation of X given C is any C -measurable random variable E[X |C ] : Ω → R such
that, ∫

C
X dP =

∫
C

E[X |C ]dP,

for all C ∈ C ,

If we consider some B∈F with P(B)> 0 and the σ -algebra σB = {∅,B,Ω \B,Ω},
and we consider definition B.4.3 for X = 1A, we recover,

E[1A|σB] = P(A|B)1B +P(A|Ω \B)1Ω\B.

The condition that X be P-integrable is sufficient for existence and uniqueness of
E[X |C ] P-almost-surely, the proof being an application of the Radon-Nikodym the-
orem (see theorem 10.1.1 in Dudley (1989)). So conditional expectations are not
unique but if we have two different random variables e1 and e2 satisfying the defin-
ing conditions for E[X |C ], then e1 = e2, P-almost-surely. Often, the σ -algebra C is
the σ -algebra σ(Z) generated by another random variable Z. In that case we denote
the conditional expectation by E[X |Z] and realizations are denoted E[X |Z = z].

Definition B.4.4. Let (Ω ,F ,P) be a probability space and let C be a sub-σ -algebra
of F . Furthermore, let (Y ,B) be a measurable space and let Y : Ω → Y be a
random variable. For each A ∈B, the conditional probability of Y ∈ A given C is
defined as follows:
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PY |C (A,ω) = E[1{Y ∈ A}|C ](ω), (B.9)

P-almost-surely.

Although seemingly innocuous, the fact that conditional expectations are defined
only P-almost-surely poses a rather subtle problem: for every A ∈B there exists an
A-dependent null-set on which PY |C (A, ·) is not defined. This is not a problem if we
are interested only in A (or in a countable number of sets). But usually, we wish to
view PY |C as a probability measure, that is to say, it must be well-defined as a map
on the σ -algebra B almost-surely. Since most σ -algebras are uncountable, there
is no guarantee that the corresponding union of exceptional null-sets has measure
zero as well. This means that definition B.4.4 only defines PY |C (A, ·) per individual
A, and not as a map A 7→ PY |C (A,ω) for P-almost-all ω ∈ Ω . The extra property
that the conditional distribution is well-defined P-almost-surely as a map is called
regularity of the conditional distribution.

Definition B.4.5. If π : B×Ω → [0,1] is such that,

1. for every B ∈B, ω 7→ π(B,ω) is C -measurable,
2. there is an E ∈ C with P(E) = 0 such that for all ω ∈Ω \E, B 7→ π(B,ω) is a

probability measure,
3. for all C ∈ C , ∫

C
π(B,ω)dP(ω) = P(B∩C),

then π is said to be a regular conditional distribution.

The existence of a regular conditional probability cannot be guaranteed without
further conditions on the underlying probability space.

Definition B.4.6. A topological space (S,T ) is said to be a Polish space if T is
metrizable, complete and separable. Any topological space that is the continuous
image of a Polish space is called a Souslin space; any topological space that is the
one-to-one continuous image of a Polish space is called a Lusin space.

Polish spaces appear in many subjects in measure theory: the existence of a count-
able, dense subset in a metric setting allows constructions based countable cov-
ers by metric balls. In this manner Polish spaces allow countable formulations for
properties that would involve uncountable collections of subsets otherwise, in cor-
respondence with countability restrictions arising from measure theory. Such a con-
struction occurs in a theorem that guarantees the existence of regular conditional
distributions.

Theorem B.4.7. Let (Ω ,F ,P) be a probability space and let Θ be a Polish space
with Borel σ -algebra G . If ϑ : Ω→Θ is a Borel measurable random variable taking
values in Θ and C is any sub-σ -algebra of F , there exists a P-almost-surely unique
regular conditional distribution Pϑ |C : G ×Ω → [0,1] : (G,ω) 7→ P(G,omega).

Proof. For a proof of this theorem, the reader is referred to Dudley (1989) [83],
theorem 10.2.2).
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So for Bayesian purposes, where Ω = Y ×Θ and we condition on Y ∈ Y (by
choosing C = σ(Y )), Polishness of the parameter space Θ is enough to guaran-
tee the existence of a regular version of the conditional probability for ϑ given Y ,
the posterior. In cases where the model topology is not Polish, posteriors are not
guaranteed to exist as Borel probability measures on the model, unless we impose
more. Note that measurability of the posterior with respect to C implies that, for any
G ∈ G , Π(G|C ) is a B-measurable, PΠ -almost-surely defined function of the data
Y . This functional dependence is integral part of the ratio-of-integrated-likelihoods
expression for the posterior, (2.6).

To conclude, we mention Jensen’s inequality, which extends the usual inequal-
ity defining convexity of a function (involving finite convex combinations in the
domain), to integrals over a convex domain, which has a version for conditional
distributions.

Proposition B.4.8. (Jensen’s inequality) Let C be a non-empty, convex, Borel-measurable
subset of Rk and let X ∼ P be a random variable taking values in C, such that
P∥X∥< ∞. Let f : C→R be a convex function. Then PX ∈C, P f (X) is well-defined
and,

f
(∫

X dP
)
≤
∫

f (X)dP. (B.10)

This inequality continues to hold, if we replace the expectations with respect to P,
by conditional expectations E[·|C ] relative to a sub-σ -algebra C .

(For a proof we refer to theorems 10.2.6 and 10.2.7 in Dudley (1989) [83].)

B.5 Martingale convergence [EMPTY]

B.6 Existence of stochastic processes

A stochastic process has the following broad definition, intended to enable discus-
sion of random functions. Initially, we view random functions simply as collections
of random variables, labelled by points in the domain.

Definition B.6.1. Let (Ω ,F ,P) be a probability space, let T be an arbitrary set. A
collection X of F -measurable random variables X = {Xt : Ω →R : t ∈ T} is called
a stochastic process (or coupling of the random variables Xt ) indexed by T .

The above associates to every ω ∈ Ω , a T -labelled collection of random variables,
{Xt(ω) : t ∈ T} describing a random function X : T → R. The perspective we as-
sume here, is that one starts with a T -labelled collection of random quantities with
possible dependency, without the certainty that there exists a coupling; the result we
are after formulates conditions for its existence.

The Daniell-Kolmogorov theorem [168] departs from an explicit form for the
measurable space (Ω ,F ): clearly, if the Xt take their values in a space X , the col-
lections {Xt : t ∈ T} take their values in the product space X T = ∏t∈T X , so we
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choose Ω = X T . The most natural topology on X T is that of pointwise conver-
gence (see definition C.1.13). Sub-basis sets for this topology involve only finite
numbers of t’s from T and the values that X takes there:

{X ∈Ω : Xt1 ∈U1, . . . ,Xtk ∈Uk},

for some K ≥ 1, some t1, . . . , tk ∈ T and some open U1, . . . ,Uk ⊂X . For F we may
then choose the Borel σ -algebra F associated to the product topology, which con-
tains the ring (see definition B.1.1) generated by the so-called cylinder sets, which
are sets of the form,

{X ∈X T : Xt1 ∈ B1, . . . ,Xtk ∈ Bk},

for some k ≥ 1, some t1, . . . , tk ∈ T and some Borel sets B1, . . . ,Bk in X .
Kolmogorov’s perspective on the existence of P is based on so-called finite-

dimensional marginal distributions: for any finite subset S = {t1, . . . , tk} ⊂ T , we as-
sume given the distribution Pt1...tk of the k-dimensional stochastic vector (Xt1 , . . . ,Xtk)
in X k:

(Xt1 , . . . ,Xtk)∼ Pt1...tk . (B.11)

Since the distributions Pt1...tk are a priori unrelated and given for all finite subsets of
T , consistency requirements arise: if S1,S2 are finite subsets and S1 ⊂ S2, then the
distribution of {Xt : t ∈ S1} should be marginal to that of {Xt : t ∈ S2}. Similarly,
permutation of the components of the stochastic vector in the above display should
be reflected in the marginal distributions as well. The requirements for consistency
are called the Daniell-Kolmogorov consistency conditions:

(K1) Let k ≥ 1 and {t1, . . . , tk+1} ⊂ T be given. For any C ∈ σ(Bk),

Pt1...tk(C) = Pt1...tk+1(C×X ),

(K2) Let k≥ 1, {t1, . . . , tk} ⊂ T and a permutation π of k elements be given. For any
A1, . . . ,Ak ∈B,

Ptπ(1)...tπ(k)(A1× . . .×Ak) = Pt1...tk(Aπ−1(1)× . . .×Aπ−1(k)).

Theorem B.6.2. (Daniell-Kolmogorov existence theorem)
Let T be any set and let Xt , t ∈ T be random variables taking values in a Polish

space X , with finite-dimensional marginal distributions,

(Xt1 , . . . ,Xtk)∼ Pt1...tk , (B.12)

for any k ≥ 1 and any {t1, . . . , tk} ⊂ T . Suppose that the marginals Pt1...tk satisfy
conditions (K1) and (K2). Then there exists a Borel measurable space (Ω ,F ) with
a unique probability measure P and Borel-measurable maps Xt : Ω →X , t ∈ T ,
such that all distributions of the form (B.11) are marginal to P.
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Proof. Let R denote the ring generated by the cylinder sets and note that, due to
(K1) and (K2), the finite-dimensional marginal distributions fix the set-function
P̂ : R → [0,1] that maps cylinder sets to their marginal probabilities. According
to Carathéodory’s extension (theorem B.2.3), countable additivity of P̂ (that is, for
any sequence of disjoint sets in R whose union lies in R) implies the existence of
a probability measure P : F →R that extends P̂ from R to the Borel σ -algebra F .
Clearly P̂ is σ -finite, so the resulting extension P is unique.

The requirement that X be Polish, is there to guarantee that all finite-dimensional
marginal distributions are inner regular (see definition C.8.1). Requiring X to be a
Hausdorff space and all finite-dimensional marginal distributions Pt1...tk to be inner-
regular on X k is also sufficient for the assertion.

Kolmogorov’s approach to the definition and characterization of stochastic pro-
cesses in terms of finite-dimensional marginals is of great practical value: the
infinite-dimensional objects in X T are somewhat elusive and their distributions
are hard to characterize in principle, whereas the finite-dimensional marginals are
concrete, explicit objects. The power of the Daniell-Kolmogorov theorem is that it
reduces the inaccessible infinite-dimensional issue to a much simpler issue involving
an infinity of finite-dimensional building blocks. This makes the analysis accessible
and permits calculations regarding the infinite-dimensional objects as (limits of) cal-
culations that are explicit in terms of the finite-dimensional marginal distributions.

The drawback of the construction becomes apparent only upon closer inspection
of the domain of P: F is the σ -algebra generated by the so-called

This implies that F -measurable subsets of Ω = X T restrict at most a countable
number of Xt ’s simultaneously and properties of the random function that involve
uncountable subsets of T do not necessarily correspond to F -measurable subsets.
In practice, this often leads to topological restrictions on the set T : if T is a second-
countable topological space, or compact, then many properties of random functions
f : T →X (like continuity, differentiability, etcetera) can be formulated equiva-
lently as properties that hold only on a dense, countable subset of T . The latter may
then be formulated in terms of F -measurable subsets of X T while this would not
be possible otherwise. Kolmogorov’s existence theorem requires consistency but
has no other conditions and, hence, it always works; but this general applicability
has the downside that it does not give rise to a ‘comfortably large’ domain for the
resulting probability measure P.





Appendix C
Topology

In this appendix we collect some results from topology: in the first sections there
is a brief review of elementary point-set topology, followed by a more detailed dis-
cussion of inverse limits of topological and uniform spaces, with a review of locally
convex spaces. We conclude with a review of the topologies that are used for spaces
of signed, positive and probability measures.

C.1 Topological basics

In the first section we concentrate on precise definitions of elements of general
point-set topology and give some of their most important properties in the main
text, without proofs or examples. For those, the reader is referred to several other
sources: a very readable introduction is the first part of Munkres (2000), [209]. A
more comprehensive treatise is provided in Bourbaki (1998, 1989), [46, 47].

Definition C.1.1. A topological space is a non-empty set X with a collection T of
subsets of X such that:

(i) ∅ and X are in T ,
(ii) the union of any subcollection of T is in T ,

(iii) the intersection of any finite subcollection of T is in T .

The collection T is called a topology on X The subsets in T are called open
subsets and their complements are called closed subsets. A subset A of X that is
both open and closed is called a clopen subset. In the language of descriptive set
theory [149], a clopen set A is said to be of the first ambiguous class. A countable
intersection of open sets is called a Gδ -set; a countable union of closed sets is called
an Fσ -set; a set that is both Gδ and Fσ is said to be of the second ambiguous class.
If x ∈W ⊂X and there is an open U in X such that x ∈U ⊂W , then W is called a
neighbourhood of x. The interior Å of a subset A of X is the union of all open sets
contained in A. The closure Ā of A is the intersection of all closed sets that contain
A. The boundary ∂A of A is Ā\ Å.

397
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A topology for a set describes, in a very abstract manner, what it means for one point
of X to be ‘close’ to another. Thus topology forms the abstract foundation for any
form of approximation within sets of functions, measures, or other mathematical
objects. In the notation of topological spaces, we often omit explicit mention of the
topology and write simply X when it is clear which topology is intended.

Definition C.1.2. Given a set X , a topological basis is a collection U of subsets
of X such that:

(i) for every x ∈X , there is at least one B ∈U such that x ∈ B,
(ii) for all B1,B2 ∈ U and all x ∈ B1 ∩B2, there is a B3 ∈ U such that x ∈ B3 ⊂

B1∩B2.

The topology generated by the basis U consists of all unions of sets in the basis
U . Any collection of subsets S that covers X is a topological subbasis, the basis
generated by the subbasis S generated by S consists of all finite intersections of
subsets in S and the topology generated by the subbasis S is the collection of all
unions of finite intersections of subsets from S .

Given a topological space (X ,T ), any collection C ⊂T such that for every x∈X
and any open U that contains x, there is a B ∈ C such that x ∈ B ⊂U , then C is a
basis for the topology T .

Definition C.1.3. If we have a topological space X , a directed set I and, for every
α ∈ I, a point xα ∈X , then the subset {xα : α ∈ I} is called a net in X (denoted
(xα)). If I = {1,2, . . .}, (xα) is called a sequence and usually denoted with (xn). A
net (xα) is said to converge to a point x ∈X , if for every neighbourhood U of x,
there is an index α such that β ≥ α implies xβ ∈U .

A more general and sophisticated notion of convergence is provided through the
following set-theoretic definition.

Definition C.1.4. Given a set X , a filter F is a collection of subsets of X with the
following properties:

(i) The empty set ∅ does not belong to F ,
(ii) Finite intersections of sets from F belong to F ,

(iii) If A ∈F and A⊂ B, then B ∈F .

A collection U of subsets of X form a filter basis for F , if U ⊂ F and every
A ∈F contains some B ∈U .

A collection U of subsets of a set X forms the basis of a filter if ∅ ̸∈ U and for
any B1,B2 ∈U , there is a B3 ∈U such that B3 ⊂ B1∩B2. For example, given a set
X with a net (xα) (resp. a sequence (xn)), the collection of all tails {xβ : β ≥ α}
for some α ∈ I (resp. {xN ,xN+1, . . .} for some N ≥ 1), of (xα) (resp. of (xn)) form
a filter basis and the induced filter is the collection of all subsets of X that contain
some tail.

Definition C.1.5. Given a set X , a collection of neighbourhood filters is a collec-
tion F (x) of subsets of X for each point x ∈X , such that, for each x ∈X ,
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(i) if U ∈F (x), then x ∈U ,
(ii) if U ∈F (x) then there is a V ∈F (x) such that for all y ∈V , U ∈F (y).

Condition (ii) above looks difficult but simply expresses the following intuitive fact:
a subset of points that is ‘close’ to x (the neighbourhood U), is also ‘close’ to a
point y (also a neighbourhood of y), if y lies ‘close enough’ to x (i.e. anywhere in
the neighbourhood V ). A collection of neighbourhood filters on a set X induces a
topology: a subset of X is open, if it is a neighbourhood of each of the points it
contains.

Definition C.1.6. A filter F on a space X with neighbourhood filters F (x) con-
verges to a point x ∈X if F is finer than F (x). A point x ∈X is called an accu-
mulation point of a filter F , if x belongs to the closure of every subset in F .

One may verify that a filter of tails of a net converges in the sense of definition C.1.6,
if and only if, the net converges in the sense of definition C.1.3. If a filter F con-
verges to a point x, then x is an accumulation point of F . A point x is an accumu-
lation point of a filter F , if and only if, there exists a filter F ′ which is finer than
both F and the neighbourhood filter F (x) (i.e. F ⊂F ′ and F ′ converges to x).

Definition C.1.7. Given a set X with two topologies T1,T2 such that T1 ⊂T2, T1
is said to be coarser than T2, and T2 is said to be finer than T1. Given a set X with
two filters F1,F2 such that F1 ⊂F2, F1 is said to be coarser than F2, and F2 is
said to be finer than F1.

(The above terminology does not imply strictness: any filter is finer and coarser than
itself.) Note that any topology on a set X is finer than the topology {∅,X } (which
is called the trivial topology) and coarser than the topology formed by the powerset
(which is called the discrete topology). If we define two topologies T1,T2 on X
through neighbourhood filters F1(x),F2(x), (x ∈X ), and F1(x) is coarser than
F2(x) for all x ∈X , then T1 is coarser than T2.

Definition C.1.8. A filter F on a set X is an ultrafilter if every filter that is finer
than F is equal to F .

For any filter F , there is at least one ultrafilter that is finer than F , by Zorn’s lemma.
If an ultrafilter F has an accumulation point x, then F converges to x. Given a set
X with an ultrafilter F and A,B ⊂X such that A∪B ∈F , then either A ∈F or
B ∈F (and not both). In particular, for any A ⊂X , either A or X \A belongs to
F .

Definition C.1.9. If S is a subset of X with topology T , S is a topological space
called a subspace of (X ,T ) when it is given the subspace topology TS = {U ∩S :
U ∈T }.

Definition C.1.10. A space X with basis U has a countable basis at a point x∈X ,
if there exists a countable collection of neighbourhoods of x such that each contains
at least one element of the basis U . A space that has countable bases for all its
points, is called first countable. A space that has a countable basis is called second
countable.
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Any subspace of a first (resp. second) countable space is first (resp. second) count-
able. If a space X is first countable and A⊂X , then for every x ∈ Ā there exists a
sequence (xn)⊂ A such that xn→ x.

Definition C.1.11. A collection of subsets of a set X is called a cover if the union
of those subsets equals X . The cover is called open (or closed, etcetera), if those
subsets are open (or closed, etcetera).

Any open cover of a second countable space X contains a countable subcover (and
X is called a Lindelöf space).

Definition C.1.12. A subset A of a topological space X is dense if every open set U
in X satisfies U ∩A ̸=∅. The space X is called separable if it has a dense subset
that is countable.

A second-countable space is separable.

Definition C.1.13. Given a collection {(Xα ,Tα) : α ∈ I} of topological spaces,
the product space ∏α Xα is the Cartesian product with elements of the I-tuple form
(xα : α ∈ I) with the topology generated by the basis of sets of the form,

∏{Uβ : β ∈ J}×∏{Xα : α ∈ I \ J},

where J is any finite subset of I and the sets Uβ are open (or even, basis-sets) in
Xβ . The spaces Xα are called the factors of ∏α Xα . For any β ∈ I, the projection
map prβ : ∏α Xα →Xβ is the map that takes the I-tuple (xα : α ∈ I) into its β -
component xβ . The product of a countable number of copies of a topological space
X is denoted X N, or X ∞.

Given a product space as in definition C.1.13 and subsets Aα ⊂Xα for all α ∈ I, the
closure of ∏α Aα is the product of the closures Āα . Any product space with count-
able many first (resp. second) countable factors is first (resp. second) countable.

Definition C.1.14. Given a collection {(Xα ,Tα) : α ∈ I} of topological spaces, the
topological sum X is the set-theoretic disjoint union,

X =
⋃
α∈I

Xα ,

endowed with the final topology for the collection of injection maps iα : Xα →X :
x 7→ (x,α), (α ∈ I).

So a subset U of a topological sum X is open if each of its disjoint components
U ∩Xα , (α ∈ I), has an open pre-image i−1

α (U ∩Xα) in Xα .

Definition C.1.15. Given two topological spaces (X1,T1) and (X2,T2), a map f :
X1→X2 is said to be continuous if f−1(V ) ∈T1 for any V ∈T2. A bijective map
f is said to be a homeomorphism, if both f and f−1 are continuous. If there exists a
homeomorphic map between two topological spaces X1,X2, then these spaces are
called homeomorphic.
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For any x∈X1, f is continuous in x if for any x∈X1 and any neighbourhood W2 of
f (x), there is a neighbourhood W1 of x such that f (W1)⊂W2. A map is continuous,
if it is continuous in all x∈X1. A map is continuous, if and only if every converging
filter F in X1 is mapped to a filter f (F ) that converges. Given a subspace S of a
topological space (X ,T ), the inclusion map j : (S,TS) 7→ (X ,T ) : x 7→ x is con-
tinuous; if a set X has two topologies T1,T2, then the identity map i : (X ,T1)→
(X ,T2) : x 7→ x is continuous, if and only if T2 is finer than T1. Given a topologi-
cal space X and a product space as in definition C.1.13, a map f : X →∏α Xα is
continuous, if and only if prα ◦ f : X →Xα is continuous for all α ∈ I.

Definition C.1.16. Let (Yα ,Tα), (α ∈ I), be a collection of topological spaces and
X a set. Given maps fα : X →Yα , (α ∈ I), the coarsest topology on X for which
all fα are continuous, is called the initial topology for the collection of maps fα ,
(α ∈ I). Given maps fα : Yα →X , (α ∈ I), the finest topology on X for which all
fα are continuous, is called the final topology for the collection of maps fα , (α ∈ I).

Given a product space as in definition C.1.13, the product topology is the initial
topology for the collection of all projection maps.

The following definitions are specific to functions defined on topological spaces,
taking values on the (extended) real line.

Definition C.1.17. A function f : X → [−∞,∞] is upper (lower) semi-continuous
at x ∈X if, for every y > f (x) (y < f (x)), there exists a neighbourhood U of x such
that f (z)< y ( f (z)> y) for all z ∈U .

Definition C.1.18. Given a topological space X , the support of a function f : X →
[−∞,∞] is the closure of {x ∈X : f (x) ̸= 0}.

(For the support of a Borel measure, see definition C.1.18; for the support of a Radon
measure (see definition C.8.1), see proposition 2.1.16).)

C.2 Separation axioms and compactness

Topologies and filters are very general notions and in most cases where one con-
ceptualizes what it means that one point in a set is ‘close’ to another, the resulting
definitions have certain immediate properties that have become known as separation
axioms. These are linked intimately with the concept of compactness, which plays
a central role in any topological argument.

Definition C.2.1. A topological space (X ,T ) is said to be Hausdorff , if for every
x,y ∈X , x ̸= y, there exist neighbourhoods V,W of x,y respectively, such that V ∩
W =∅.

A subspace of a Hausdorff space is Hausdorff; if each factor Xα of a product space
is Hausdorff, then the product space is Hausdorff.
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Definition C.2.2. A topological space is is said to be regular, if for every closed
A ⊂X and every point x ∈X \A, there exist disjoint open U,V such that A ⊂U
and x ∈V .

A subspace of a regular space is regular; if each factor Xα of a product space is reg-
ular, then the product space is regular. A topological space X is regular, if and only
if, for every x ∈X and every neighbourhood U of x, there exists a neighbourhood
V of x such that V̄ ⊂U . Every regular space is a Hausdorff space.

Definition C.2.3. A topological space (X ,T ) is said to be completely regular, if
X is Hausdorff and for every closed subset A of X any point x ∈X \A, there
exists a continuous function f : X → [0,1] such that f = 0 on A and f (x) = 1.

A subspace of a completely regular space is completely regular; if each factor Xα of
a product space is completely regular, then the product space is completely regular.
Every completely regular space is a regular space but the opposite does not hold.

Definition C.2.4. A topological space X is said to be normal, if for every pair of
disjoint, closed subsets A,B of X , there exist disjoint, open U,V such that A ⊂U
and B⊂V .

A topological space X is normal, if and only if, for every closed A⊂X and open
U such that A ⊂ U , there exists an open V such that A ⊂ V̄ ⊂ U . Every normal
space is a completely regular space but the opposite does not hold. Metric spaces
are normal spaces. If X is a normal space and A,B are disjoint, closed subsets of
X , then there exists a continuous function f : X → [0,1] such that f = 0 on A and
f = 1 on B (a result sometimes referred to as Urysohn’s lemma). If A is a closed
subspace of a normal space X and f : A→ [0,1] (resp. f : A→ R) is continuous,
then there exists a continuous extension g : X → [0,1] (resp. g : X → R) of f to
all of X .

Definition C.2.5. A topological space X is said to be connected, if it cannot be
written as the union of two open subsets that are disjoint.

Definition C.2.6. A Hausdorff topological space is a zero-dimensional space if its
topology has a basis of clopen subsets.

In a zero-dimensional space there is no subspace that is connected. A subspace
of a zero-dimensional space is zero-dimensional; a product of zero-dimensional
spaces is zero-dimensional; a topological sum of zero-dimensional spaces is zero-
dimensional.

Definition C.2.7. A topological space X is called compact if every open cover of
X contains a finite sub-collection that also covers X . A topological space is lo-
cally compact if every point x has a compact neighbourhood. A subset A of X is
relatively compact is its closure Ā is a compact subspace of X . A topological space
X is σ -compact, if X equals a countable union of compact subsets.
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If (X ,T ) is compact and T ′ coarsens T , then T = T ′. Every closed subspace
of a compact space is compact and every compact subspace of a Hausdorff space
is closed. If A is a compact subspace of a Hausdorff space X and x ∈X \A, then
there exist disjoint open U,V such that A⊂U and x ∈V . Every compact Hausdorff
space is a normal space. If X is a Hausdorff space, then X is compact, if and
only if, every filter on X has at least one accumulation point, if and only if, every
ultrafilter on X converges, if and only if, every collection of closed subset with
an empty intersection has a finite sub-collection with empty intersection. If X is
compact, Y is Hausdorff and f : X → Y is continuous, then f (X ) is a compact
subspace of Y ; if, in addition, f is injective, then X and the subspace f (X ) of Y
are homeomorphic. Tychonov’s theorem says that if X is a product space ∏α Xα

with factors Xα that are all compact, then X is compact; if X is a product space
∏α Xα with locally compact factors Xα , then X is locally compact, if and only
if all but finitely many factors are compact. A space is completely regular, if and
only if it is homeomorphic to a Hausdorff subspace of a compact space. A locally
compact Hausdorff space is completely regular.

Definition C.2.8. A compactification of a topological space X is a dense subspace
A of a compact topological space Y that is that is homeomorphic with X . A one-
point-compactification of X is a compactification such that Y \ A consists of a
single point ω ∈ Y .

A locally compact space Y has a one-point-compactification that is unique up to
homeomorphisms, and the point ω has a countable basis of neighbourhoods if and
only if Y is σ -compact.

C.3 Uniform spaces and complete spaces

Whereas topological spaces give an abstract notion of ‘closeness’ of one point in
the space to another, there is no notion of ‘relative closeness’, that is, no way to
compare what is close to one point and what is close to another point in the same
topological space. Of course, relative closeness is well defined in metric spaces
(see subsection C.4), where we can compare the metric distance between points
x1 and x2, with the metric distance between two other points y1 and y2. To define
‘relative closeness’ more generally, we introduce uniform spaces below, as a natural
abstraction from the metric spaces introduced before. This enables definition of the
important concepts of Cauchy nets and completeness of a uniform space.

In the definition below we use the following notation: if X is a set and U,V ⊂
X ×X , then the composite U ◦V denotes the set {(x,z) ∈X ×X : ∃y∈X (x,y) ∈
U,(y,z) ∈V}.

Definition C.3.1. A uniform space is a non-empty set X with a filter W of subsets
of X ×X such that:

(i) every W contains the diagonal ∆ = {(x,x) : x ∈X },
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(ii) if W ∈W , then W−1 = {(y,x) : (x,y) ∈W} ∈W ,
(iii) for every V ∈W , there exists a W ∈W such that W ◦W ⊂V .

The collection W is called a uniformity on X . The sets in W are called entourages.
A fundamental system of entourages F for W is any collection of entourages such
that any W ∈W contains an entourage from F .

Property (ii) says that entourages reflected in the diagonal remain entourages (sym-
metry of W ); property (iii) can be interpreted as an abstraction of the triangle in-
equality that holds in metric spaces (see definition C.4.1). Given a set X , a collec-
tion F of subsets of X ×X is a fundamental system of entourages for a uniformity,
if and only if,

(i) every W ∈F contains the diagonal ∆ = {(x,x) : x ∈X },
(ii) for any W,W ′ ∈F , there is a W ′′ ∈F such that W ′′ ⊂W ∩W ′,

(iii) for any W ∈F , there is a W ′ ∈F such that W ′ ⊂W−1,
(iv) for any W ∈F , there exists a V ∈F such that V ◦V ⊂W .

Given a uniform structure W on a set X and a point x ∈X , the sets {y ∈X :
(x,y) ∈W} form a basis of neighbourhoods for the point x and there is a unique
topology T on X for which these sets form a collection of neighbourhoods for x,
called the topology induced by W . The topology T is Hausdorff if and only if the
intersection of all entourages in W is the diagonal δ ; every Hausdorff uniform space
is completely regular and every completely regular space (X ,T ) has a uniformity
W that induces the topology T (although W is not unique unless X is compact). A
Hausdorff space X is a uniform space, if and only if every lower semi-continuous
f : X → R satisfies f (x) = sup{g(x) : g continuous, g≤ f}.

Definition C.3.2. Given two uniform spaces (X1,W1) and (X2,W2), a map f :
X1 →X2 is said to be uniformly continuous if for any entourage V ∈ W2, there
exists an entourage W ∈W1 such that (x,y) ∈ V implies ( f (x), f (y)) ∈ V . A bijec-
tive map f is said to be a uniform homeomorphism , if both f and f−1 are uniformly
continuous. If there exists a uniformly homeomorphic map between two uniform
spaces X1,X2, then these spaces are called uniformly homeomorphic.

Any uniformly continuous map f : X1→X2 is continuous for the induced topolo-
gies T1 and T2. If X1 is compact and X2 is a uniform space, any continuous map
f : X1→X2 is uniformly continuous. Other definitions made earlier in this section
for topological spaces (e.g. subspaces, initial topologies, products, etcetera) have
obvious generalizations to uniform spaces.

Definition C.3.3. Let (X ,W ) be a uniform space. A Cauchy net in X is any net
(xα), (α ∈ I), such that, for any W ∈W , there exists a α ∈ I such that for all β ,γ ≥α ,
(xβ ,xγ) ∈W . A Cauchy filter F is a filter F such that for every entourage W ∈W ,
there exists a U ∈F such that U×U ⊂W .

If a net (xα) in a uniform space X converges, then (xα) is a Cauchy net; if a filter
F in a uniform space X converges, then F is a Cauchy filter. The opposites of
these two facts do not hold in general, which motivates the following definition.
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Definition C.3.4. A uniform space X is complete, if every Cauchy net in X con-
verges to a point in X . Equivalently, a uniform space is complete if every Cauchy
filter with an accumulation point x, converges to x.

Every closed subspace of a complete uniform space is a complete uniform space
and every complete subspace of a Hausdorff uniform space is closed. If (X ,T ) is
compact, the (unique) uniformity associated with T is complete. If A is a subset of
a uniform space X and f : A→ Y maps A to a complete Hausdorff uniform space
Y and f is uniformly continuous, then f can be extended to a uniformly continuous
function g : X → Y .

Definition C.3.5. For any uniform space X , there exists a complete Hausdorff uni-
form space Y and a uniformly continuous map i : X →Y such that i(X ) is dense
in Y ; Y is called the (Hausdorff) completion of X and Y is unique up to uniform
homeomorphisms. A uniform space is pre-compact if its Hausdorff completion is
compact.

A subset A of a Hausdorff uniform space is pre-compact, if and only if, the closure
of i(A) is compact in the Hausdorff completion, if and only if, for every entourage
W ∈W , there exists a finite cover {A1, . . . ,An} of A such that Ai×Ai ⊂W , for every
1 ≤ i ≤ n. A Hausdorff uniform space is compact, if and only if it is complete and
pre-compact. Given a set X and a collection of pre-compact spaces {Xα : α ∈ I}
with maps { fα : X →Xα : α ∈ I}, the smallest uniformity for which all fα are
uniformly continuous makes X a pre-compact space.

C.4 Metric spaces and Polish spaces

Metric spaces are ubiquitous and because many topological spaces used in this book
are complete (and often also separable) for a metrizable topology, we discuss metric
spaces with specific attention for Baire and Polish spaces. Much more on these sub-
jects can be found in [47], chapter IX, § 5 and § 6, and comprehensively, in Kechris
(1994), [149]. With its focus on descriptive set theory, the latter book goes much
further. Most of its material is not used in this book but certainly warrants attention
from readers interested in what mathematics lies beyond the realm of Borel sets.

Definition C.4.1. Let X be a set with a function d : X ×X → R such that,

(i) for all x,y ∈X , d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y,
(ii) for all x,y ∈X , d(x,y) = d(y,x),

(iii) for all x,y,z ∈X , d(x,z)≤ d(x,y)+d(y,z).

Then d is called a metric and (X ,d) is called a metric space. An open (d-)ball
Bd(x,r) (or B(x,r), if the subscript d can be omitted unambiguously) centred on
x∈X of radius r≥ 0 is the set {y∈X : d(x,y)< r}. The collection of all d-balls in
X forms a basis for a topology Td on X called the metric topology associated with
the metric d. The sets {(x,y) ∈X ×X : d(x,y)< ε}, (ε > 0), form a fundamental
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system of entourages for a corresponding metric uniformity Wd on X . An isometry
is a bijection f : X1→X2 between two metric spaces (X1,d1) and (X2,d2), such
that d2( f (x), f (y)) = d1(x,y) for all x,y ∈ X1. A subset Y of a metric space is
bounded if sup{d(x,y) : x,y ∈ Y }< ∞. A metric space (X ,d) is bounded, if X is
bounded as a subset, in which case the metric d is referred to as a bounded metric.

Property (iii) above is referred to as the triangle inequality associated with the metric
d. Every isometry is a (uniform) homeomorphism. If properties (i)–(iii) hold, except
that d(x,y) = 0 does not imply x = y, then d is called a semi-metric. Metric spaces
are normal spaces, but a topology induced by a semi-metric that is not a metric, is
not even Hausdorff. A compact subset of a metric space is bounded.

Definition C.4.2. A topological space (X ,T ) is metrizable if there exists a (topo-
logically) compatible metric for T , that is, if there exists a metric d with Td = T .
Similarly, a uniform space (X ,W ) is metrizable, if there exists a (uniformly) com-
patible metric for W , that is, if there exists a metric d with Wd = W . A topological
space (X ,T ) is completely metrizable, if there exists a compatible metric for T
with a metric uniformity for which X is complete.

For every metrizable space (X ,T ), there exists a bounded metric d such that
T = Td . A subspace of a metrizable space is metrizable; a countable product of
metrizable spaces is metrizable. A metrizable topological space X is first count-
able and X is second countable, if and only if, X is separable, if and only if, X is
a Lindelöf space.

Theorem C.4.3. (Urysohn metrization)
Every regular space that is second countable is metrizable.

A uniformity W on a space X is metrizable, if and only if there exists a countable
fundamental system of entourages for W . Every closed subset of a metrizable space
X is a Gδ -set. If X is a topological space and Y is a metrizable space, then the
points of continuity of a map f : X → Y form a Gδ -set in X . If X is metrizable
and Y ⊂X is completely metrizable, then Y is a Gδ -set in X ; if X is completely
metrizable and Y ⊂X is a Gδ -set, then Y is completely metrizable. A subspace
Y of a metrizable space is compact, if and only if, every sequence (xn) in Y has a
convergent sub-sequence.

Completely metrizable spaces play a central role in this book: the set of all prob-
ability measure on the real line (and all other realistic sample spaces) is completely
metrizable in the two most common topologies, the weak topology and the total-
variational topology (see section C.5). Completely metrizable spaces have one topo-
logical property that stands out and which they share with locally compact Hausdorff
spaces.

Definition C.4.4. A topological space X is a Baire space, if any countable inter-
section of open, dense subsets of X , is again dense in X .

Equivalently X is a Baire space if any countable union of closed sets with empty
interiors, again has empty interior. Any open subspace of a Baire space is a Baire
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space. A subset A of a topological space X is nowhere dense if the closure Ā has
empty interior. A subset A of X is meager (or of first (Baire) category in X ), if A
is a countable union of nowhere dense subsets; the complement X \A of a meager
set A is called residual; any subset of X that is not meager is said to be of second
(Baire) category in X . An example of a meager subset in R is Q, and the set of all
irrational real numbers is an example of a residual set. A topological space X is a
Baire space, if and only, if every meager subset A is nowhere dense (see exercise ??),
if and only if, every point x ∈X has a neighbourhood U that is a Baire space.

Theorem C.4.5. (Baire)
Locally compact Hausdorff spaces and completely metrizable spaces are Baire
spaces.

Definition C.4.6. A subset A of a topological space X has the Baire property if
there exists an open subset U of X such that the symmetric difference (A \U)∪
(U \A) between A and U is meager in X .

The subsets of a topological space with the Baire property form a σ -algebra, the
smallest σ -algebra that contains all open and all meager sets. In particular, all open,
closed, Gδ - and Fσ -sets have the Baire property. In fact, a subset A of X has the
Baire property, if and only if, A is the disjoint union of a Gδ -set and a meager set, if
and only if, A is contained in an Fσ -set F and F \A is meager.

Now we are in a position to consider Polish spaces.

Definition C.4.7. A topological space X is a Polish space, if X is completely
metrizable and separable. Given a Polish space X , a metrizable space Y , and a
continuous f : X →Y , the subspace f (X ) is called a Souslin space; if, in addition,
f is injective, f (X ) is called a Lusin space.

Countable products and countable topological sums of Polish spaces are Polish
spaces. Some of the most important examples of Polish spaces are countable dis-
crete spaces.

Example C.4.8. The space {0,1}N is called the Cantor space and NN is (confus-
ingly) called the Baire space. The Cantor space is compact and homeomorphic to
the fractal subspace C of [0,1] that is obtained by deleting an open interval, then
deleting open intervals from the two remaining closed intervals, and repeating ad
infinitum (e.g. first delete (1/3,2/3) from [0,1], then (1/9,2/9) from [0,1/3] and
(7/9,8/9) from [2/3,1], etcetera). In this context, we also define the function x
that parametrizes the set of all mid-points of deleted intervals in terms of finite
binary sequences, which we shall refer to as the Cantor mid-point function. Like
in section 8.10, we define, for every m ≥ 0 the set Em as the set of all binary se-
quences ε of length m (including the m = 0 case of the empty binary sequence ε∅),
and the set E = ∪m≥0Em of all finite binary sequences. The function x : E → [0,1]
maps ε ∈ Em to the midpoint of the interval that is deleted in the m-th transition
in the construction of the set C : for example, x(ε∅) = 1/2 in E0, x(0) = 1/6,
x(1) = 5/6 in E1, x(00) = 1/18, x(01) = 5/18, x(10) = 13/18, x(11) = 17/18 in E2,
etcetera. In particular, for any m≥ 1, x(ε) = 1/2(1/3)m and x(ε ′) = 1−1/2(1/3)m

if ε = 0 . . .0 ∈ Em and ε ′ = 1 . . .1 ∈ Em.
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Other examples of Polish spaces are [0,1]N (usually referred to as the Hilbert cube),
and of course separable Banach and Hilbert spaces, including the Euclidean spaces
Rd , (d ≥ 1). The Hilbert cube is compact and every separable metrizable space is
homeomorphic to a subspace of the Hilbert cube.

Theorem C.4.9. A subspace Y of a Polish space X is a Polish space, if and only
if Y is a Gδ -set in X .

Every non-empty compact metrizable space is a continuous image of the Cantor
space. Any compact, metrizable space is Polish. If X is Hausdorff and locally com-
pact, X is second countable, if and only if, X is metrizable and σ -compact, if and
only if, X is Polish, if and only if, X is homeomorphic to an open subset of a
compact metrizable space.

Lusin and Souslin spaces are important because of their relation to Borel mea-
surability. A subset A of a Lusin space is a Lusin space, if and only if A is a Borel
set; every Lusin subspace of a metrizable space is a Borel set.

Theorem C.4.10. If X ,Y are Souslin spaces, then f : X → Y is Borel measur-
able, if and only if the graph {(x, f (x)) ∈X ×Y : x ∈X } of f is a Souslin sub-
space of X ×Y .

If X ,Y are Souslin spaces and f : X → Y is a Borel measurable injection, then
its inverse on f (X ) is also Borel measurable. For any two metrizable Lusin spaces
of the same cardinality, there exists a Borel measurable bijection.

Zero-dimensionality plays a role for the characterization of Polish spaces. A sep-
arable metrizable space X is zero-dimensional, if and only if, for every closed
subset A of X there exists a continuous surjection f : X → A such that f (x) = x
for all x ∈ A. A metrizable space Y is a Lusin space, if and only if there exists a
zero-dimensional Polish space X and a continuous bijection f : X → Y .

Theorem C.4.11. (Alexandrov-Urysohn)
Up to homeomorphisms, the Baire space NN is the only non-empty, zero-dimensional
Polish space in which all compact subspaces have empty interior.

Theorem C.4.12. (Brouwer)
Up to homeomorphisms, the only non-empty, compact, zero-dimensional space with-
out isolated points is the Cantor space.

Every zero-dimensional Polish space is homeomorphic to a closed subspace of the
Baire space and to a Gδ -set in the Cantor space.

C.5 Inverse limit spaces

Bourbaki introduces the so-called inverse limit space (known also as projective limit
space [235]) as a construction that can be interpreted at many levels of detail. The
set-theoretic definition ([45], Ch. III, § 7, No. 1; [45], Ch. III, § 7, No. 2; [45], Ch. R,
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§ 6, No. 2) is described as follows. Recall that a directed set is a set I with a partial
ordering relation ≤ (that is: α ≤ α; α ≤ β and β ≤ α ⇒ α = β ; α ≤ β and β ≤ γ

⇒ α ≤ γ), such that for all pairs α,β ∈ I there exits a γ ∈ I with α ≤ γ and β ≤ γ .

Definition C.5.1. Let I be a directed set and let (Xα)α∈I be sets with maps fαβ :
Xβ →Xα such that,

(i) for all α ≤ β ≤ γ , we have fαγ = fαβ ◦ fβγ ,
(ii) for all α ∈ I, fαα = iα , the identity mapping on Xα .

The inverse limit of the inverse limit system (Xα , fαβ ) is then defined as the set X
of all x in the (set-theoretic) product ∏α∈I Xα that satisfy,

prα(x) = fαβ (prβ (x)),

for all α ≤ β .

Conceptually, the maps fαβ can be thought of as a system of projections between
the spaces Xα . The restriction of prα to X is denoted fα : X →Xα and called
the canonical mapping of X onto Xα ; these mappings form a so-called coherent
family, i.e. they satisfy fα = fαβ ◦ fβ for all α ≤ β . An immediate point of cau-
tion concerns the still-open possibility that X = ∅: not every inverse system has
a well-defined inverse limit. Non-emptiness is most conveniently demonstrated by
injection of another space, e.g. as in proposition ??. For an inverse system of topo-
logical spaces (Xα ,Tα) more can be said (see [46], Ch. I, § 4, No. 4).

Definition C.5.2. In the above setup, assume that the Xα are topological spaces
and that the maps fαβ are continuous for all α ≤ β . The topological inverse limit
X is the set-theoretic inverse limit X with the initial topology for the canonical
mappings, that is, the coarsest topology that makes all fα : X →Xα continuous.

Example C.5.3. Let I be a directed set and denote by S the collection of all finite
S ⊂ I. Given a family of topological spaces (Xα), the product space ∏α Xα of
definition C.1.13 is defined equivalently as the inverse limit of the finite topological
products,

XS = ∏
α∈S

Xα

where S is directed by inclusion. The maps fST : XT →XS for S ⊂ T are pro-
jections between finite product spaces. The canonical mappings fS : X →XS are
the usual projections prS. The corresponding inverse limit topology is therefore the
coarsest topology on the set-theoretic product that makes all projections continuous,
cf. the usual definition of the topological product.

To characterize convergence and continuity in inverse limit spaces, we have the
following specification of [46], Ch. I, § 2, No. 3, Prop. 4.

Proposition C.5.4. Let the topological space (X ,T ) be the inverse limit of the in-
verse system of topological spaces (Xα ,Tα). Then the collection of all finite inter-
sections of sets of the form f−1

α (U) (α ∈ I, U ∈Tα ), forms a basis for T . Further-
more, given a topological space Y , a map h : Y 7→ X is continuous, if and only if
fα ◦h : Y →Xα is continuous for all α ∈ I.
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One may wonder which topological properties lift from the spaces Xα to the in-
verse limit space X . For one, an inverse limit is compact and non-empty whenever
the spaces Xα are compact and non-empty ([46], Ch. I, § 9, No. 6, prop. 8); a so-
called inverse limit of uniform spaces requires the fαβ to be uniformly continuous
and leads to a uniformity on the inverse limit space, the coarsest that makes all fα

uniformly continuous [46], Ch. II, § 2, No. 7, prop. 8. In case the uniform spaces Xα

are complete, the inverse limit X is also complete ([46], Ch. II, § 3, No. 5, Prop. 10
and Cor.). Note the following criterion for the Cauchy property (which is a specific
version of [46], Ch. II, § 3, No. 1, Prop. 4).

Proposition C.5.5. Let (X ,W ) be the inverse limit of uniform spaces (Xα ,Wα).
Then the collection of all finite intersections of subsets of the form ( fα , fα)

−1(V ),
where α ∈ I and V is an entourage from Wα forms a fundamental system of en-
tourages for W . Furthermore, given a uniform space Y , a map h : Y → X is
uniformly continuous, if and only if the maps fα ◦h : Y →Xα are uniformly con-
tinuous for all α ∈ I. Moreover, a filter base C on X is Cauchy, if and only if fα(C )
is Cauchy for all α ∈ I.

Statistical models for the distributions of i.i.d. samples X = (X1,X2, . . .) from
a topological space X , carry a natural uniformity that arises as an inverse limit.
Let (X ,B) denote the Borel space in which each of the sample points Xi, (i ≥ 1)
takes its values, so X lies in the countable product space X N, with σ -algebra BN

generated by the cylinder sets. The sample space X n for the first n sample points
is denoted Xn with product σ -algebra Bn. Let P denote a collection of Borel
probability measures on (X ,B). Note that the model P is mapped one-to-one to a
collection of infinite product measures with domain BN: P∞ = {P∞ : BN→ [0,1] :
P ∈P}. As in example C.5.3, the inverse limit of the spaces (Xn,prnm) is X N. On
the space P∞, we define uniformities Wn with an inverse limit W∞ as follows.

Definition C.5.6. For each n ≥ 1, consider the linear space Fn of all bounded
Bn-to-Borel-measurable f : Xn → R and consider the fundamental system of en-
tourages on P∞, obtained by choosing k ≥ 1, and f1, . . . , fk ∈Fn to define,

Wn; f1,..., fk =
{
(P,Q) ∈P∞×P∞ :

∣∣(P−Q) fi
∣∣< 1,1≤ i≤ k

}
.

For every n ≥ 1, these subsets of P∞ ×P∞ form a fundamental system of en-
tourages for the so-called n-th Le Cam-Schwartz uniformity on P∞ (and by exten-
sion with slight abuse of notation, also on P , which is in bijective correspondence
with the diagonal in P∞ and inherits the subspace uniformity). The associated n-th
Le Cam-Schwartz topology (on P∞ and, again by extension, also on P) is denoted
Tn. Identifying n≥ 1 as the index α , we call the inverse limit (P∞,W∞) of the in-
verse system of uniform spaces ((P∞,Wn), fnm) the Le Cam-Schwartz inverse limit
uniformity. Again with slight abuse of notation, we also denote by W∞ the subspace
uniformity on P . The associated Le Cam-Schwartz inverse limit topologies on P∞

and P are both denoted T∞. The topology T1 on P plays a central role in many
arguments in this book, and if no confusion can arise, will be called simply the
Le Cam-Schwartz topology.
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Another, much more common topology on a model for i.i.d. observations on
a topological space X is defined as follows: we consider the collection C b(X )
of all bounded continuous maps f : X 7→ R to define a fundamental systems of
entourages.

Definition C.5.7. Let X be a completely regular space. Consider the space Cb(X )
of all bounded, continuous f : X → R and consider the fundamental system of
entourages on a subspace P of the space of all Borel probability measures on X ,
obtained by choosing k ≥ 1, and f1, . . . , fk ∈Cb(X ) to define,

WC
f1,..., fk =

{
(P,Q) ∈P×P :

∣∣(P−Q) fi
∣∣< 1,1≤ i≤ k

}
.

These subsets of P×P form a fundamental system of entourages for the so-called
weak uniformity W C on P . We call the associated topology the weak topology and
denote it TC.

Completeness of the space of bounded, positive Borel measures on a Polish space
X for the weak uniformity is the subject of theorem C.8.9.

Definition C.5.8. Let X be a locally compact space. Consider the space K (X )
of all continuous f : X → R with compact support and consider the fundamental
system of entourages on a subspace P of the space of all Borel probability measures
on X , obtained by choosing k ≥ 1, and f1, . . . , fk ∈K (X ) to define,

W K
f1,..., fk =

{
(P,Q) ∈P×P :

∣∣(P−Q) fi
∣∣< 1,1≤ i≤ k

}
.

These subsets of P×P form a fundamental system of entourages for the so-called
vague uniformity W K on P . We call the associated topology the vague topology
and denote it TK .

On any locally compact space X , the vague topology is coarser than the weak
topology, unless X is compact. The vague topology on spaces of Borel measures
on locally compact spaces is of central importance in appendix C.8. To conclude the
present perspective, we focus on the differences between the topologies T1 and TC,
as illustrated in the following example.

Example C.5.9. Suppose that we consider a topological space X with its Borel σ -
algebra and we take the (deterministic) collection of all atomic measures P = {δx :
x ∈X } as our model. We identify X and P through the bijection, X →P :
x 7→ δx. Note that for every x ∈X , there exists a (measurable but, in general, dis-
continuous) f such that f (x) = 1 and f (y) = 0 for all y ∈ [0,1], y ̸= x. Conclude
that W1 is the discrete uniformity on P , and hence, so is W∞. That means that any
function g : P → [0,1] is W∞-uniformly-continuous. According to the Le Cam-
Schwartz theorem this fact renders any pair of disjoint model subsets B,V (uni-
formly) testable, which is appropriate in deterministic setting. Note that the map
x 7→ δx is not continuous unless we equip X also with the discrete topology (and
hence, not a parametrization cf. the definition at the beginning of section 9.2).
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By contrast, the map x 7→ δx is continuous if we equip P with the TC topology; in
fact, if X is completely regular, the inverse mapping δx 7→ x is also continuous and
X and P are homeomorphic (see exercise 8.11.12). To extend this point, note that
the convex hull of P is TC-dense in the space M 1(X ,B) of all Borel probability
measures on (X ,B), but not T∞-dense unless X is countable.

C.6 Function spaces

We consider spaces of functions from the general perspective of Bourbaki (1989)
[47], Ch. X, with special attention for the notions of completeness and compactness.

Let X be a topological space and let (Y ,W ) be a Hausdorff uniform space.
Consider the set F (X ,Y ) of all maps f : X → Y . Denote the subspace of all
continuous such f by C(X ,Y ).

Definition C.6.1. Let F be a subspace of F (X ,Y ). Let Σ be a collection of sub-
sets of X ; for every S ∈ Σ and every entourage W ∈W , define,

V (S,W ) =
{
( f ,g) ∈F ×F : ∀x∈S ( f (x),g(x)) ∈V

}
.

Finite intersections of the sets V (S,W ), (S ∈ Σ ,W ∈ W ) form a fundamental sys-
tem of entourages for a uniformity VΣ on F that is called the uniformity of Σ -
convergence. The uniform (or topological) space (F ,VΣ ) is denoted FΣ .

If Σ = {X }, the uniformity/topology is referred to as the uniformity/topology of
uniform convergence; if Σ = {{x} : x ∈ X }, the uniformity/topology is referred
to as the uniformity/topology of pointwise convergence; if Σ consists of all com-
pact subsets of X , the uniformity/topology is referred to as the uniformity/topology
of compact convergence, etcetera. If Y is Hausdorff and the sets of Σ cover X ,
then FΣ (X ,Y ) is Hausdorff. If Y1,Y2 are two uniform spaces and h : Y1 → Y2
is uniformly continuous, then the map FΣ (X ,Y1)→ FΣ (X ,Y2) : f 7→ h ◦ f is
uniformly continuous. If X1,X2 are two topological spaces, with Σ1 (resp. Σ2)
a collection of subsets of X1 (resp. of X2) and g : X1 → X2 is such that, for
any S ∈ Σ1, g(S) is contained in a finite union of sets from Σ2, then the map
FΣ (X ,Y1)→ FΣ (X ,Y2) : f 7→ f ◦ g is uniformly continuous. Pointwise con-
vergence plays an ultimate role when it comes to completeness in functions space:
if G is a filter in FΣ (X ,Y ), then G converges to f , if and only if, G is Cauchy for
the Σ -uniformity and converges pointwise to f .

Theorem C.6.2. (Completeneness of functions spaces)
A subspace H of FΣ (X ,Y ) is complete, if and only if, every filter in H that is
Cauchy for the Σ -uniformity converges pointwise to an f ∈ H (for all points in
∪{S : S ∈ Σ}).

If S⊂FΣ1(X ,Y ) is complete and Σ1⊂Σ2, then S is complete also in FΣ2(X ,Y ).
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Theorem C.6.3. (Pointwise completeneness)
Let H be a subset of FΣ (X ,Y ). If, for all x ∈ ∪{S : S ∈ Σ},

H(x) = { f (x) : f ∈ H},

is complete in Y , then the closure H̄ in FΣ (X ,Y ) is complete.

If Y is complete, then FΣ (X ,Y ) is complete.
Next, we restrict attention to continuous maps, i.e. we apply the preceding gener-

alities to the subspaces CΣ (X ,Y ). Since pointwise limits of continuous functions
may have points of discontinuity, completeness is no longer a straightforward prop-
erty, unless we impose uniform convergence: if Y is complete, the space C(X ,Y )
is complete for the uniformity of uniform convergence. (It is noted that on C(X ,Y )
the uniformity of uniform convergence on a subset B is the same for all dense sub-
sets B of X .) By extension, the space C̃Σ (X ,Y ) of all functions f : X →Y with
continuous restrictions f

∣∣
S for all S ∈ Σ , is complete for the Σ -uniformity, if Y

is complete. If X can be covered by open subsets U , each of which is contained
in some S ∈ Σ , then C̃Σ (X ,Y ) = C(X ,Y ) and CΣ (X ,Y ) is complete, if Y is
complete. For example: if X is locally compact and Y is complete, then C(X ,Y )
is complete for the uniformity of compact convergence.

Compactness in function spaces revolves around the notion of equi-continuity.

Definition C.6.4. Let X be a topological space and let (Y ,W ) be a uniform space.
A subset H of F (X ,Y ) is said to be equi-continuous at a point x∈X , if for every
W ∈ W there is a neighbourhood U of x, such that ( f (x), f (y)) ∈W for all y ∈U
and every f ∈H. The subset H is said to be equi-continuous, if H is equi-continuous
in every point of X . If (X ,U ) is a uniform space, a subset H of F (X ,Y ) is said
to be uniformly equi-continuous, if for every W ∈ W there is a U ∈ U , such that
( f (x), f (y)) ∈W for all (x,y) ∈U and every f ∈ H.

Uniform equi-continuity of a subset H implies equi-continuity of H; (uniform)
equi-continuity of H implies (uniform) continuity of each f ∈ H. If X is a com-
pact space, every equi-continuous subset is uniformly equi-continuous. Subsets and
finite unions of (uniformly) equi-continuous subsets are again (uniformly) equi-
continuous. A subset H is equi-continuous at x, if and only if the closure of H
in F (X ,Y ) with the topology of pointwise convergence is equi-continuous.

Proposition C.6.5. Let X be a topological space, Y a uniform space and H an
equi-continuous subset of C(X ,Y ). If H is endowed with the topology of pointwise
convergence, then the map H×X → Y : (h,x) 7→ h(x) is continuous.

The above is reflected in more intuitive form as follows: if h → g in an equi-
continuous subset and x→ y in X , then also h(x)→ g(y). Equi-continuity also
makes composition of functions continuous for the topology of pointwise conver-
gence.

Proposition C.6.6. Let X be a topological space, Y ,Z uniform spaces and H
an equi-continuous subset of C(Y ,Z ). If we endow H, C(X ,Y ) and C(X ,Z )
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with the topology of pointwise convergence, the map C(X ,Y )×H →C(X ,Z ) :
( f ,h) 7→ h◦ f is continuous.

If X is a topological space, Y a uniform space and H is an equi-continuous subset
of F (X ,Y ), the topologies of compact convergence, pointwise convergence and
pointwise convergence on a dense subset are identical. Compact sets of continuous
mappings are characterized as follows.

Theorem C.6.7. (Ascoli-Arzelà)
Let X be a topological (resp. uniform) space and let Σ be a covering of X by
compact (resp. pre-compact) subsets. Let Y be a uniform space and let H be a
subset of F (X ,Y ) such that, for every S ∈ Σ and every h ∈ H, the restriction
h
∣∣
S is continuous (resp. uniformly continuous). Then, for H to be pre-compact with

respect to the uniformity of Σ -convergence, it is necessary and sufficient that,

(i) for each S ∈ Σ , the set of restrictions {h
∣∣
S: h ∈ H} is equi-continuous (resp.

uniformly equi-continuous) in F (S,Y );
(ii) for each x ∈X , the set H(x) is pre-compact in Y .

If Σ1 ⊂ Σ2 and the sets of Σ1 cover X , then compactness of S⊂F (X ,Y ) for Σ1-
convergence and Σ1-convergence are equivalent, and on S, the Σ1- and Σ2-topologies
are the same. Two straightforward corollaries are as follows.

Corollary C.6.8. Let X be a topological space and let Y be a Hausdorff uniform
space. Any equi-continuous H in C(X ,Y ) such that H(x) is relatively compact in
Y for all x ∈X , is relatively compact for the topology of compact convergence.

Corollary C.6.9. Let X be a locally compact space, let Y be a Hausdorff uniform
space and let H be a subset of C(X ,Y ). Then H is relatively compact for the
topology of compact convergence, if and only if H is equi-continuous and H(x) is
relatively compact in Y for all x ∈X .

For example, if X is Rk and Y = Rl for some k, l ≥ 1, then any bounded, equi-
continuous subset H of C(X ,Y ) is relatively compact.

To conclude this section, we consider some cases specified by extra properties for
the spaces X and Y . If Y is a metrizable uniform space, the uniformity of uniform
convergence is metrizable; if, in addition, X is σ -compact, then the uniformity
of compact convergence is metrizable. If X is compact metrizable and Y is Pol-
ish, then C(X ,Y ) is Polish. For a metric space (Y ,d), a mapping f : X → Y is
said to be bounded, if sup{d( f (x), f (y)) : x,y ∈X }< ∞. The space of all bounded
(continuous) mappings is clopen in F (X ,Y ) (in C(X ,Y )) for the topology of
uniform convergence, and it is complete if Y is complete. If X is locally compact,
Y is a metrizable uniform space and both X and Y are second countable, then
the space C(X ,Y ) is metrizable and second countable for the topology of com-
pact convergence. It is noted that the space Cb(R,R) of all bounded, continuous,
real-valued functions on R is not second countable for the topology of uniform con-
vergence. The subspace of all bounded continuous functions on R with a limit at
infinity, however, is second countable.
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C.7 Vector spaces and locally convex spaces

The fundamental concepts in the theory of functional analysis are usually intro-
duced using complete normed and inner-product spaces, see for example Meggin-
son (1998) [200]. While this approach exposes the extent of the theory on function
spaces quite fully, the resulting perspective leaves something to be desired in terms
of the generality that is required for other applications, most notably the theory
of generalized functions (see e.g. [255]) and many aspects of the theory of (Borel
and Radon) measures. The more general version of functional analysis that under-
pins the statistical mathematics of Le Cam (1986) [187] revolves around so-called
topological vector spaces and locally convex spaces. Bourbaki (1987, 2004, 2010)
[50, 48, 49] covers these subjects at a very formal level, while more accessible ver-
sions can be found in Schaefer (1999) [235], Rudin (1991) [233] and in Trèves
(2006) [255]. We start this summary with a quick look at function spaces and then
give the basic elements of vector spaces and locally convex spaces. For the sake of
brevity and because they used only in passing, the more evolved theory of Riesz
spaces (with a central role in [187]) is not discussed (see, however, Luxemburg and
Zaanen (1971) [196] and Zaanen and Luxemburg (1983) [273]).

[...] A linear space (also, vector space) E is a space closed under the usual linear
operations; a topological vector space is a vector space with a topology, in which
the linear operations are continuous.

Definition C.7.1. A semi-norm on a (real or complex) linear space E is a map p :
E→ [0,∞) such that,

(i) p is sub-additive: for all x,y ∈ E, p(x+ y)≤ p(x)+ p(y),
(ii) p is positively homogeneous: for any (real or complex) λ and any x ∈ E,

p(λx) = |λ |p(x).

A norm ∥ · ∥ : E → [0,∞) is a semi-norm with the additional property that ∥x∥ = 0
implies x = 0.

For a linear space E with a norm ∥ · ∥, it follows directly that d(x,y) = ∥x− y∥ is
a metric on E. Correspondingly the collection of all norm-balls, B(x,r) = {y ∈ E :
∥y− x∥ < r}, (x ∈ E, r > 0), forms the basis for a metric topology on E called the
norm topology.

Definition C.7.2. A normed space (E,∥ · ∥) is a linear space E with a norm ∥ · ∥ :
E → [0,∞), equipped with the metric topology generated by the norm balls. A Ba-
nach space is a normed space that is complete for the norm topology.

A linear form on a vector space E is any linear map f : E→ R.

Definition C.7.3. If E is a topological vector space and E∗ denotes so-called alge-
braic dual of E, which is the vector space of all linear forms on E, then the linear
subspace of those f ∈ E∗ that are continuous for the topology on E is called the
continuous dual of E, denoted E ′.
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[...]
Two vector spaces E and F are placed in dual correspondence by a (real) bilinear

form B : E×F → R.

Definition C.7.4. The weak topology σ(E,F) is a topology on E, generated by a
basis of open neighbourhoods of the form,

Ue, f1... fk =
{

e′ ∈ E : max
1≤i≤k

|B(e− e′, f )|< 1
}

where e ∈ E, and f1, . . . , fk ∈ F . Similarly, the sets,

Vf ,e1...ek =
{

f ′ ∈ F : max
1≤i≤k

|B(e, f − f ′)|< 1
}

where f ∈ F , and e1, . . . ,ek ∈ E, form a basis for the weak topology σ(F,E) on F .

The continuous dual of a space E in dual correspondence with another space F , is
E ′ = F . If a locally convex space E has the topology σ(E,F) for some dual space
F , then a subset A of E is called bounded, if {|B(e, f )| : e ∈ A} is bounded in R, for
every f in F .

Proposition C.7.5. A bounded subset of a weak space is pre-compact. A complete
bounded subset of a weak space is compact.

[...]

Definition C.7.6. Let E and F be two vector spaces in dual correspondence. For
every subset M of E, the polar (set) is defined,

M◦ =
{

y ∈ F : B(x,y)≥−1, x ∈M
}
.

The bi-polar (set) of a subset M of E is defined,

M◦◦ =
{

x ∈ E : B(x,y)≥−1y ∈Mcirc
}
.

Theorem C.7.7. (Bi-polar theorem)theorem!bi-polar
Let E and F be two vector spaces in dual correspondence. For every subset M of E,
the bi-polar M◦◦ equals the closed (for σ(E,F)) convex hull of M∪{0}.

[...]

Definition C.7.8. A real topological vector space is a locally convex space if there
exists a fundamental system of neighbourhoods of 0 consisting of convex sets.

A topological vector space E is a locally convex space, if and only if the topology
on E is defined by a collection of semi-norms.

[...]

Theorem C.7.9. (Hahn-Banach theorem (analytic))
Let p be a semi-norm on a vector space E. Let V be a vector subspace of E and f

a linear form on V such that, for all y ∈ V , f (y) ≤ p(y). Then there exists a linear
form h on E that extends f , such that f (x)≤ p(x) for all x ∈ E.
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(See [50], Ch. II, § 3, No. 2, Theorem 1.)

Corollary C.7.10. If a linear functional f on a subspace V of a normed space (E,∥·
∥) is continuous, then there exists a continuous linear functional h that extends f to
the whole space.

The Hahn-Banach theorem can also be formulated in an equivalent, strictly geomet-
ric form.

Theorem C.7.11. (Hahn-Banach theorem (geometric))
Let A be an open convex non-empty subset of a topological vector space and let M

be a non-empty linear variety that does not intersect A. Then there exists a closed
hyperplane that contains M and does not intersect A.

(See [50], Ch. II, § 5, No. 1, Theorem 1.) In a locally convex space, any closed con-
vex set is the intersection of all closed halfspaces that contain it.

[...]
Note that P∞ may be replaced by its linear span L , with straightforward ex-

tension of the definition of the entourages Wn, f1,..., fk , without changing the conclu-
sions above. In that case, also define the linear space F that consists of all maps
f : X ∞→ R that are in the union of the images of the spaces Fn under the canoni-
cal embeddings of Fn in the space of all maps X∞→R. To define F topologically,
we view {Fn : n ≥ 1} as a system of locally convex spaces (by means of the col-
lection semi-norms pµ : Fn→R : f 7→ |µ f | for µ ∈L ). The space F is the direct
(or inductive limit) of the system (Fn, fnm), with canonical injections for all n≤ m,
fnm : Fn→Fm that are trivially continuous (see [50], Ch. II, § 4, No. 5, Example II).
The locally convex spaces L and F are then placed in dual correspondence, via the
bilinear form B(µ, f ) = µ f . Particularly, the topology T∞ on L associated with W∞

coincides with the weak topology σ(L ,F ); the topology on the direct limit F is
σ(F ,L ).

[...]
For the next theorem only, assume that P is norm-bounded collection of bounded,

positive measures, dominated by a probability measure Q and represented as a fam-
ily PQ = {dP/dQ : P ∈P} in L1(Q). The continuous dual of L1(Q) is L∞(Q) and
the model P with the T∞-topology is homeomorphic with PQ as a subspace of
L1(Q) with the weak topology. (see [78].)

Theorem C.7.12. (Dunford-Pettis) Assume PQ is a norm-bounded subset of L1(Q);
PQ is relatively weakly compact, if and only if, for every ε > 0 there is an M > 0
such that,

sup
P∈P

∫
{dP/dQ>M}

dP
dQ

dQ < ε,

that is, PQ is uniformly Q-integrable.

It is shown in the proof of lemma 3 of section 17.5 of Le Cam (1986) [187] (in
the somewhat broader context of theorem 6 of appendix 8 in [187]) that weak con-
vergence of a net fα → f in L1(Q) implies weak convergence of product densi-
ties f n

α → f n weakly in L1(Qn), as a result of the Dunford-Pettis theorem (see also
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lemma 3.8 in [248]). Consequently, a net in P that has a T1-convergent subnet,
also has a Tn-convergent subnet, so T1-compactness implies Tn-compactness for
all n≥ 1, which implies T∞-compactness.

Proposition C.7.13. Let P be a model for i.i.d. data Xn; P is T1-compact, if and
only if, P is T∞-compact.

[...]
(Relative) compactness of the model P for TC is the realm of Prokhorov’s the-

orem (see Prokhorov (1956) [223]). Here it is assumed that X is a Hausdorff topo-
logical space with Borel σ -algebra. In [47], Ch. IX, § 5, No. 5, the following is re-
ferred to as Prokhorov’s property.

Definition C.7.14. Let H be a subset of M(X ); H is said to be uniformly tight (or,
sometimes for subsets H that consist of probability measures, bounded in probabil-
ity), if,

(i) sup{∥µ∥ : µ ∈ H}< ∞,
(ii) for every ε > 0, there is a compact K in X such that,

sup{|µ(X \K)| : µ ∈ H} ≤ ε.

For probability models P the uniform bound in norm is always satisfied and only
the second condition plays a role when one verifies relative compactness for TC.

Theorem C.7.15. Assume that X is completely regular. A subset H of M(X ) that
is uniformly tight, is H relatively compact for TC.

Proof. For a proof, see [47], Ch. IX, § 5, No. 5, theorem 1.

In locally compact or Polish spaces, uniform tightness is equivalent to TC-relative
compactness.

Theorem C.7.16. (Prokhorov)
Assume that X is locally compact or Polish. A subset H of M(X ) that is relatively
compact for TC, is uniformly tight.

Proof. For a proof, see [47], Ch. IX, § 5, No. 5, theorem 2.

Note that also regarding matters of compactness, the T1 and TC topologies are
different in that the TC compactness criterion refers to a topological feature of the
sample space (the compact subset K of X ), while the T1 compactness criterion
does not and is formulated as a property that derives from X as a measurable space
(uniform integrability). The associated strong topologies also maintain a distinction
of the type.

Proposition C.7.17. The strong topologies associated with T1 and T∞ are equal to
the total-variational topology. The strong topology associated with TC is TC itself.

To conclude with an example, we consider a sequence (Pn) of probability measures
that converges in TC but not T1. The example also shows how TC-compact sets can
be non-compact for T1.
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Example C.7.18. Consider X = [0,1] with the Borel σ -algebra with distributions
Pn defined by their Lebesgue measures pn for all n≥ 1, pn(x) = n1{0≤ x ≤ 1/n}.
For any continuous g : [0,1]→ R,

inf
0≤x≤1/n

g(x)≤
∫ 1

0
g(x)dPn(x)≤ sup

0≤x≤1/n
g(x),

and both bounds go to g(0) as n→ ∞, so Pn → δ0 in TC. However, the collection
{Pn : n ≥ 1} does not satisfy the condition of theorem C.7.12, so (Pn) does not
converge for T1.

C.8 Radon measures

Radon measures are best viewed as continuous linear forms on spaces of bounded,
continuous functions on a topological space. They can be identified as Borel mea-
sures as in appendix B, with extra properties. Although abstract measure theory is
sufficient for most applications in probability theory and statistics, certain important
aspects of abstract Borel measures, like the support of a Borel measure (see defini-
tion C.1.18), remain nebulous and are insufficient from the perspective of (func-
tional) analysis. Excellent references for the theory of Radon measures is Schwartz
(1973) [239] and Bourbaki (1998,1989) [48, 49]. (Below, we do not consider com-
plex measures, all measures are real-valued, signed measures.)

The following definition starts from the perspective that a Radon measure is an
abstract measure defined on a Borel σ -algebra with additional properties related to
compactness and the support of a measure.

Definition C.8.1. Given a Hausdorff topological space X , a Radon measure Π is a
Borel measure that is:

(i) locally bounded: any point in X has a neighbourhood U such that Π(U)< ∞;
(ii) inner regular: for any open subset U ⊂X and any ε > 0, there exists a compact

K ⊂U such that Π(U \K)< ε;
(iii) outer regular: for any Borel B⊂X and any ε > 0, there exists an open V ⊂X

such that Π(V \B)< ε .

This definition does no do justice to the real intention, however. To appreciate the
concept more appropriately, we first observe the following well-known way to rep-
resent elements of the dual of the space C(K) of continuous functions on a fixed
compact domain K (see, for example, Dunford and Schwartz (1988) [84]).

Theorem C.8.2. (Riesz representation)
Let K be a compact space and I a continuous linear form on the normed space
C(K). Then there exists a bounded Borel measure µ such that I( f ) =

∫
f dµ for all

f ∈C(K).
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Note that the measure µ is, in fact, a Radon measure (see exercise 4.4.10). It is this
functional-analytic representation that we intend to use as a starting point. But com-
pactness is, of course, a rather restrictive condition on sample spaces and even more
on the (often infinite-dimensional) parameter spaces that play a role in Bayesian
statistics, so there exists a clear need to generalize. We start the generalized con-
struction with the assumption that X is locally compact and the specification to
Radon measures becomes relevant (see Bourbaki (1998) [48]).

Let C(X ) denote the vector space of all continuous real-valued functions on a
locally compact space X and let K (X ) denote the linear subspace of continu-
ous real-valued functions on X with compact supports; for compact K ⊂X , de-
note by K (X ,K) the linear subspace of continuous real-valued functions on X
with compact support contained in K. Note that on K (X ,K), the uniform norm
f 7→ ∥ f∥K = sup{| f (x)| : x ∈ K} is well-defined. Note also that if K,K′ ⊂X are
compact and K ⊂K′, then there is a natural norm-to-norm continuous embedding of
K (X ,K) into K (X ,K′), with corresponding direct limit space that is identified
with K (X ) and each K (X ,K) corresponds to a closed linear subspace with the
topology generated by the norm ∥ · ∥K (see [48], Ch. III, § 1, No. 1, proposition 1).
(Note, however, that in general the direct-limit topology on K (X ) is weaker than
the topology generated by the uniform norm ∥ f∥= sup{| f (x)| : x∈X }.) The space
K (X ) is barrelled (since a direct limit of barrelled spaces is again a barrelled
space, see [50], Ch. III, § 4, No. 1, corollary 5 of proposition 3). Compactness of
a subset H of K (X ) is characterized by the Ascoli-Arzelà theorem ([47], Ch. X,
§ 2, No. 5, corollary 3 of theorem 2): H is compact, if and only if H is closed and
equi-continuous. This gives rise to the following alternative definition of a Radon
measure (which can be shown to be equivalent to definition C.8.1).

Theorem C.8.3. Given a locally compact Hausdorff space X , a continuous linear
form I on K (X ) is a (real, signed) Radon measure. If I( f )≥ 0 for all f ∈K (X )
such that f ≥ 0, then I is a positive Radon measure.

Every signed Radon measure I can be written as the difference of two positive Radon
measures I+, I−: I = I+− I−; the absolute value of I is the positive measure |I| =
I+ + I−. By the characterization of continuous linear forms on direct limit spaces
(see [50], Ch. II, § 4, No. 4, proposition 5), a linear form I on K (X ) is a Radon
measure, if and only if for every compact K there exists an MK > 0 such that for all
f ∈K (X ,K).:

|I( f )| ≤MK∥ f∥K .

(Indeed, this property has to be shown only for a collection of compacta whose inte-
riors cover X .) The vector space of all Radon measures on X is therefore identified
as the dual of K (X ). To make clear notational distinction between spaces of Borel
measures and the spaces of abstract measures of appendix B, we denote this space
by M(X ). Positive measures in M(X ) form a subset of M(X ) that we denote by
M+(X ).

Definition C.8.4. Given a locally compact Hausdorff space X , a linear form I on
K (X ) that is continuous for the uniform norm ∥ · ∥ is a bounded Radon measure.
We denote the linear space of all bounded Radon measures on X by Mb(X ).
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A linear form on K (X ) is a bounded Radon measure on X , if and only if there
exists an M > 0 such that for all compactly supported f ∈K (X ),

|I( f )| ≤M∥ f∥.

Clearly, if X is compact, every Radon measure is bounded. If P is a positive,
bounded Radon measure such that the smallest M like above is M = 1, then we
say that P is a Radon probability measure. We denote the subset of all probability
measures with M1(X ).

Mostly we shall consider K (X ) and M(X ) in duality.

Definition C.8.5. Consider the fundamental system of entourages obtained by choos-
ing k ≥ 1, and f1, . . . , fk ∈K (X ) to define,

Wf1,..., fk =
{
(µ,ν) ∈M(X )×M(X ) :

∣∣(µ−ν) fi
∣∣< 1,1≤ i≤ k

}
.

These subsets of M(X )×M(X ) form a fundamental system of entourages for the
vague uniformity WK on M(X ), with corresponding vague topology TK .

It is noted that M(X ) is Hausdorff and that every closed, bounded subset of M(X )
is complete (see [48], Ch. III, § 1, No. 3, proposition 7).

In the case of arbitrary (that is, non-locally-compact) Hausdorff spaces, the iden-
tification of Radon measures and continuous linear forms is slightly more involved.
In the definitions, we replace the direct limit space K (X ) in the above, by the
space of all bounded, continuous functions.

Definition C.8.6. For a Hausdorff topological space X , Cb(X ) denotes the linear
space of all bounded, continuous f : X → R, equipped with the uniform norm.

On completely regular spaces, bounded Radon measures are identified with ele-
ments of a dual (now of Cb(X ) with the uniform norm ∥·∥), while the compactness
requirement is additional (see [49], Ch. IX, § 5, No. 2, proposition 5).

Theorem C.8.7. (Riesz-Markov-Kakutani)
Let X be a completely regular space and I a continuous linear form on the normed
space Cb(X ). In order that there exist a bounded Radon measure µ such that I( f )=∫

f dµ , for all f ∈Cb(X ), it is necessary and sufficient that,

(R) for every ε > 0, there is a compact K in X , such that ∥g∥ ≤ 1, g
∣∣
K= 0 imply

|I(g)| ≤ ε .

Consider the linear space of bounded Radon measures Mb(X ) and the linear
space of bounded, continuous, real-valued maps Cb(X ) as a dual pair with bi-linear
form ⟨µ,g⟩ =

∫
gdµ , for all µ ∈M(X ) and g ∈Cb(X ). Re-phrased in the termi-

nology of uniform spaces, we define this as follows.

Definition C.8.8. Let X be a completely regular space. Consider the fundamental
system of entourages obtained by choosing k≥ 1, and f1, . . . , fk ∈Cb(X ) to define,
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Wf1,..., fk =
{
(µ,ν) ∈Mb(X )×Mb(X ) :

∣∣(µ−ν) fi
∣∣< 1,1≤ i≤ k

}
.

These subsets of Mb(X )×Mb(X ) form a fundamental system of entourages for
the weak uniformity Wc on Mb(X ), with corresponding weak topology TC. We have
seen the weak uniformity/topology in definition C.5.8, restricted to (subspaces of)
M1(X ).

With the weak topology, the space Mb(X ) is a completely regular space.

Theorem C.8.9. If X is a Polish space, M+(X ) is a Polish space for the weak
topology.

(See Proposition 10 of [49], Ch. IX, § 5, No. 4.) The above theorem does not imply
that M(X ) or Mb(X ) are also a Polish space.

Definition C.8.10. A Hausdorff topological space X has the Radon property, re-
spectively the strong Radon property (and X is said to be a (strong) Radon space),
if every bounded (respectively, locally bounded) Borel measure is a Radon measure.

Theorem C.8.11. A Hausdorff topological space X that is a Souslin space, has the
strong Radon property.

(see [49], Ch. IX, § 3, No. 1, proposition 3) or [239], Ch. 2, theorem 10). Polish
spaces are Souslin spaces, so all Polish spaces have the strong Radon property.

Definition C.8.12. Lusin-measurablility

If X ,Y are Souslin spaces, µ is a Radon measure on Y and f : X → Y is
surjective and continuous, then there exists a Lusin µ-measurable g : Y →X such
that f ◦g is the identity on Y .

C.9 Convergence in spaces of probability measures

Let M1(R) denote the space of all Borel probability measures on R.

Definition C.9.1. (vague topology)
Let (Qn) and Q in M1(R) be given. We say that Qn converges vaguely to Q if for
every continuous f : R→ R with compact support, Qn f → Q f .

Definition C.9.2. Let (Qn) and Q in M1(R) be given. We say that Qn converges
weakly to Q if for every bounded, continuous f : R→ R, Qn f → Q f .

Trivially, if Qn converges weakly to Q and f : R→ R is continuous, then Qn ◦ f−1

converges weakly to Q◦ f−1; for sequences of real-valued random variables Xn ∼ Pn
converging to X ∼ Q, this amounts to f (Xn) converging to f (X), a result known as
the continuous mapping theorem. Relative compactness for the weak topology is
characterized as uniform tightness (for every ε > 0, there is an M > 0 such that for
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all n ≥ 1, we have Pn(|Xn| > M) < ε), which we also indicate with the stochastic
order symbol Xn = OPn(1). The other stochastic order symbol signifies convergence
to zero in probability (for all δ ,ε > 0, there is an n ≥ 1 such that for all m ≥ n,
Pn(|Xn| > δ ) < ε), and is indicated Xn = oPn(1). When two sequences of random
variables (Xn),(Yn) are involved, Xn = OPn(Yn) (or Xn = oPn(Yn)) simply means that
Y−1

n Xn = OPn(1) (or Y−1
n Xn = oPn(1)).

Weak convergence has several equivalent formulations.

Lemma C.9.3. Portmanteau lemma
Let (Qn) and Q in M1(R) be given. The following are equivalent:

(i) Qn converges weakly to Q.
(ii) For all t ∈C, Qn(−∞, t]→Q(−∞, t], where C denotes the set of continuity points

of R→ [0,1] : t 7→ Q(−∞, t].
(iii) For every bounded, Lipschitz g : R→ R, Qng→ Qg.
(iv) For all non-negative, continuous h : R→ R, liminfn→∞ Qn f ≥ Q f .
(v) For every open set F ⊂ R, liminfn→∞ Qn(F)≥ Q(F).

(vi) For every closed set G⊂ R, limsupn→∞ Qn(G)≤ Q(G).
(vii) For every Borel set B such that Q(∂B) = 0, Qn(B)→ Q(B).

In (vii) above, ∂B denotes the boundary of B, which is defined as the closure of B
minus the interior of B.

Proposition C.9.4. Let Y be a Polish space and let B be its Borel σ -algebra. With
the topology TC of weak convergence, the space Mb

+(R) is Polish. Since the space
of probability measures M1(R) is a closed subset of Mb

+(R), M1(R) is also Polish.

Proof. See theorem (17.23) in [149].

Definition C.9.5. (Le Cam-Schwartz topology)
Let Q in M1(R) and a net (Qα) in M1(R) be given. We say that Qα converges to
Q in the Le Cam-Schwartz topology, if for every bounded, measurable f : R→ R,
Qα f → Q f .

See also definition C.9.5.

Definition C.9.6. (topology of pointwise convergence)
Let (Qn) and Q in M1(R) be given. We say that Qn converges pointwise to Q if, for
all B ∈B, Qn(B)→ Q(B).

Definition C.9.7. (topology of total variation)
Let (Qn) and Q in M1(R) be given. We say that Qn converges in total variation to Q
if,

∥Qn(B)−Q(B)∥= sup
B∈B

∣∣Qn(B)−Q(B)
∣∣→ 0.

In exercise ??, it is shown that this distance can also be calculated as the L1-
difference between densities for Qn and Q.
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Lemma C.9.8. (Scheffé’s lemma)
Let (Ω ,F ,µ) be a measure space. Given a sequence ( fn) of integrable functions

and a measurable function f such that fn(ω)→ f (ω) for µ-almost-all ω , then∫
| fn− f |dµ → 0 if and only if

∫
| fn|dµ →

∫
| f |dµ .

Corollary C.9.9. Let (Ω ,F ,µ) be a measure space. Let p, pn (n≥ 1) be probability
densities with respect to µ . If pn(ω)→ p(ω) for µ-almost-all ω ∈ Ω ), then ∥Pn−
P∥→ 0.

C.10 Contiguity

First, let us recall the definition of contiguity [182] (see [187] for alternatives, e.g.
in terms of limiting domination in a sequence of binary experiments).

Definition C.10.1. Given measurable spaces (Xn,Bn), n ≥ 1 with two sequences
(Pn) and (Qn) of probability measures, we say that Qn is contiguous with respect to
Pn, notation Qn◁Pn, if,

Pnφn(Xn) = o(1) ⇒ Qnφn(Xn) = o(1), (C.1)

for every sequence of Bn-measurable φn : Xn→ [0,1].

The value of the notion of contiguity does not just reside with the usefulness of the
property itself, but also with the multitude of accessible characterizations listed in
Le Cam’s famous First Lemma (see, e.g., Hajék and S̆idák (1967) [125]). (One of the
formulations requires that we define the so-called Hellinger transform ψ(P,Q;α) =∫

pα q1−α dµ , where p and q denote densities for P and Q with respect to a σ -finite
measure that dominates both P and Q.)

Lemma C.10.2. (Le Cam’s First Lemma)
Given measurable spaces ((Xn,Bn) : n ≥ 1) with two sequences (Pn) and (Qn) of
probability measures, the following are equivalent:

(i) Qn◁Pn,
(ii) for any measurable Tn : Xn→ R, if Tn

Pn−→0, then Tn
Qn−−→0,

(iii) given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b)< ε , for large enough
n,

(iv) given ε > 0, there is a c > 0 such that ∥Qn−Qn ∧ cPn∥ < ε , for large enough
n,

(v) if dPn/dQn
Qn-w.−−−→ f along a subsequence, then P( f > 0) = 1,

(vi) if dQn/dPn
Pn-w.−−−→g along a subsequence, then Eg = 1,

(vii) Hellinger transforms satisfy, liminfn limα↑1 ψ(Pn,Qn;α) = 1.

A proof of this form of the First Lemma can be found in [187], section 6.3. Note
the relation to testing: for two sequences (Pn), (Qn) that are mutually contiguous
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(Pn ◁Qn and Qn ◁Pn), there exists no test sequence that separates (Pn) from (Qn)
asymptotically. Loosely said, (Pn) and (Qn) are indistinguishable statistically re-
gardless of the amount of data available. Much more can be said about contiguity (to
begin with, see, Roussas (1972) [232] and Greenwood and Shiryaev (1985) [121]),
for instance in relation to Le Cam’s convergence of experiments, but also, specific
relations that exist in the locally asymptotically normal case (e.g. Le Cam’s Third
lemma [125], which relates the laws of a statistic under Pn and Qn in such context).
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140. L. JAMES, A. LIJOI and I. PRÜNSTER, Posterior analysis for normalized random measures
with independent increments, Scandinavian journal of statistics 36.1 (2009), 76–97.

141. H. JEFFREYS, An invariant form for the prior probability in estimation problems, Proc. Roy.
Soc. London A186 (1946), 453–461.

142. H. JEFFREYS, Theory of probability (3rd edition), Oxford University Press, Oxford (1961).
143. V. JOHNSON, and D. ROSKELL, On the use of non-local prior densities in Bayesian hypoth-

esis tests, J. R. Statist. Soc. B 72.2 (2010), 143-–170.
144. I. JOHNSTONE and B. SILVERMAN, Needles and straw in haystacks: empirical Bayes seti-

mates of possibly sparse sequences, Ann. Statist. 32 (2004), 1594–1649.
145. S. KAKUTANI, Concrete representation of abstract (L)-spaces and the mean ergodic theo-

rem, Annals of Mathematics 42 (1941), 523–537.
146. R. KASS and A. RAFTERY, Bayes factors, Journal of the American Statistical Association

90 (1995), 773–795.
147. R. KASS and L. WASSERMAN, A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion, Journal of the American Statistical Association 90
(1995), 928–934.

148. A. KECHRIS, A. LOUVEAU and W. WOODIN, The structure of σ -ideals of compact spaces,
Trans. Amer. Math. Soc. 301 (1987), 747–758.

149. A. KECHRIS, Classical descriptive set theory, Springer, New York (1994).
150. M. KENDALL and A. STUART, The advanced theory of statistics, Vol. 2, (4th edition), Grif-

fin, London (1979).
151. YONGDAI KIM and JAEYONG LEE, The Bernstein-von Mises theorem of survival models,

(accepted for publication in Ann. Statist.)
152. YONGDAI KIM and JAEYONG LEE, The Bernstein-von Mises theorem of semiparametric

Bayesian models for survival data, (accepted for publication in Ann. Statist.)
153. J. KINGMAN and S. TAYLOR, Introduction to measure and probability, Cambridge Univer-

sity Press, Cambridge (1966).
154. J. KINGMAN, Completely random measures, Pacific J. Math. 21.1 (1967).
155. J. KINGMAN, Random discrete distributions (with discussion), J. Roy. Statist. Soc. B37

(1975), 1–22.
156. B. KLEIJN, Bayesian asymptotics under misspecification. PhD. Thesis, Free University Am-

sterdam (2004).
157. B. KLEIJN and A. VAN DER VAART, Misspecification in Infinite-Dimensional Bayesian

Statistics, Ann. Statist. 34 (2006), 837–877.
158. B. KLEIJN and A. VAN DER VAART, The Bernstein-Von-Mises theorem under misspecifica-

tion, Electron. J. Statist. 6 (2012), 354–381.
159. B. KLEIJN, A Bayesian analysis of errors-in-variables regression, (2004, unpublished).
160. B. KLEIJN and Y.-Y. ZHAO, Criteria for posterior consistency, (2013) arxiv:1308.1263

[MATH.ST].



References 433

161. B. KLEIJN and J. VAN WAAIJ, Recovery, detection and confidence sets of communities in a
sparse stochastic block model, (2018) arxiv:1810.09533 [math.ST]

162. B. KLEIJN and Y. Y. ZHAO, Criteria for posterior consistency and convergence at a rate,
Electron. J. Statist. (13.2) (2019), 4709–4742.

163. B. KLEIJN, Frequentist validity of Bayesian limits, Ann. Statist. 49.1 (2021), 182–202.
164. B. KLEIJN and J. VAN WAAIJ, Asymptotic uncertainty quantification for communities in

sparse planted bi-section models, Journal of Statistical Planning and Inference 227 (2023),
112–128.

165. B. KLEIJN and J. VAN WAAIJ, Confidence sets in a sparse stochastic block model with two
communities of unknown sizes, (2021) arxiv:2108.07078 [math.ST]

166. B. KLEIJN, Existence and phase structure of random inverse limit measures, Mathematics
13(14) (2025), 2309.

167. A. KOLMOGOROV and V. TIKHOMIROV, Epsilon-entropy and epsilon-capacity of sets in
function spaces, American Mathematical Society Translations (series 2), 17 (1961), 277–
364.

168. A. KOLMOGOROV, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer Verlag, Berlin
(1933).

169. C. KRAFT, Some conditions for consistency and uniform consistency of statistical proce-
dures, Univ. Californ. Publ. Stat. 2 (1955), 125–142.

170. C. KRAFT, A class of distribution function processes which have derivatives, Journal of
Applied Probability 2 (1964), 385–388.

171. F. KRZAKALA, et al. Spectral redemption in clustering sparse networks, Proceedings of the
National Academy of Sciences 110.52 (2013), 20935–20940.

172. S. KULKARNI and O. ZEITOUNI, A general classification rule for probability measures,
Ann. Statist. 23 (1995), 1393-–1407.

173. P. LAPLACE, Mémoire sur la probabilité des causes par les évenements, Mem. Acad. R. Sci.
Presentés par Divers Savans 6 (1774), 621–656. (Translated in Statist. Sci. 1, 359–378.)
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175. M. LAVINE, Some aspects of Pólya tree distributions for statistical modelling, Ann. Statist.

20.3 (1992), 1222–1235.
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p-value, 52
(positive) measure, 383
(strong) Radon space, 422
,, 99, 127
i.i.d., 3

accumulation point, 399
action, 63
admissibility, 70
almost-everywhere, 384
almost-surely, 384
alternative

hypothesis, 51
alternative–see alternative hypothesis, 51
ambiguous class

first, 397
second, 397

approximation
asymptotic, 123

asymptotically linearity, 133
attenuation bias, 324

Baire category
first, 407
second, 407

Baire space
the, 407, 408

ball
metric, 178, 192, 405
norm-, 415

Banach space, 415
barycentre, 201
base measure, 242, 243
basis

countable at point, 399
filter, 398
generated by subbasis, 398
linear space, 253
topological, 398

Bayes factor, 60
Bayes’s billiard, 23
Bayes’s Rule, 19
belief, 14

subjectivist’s, 89
best-regular

ML estimator, 133
bias, 106, 129
bias correction, 106
bilinear form, 235, 416
boundary, 397
bounded

subset of weak space, 416
bounded in probability

–see uniformly tight, 137, 151, 153, 418

canonical mapping, 409
Cantor mid-point function, 248, 407
Cantor space, 248, 295, 297, 309, 315, 407,

408
Carathéodory extension, 237, 383
class

minimal complete, 70
complete, 70

classification, 72
classifier, 72
clopen, 414
closure, 397
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clustering methods, 104
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coherent family

of functions, 409
compactification, 403

one-point-, 403
complement, 381
complete randomness, 234, 244
completeness

functions spaces, 412
pointwise, 413

completion, 173, 405
composite, 403
conditional distribution, 18

regular, 291, 392
conditional expectation, 391
conditional independence, 28
conditional probability, 391
confidence level

asymptotic, 43, 135
confidence level–see level, confidence, 42, 222
confidence set, 42, 222

asymptotic, 43, 128
asymptotically consistent, 44, 178
asymptotically informative, 44
consistent, 222
informative, 43
non-coverage, 43
Wald-type, 128, 150

confidence sets
efficient, 124

conjugate family, 110, 116, 243
consistency, 9, 16, 105, 125

almost-sure, 125
in a point, 125
in KL-divergence, 186

contiguity, 57, 175
remote, vi, 202

continuity theorem, 385
convergence

filter, 399
net, 398

convergence in total variation, 423
convex cover, 183
convolution, 22
counting measure, 5, 7, 385
coupling, 199, 241, 248, 393
cover, 400
coverage, 43
covering number, 181, 326
credible interval, 45
credible level, 45
credible level–see level, credible, 221
credible region, 45

credible set, 45, 124, 135, 221
asymptotic, 46
consistent, 221
HPD, 46

critical set, 51, 52
cylinder set, 394
cylinderset, 243

Daniell-Kolmogorov consistency, 394
data, 3

binning, 252
functional, 3, 234

data distribution
Bayesian, 19
frequentist, 4, 28

data-tracking, 191
de-biasing, 107, 117
decision, 63
decision principle

minimax, 65
decision rule, 64

admissible, 64
Bayes, 68
inadmissible, 64, 129
minimax, 65
randomised, 65
risk-better, 64

decision space, 63
decision theory, 63
delta method, 45
delta rule, 126
dependent data, 195
differentiable

in quadratic mean, 131
direct limit, 417, 420
directed set, 409
Dirichlet distribution, 114
Dirichlet family, 115
Dirichlet process distribution, 242, 243
disintegration, 19
disjointness, 381
distance

total-variational, 384
distribution

continuous-singular, 248
empirical, 386
posterior predictive, 12
posterior–see posterior distribution, 12
sampling, 31
tailfree, 291
unimodal, 32

distribution function
empirical, 9

domination, 384
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DQM–see differentiable in quadratic mean,
131

dual
algebraic, 415
continuous, 415

dual correspondence, 58, see dality416
dual spaces, see dality416
duality, 416
dyadic tree, 246, 248

efficiency, 109
empirical Bayes, 37, 87, 98, 102, 103
empty set, 381
enlargement

metric, 48
entourage, 225, 404
entropy

Lindley, 97
Shannon, 97

entropy number, 182
equi-continuity, 413

uniform, 413
equivariance-in-law, 132
error distribution, 324
estimate, 8
estimation

efficient, 124
estimator

M-, 40
best-regular, 133, 154
efficient, 133
empirical Bayes, v
formal Bayes, 38
irregular, 130
James-Stein, 108
MAP, 39, 135
maximum likelihood, 148
maximum-a-posteriori, 39
maximum-likelihood, 10, 15
minimax, 67
penalized maximum-likelihood, 40
regular, 129
shrinkage, 129
small-ball, 39
unbiased, 118

estimator–see point-estimator, 8
exchangability, 387
exchangeability, 29
existence

Dirichlet process, 241
expectation

empirical, 9
expected loss, 37
exponential family, 111

canonical representation, 111
of full rank, 112

factor (of a product space), 400
feature vector, 72
filter, 398

coarser, 399
finer, 399
neighbourhood, 398
ultra-, 399

finite binary sequences, 407
finite-dimensional marginals, 394
formal Bayes estimators, 172
function

bounded, 414
probability density, 390

fundamental system of entourages, 225, 404

graph, 408
graphical model, 99

Hölder space, 173
Hahn-Jordan decomposition, 384
Hausdorff completion, 405
Hilbert cube, 408
histogram, 236
histogram system, 236

coherent, 239
random, 239

homeomorphism, 400
hyperparameter, 99
hyperprior, 91, 99
hypothesis, 51

composite, 51
simple, 51

identifiability, 5
identity map, 401
inadmissable, 109
inclusion map, 401
inconsistency, 106, 174, 188
independence, 386
inductive limit, 417
inequality

Jensen’s, 140, 172, 184, 373, 393
inference, 63
information criterion

Bayesian, 105
integrability, 389
integral, 388
interior, 397
intersection, 381
inverse limit

of topological spaces, 257



440 Index

set-theoretic, 409
topological, 409
uniform, 410

inverse limit prior
consistency, 255

inverse limit system, 409
inverse system

of measures, 257
of measures, tailfree, 253
of topological spaces, 257
sequentially maximal, 257

isometry, 406

Jackson’s theorem, 347

Kullback-Leibler divergence, 97, 128, 149,
153

LAN–see local asymptotic normality, 130
law of large numbers

–see theorem, 386
lemma

Fatou, 176, 389
First Borel-Cantelli, 177, 204, 231, 242, 386
Second Borel-Cantelli, 386
Urysohn, 402
Urysohn’s, 312

level
confidence, 42, 222
credible, 221

level sequence, 44
Le Cam’s inequality, 198
likelihood principle, 10
likelihood-function, 10
limit

set-theoretic, 381
limit distribution, 9, 126
linear space, 415
local asymptotic normality, 130

stochastic, 137
stochastic, misspecified, 151

local parameter, 134
locally convex space, 416
location, 31
loss, 37
loss function

convex, 66
loss–see loss-function , 63
loss-function, 38, 63

L2-, 67
sub-convex, 133

Lusin space, 392, 407

map

continuous, 400
continuous in a point, 401
homeomorphic, 400
uniformly continuous, 404
uniformly homeomorphic, 404

marginal distribution
finite-dimensional, 394

Markov kernel, 66
matching–see posterior merging, 205
measurability, 387

of a subset, 382
measurable

Borel, 408
measurable space, 382
measure

atomic, 385
Borel, 383
delta, 385
Dirac, 292, 385
discrete probability, 22, 386
inner regular, 395, 419
Lebesgue, 384
locally bounded, 419
normalized completely random, 257
outer regular, 419
probability, 384
purely atomic probability, 386
Radon, 26, 144, 235, 419
signed, 383
total variation, 384

measure space, 383
metric, 405, 415

bounded, 406
Hellinger, 384
semi-, 406
topologically compatible, 406
total-variational, 384
uniformly compatible, 406

minimal conditions, 239
minimax theorem, 58
misclassification, 73
mixture distribution

discrete, 104
mixture model, 22
ML-II estimator, 103
MLE–see estimator, maximum-likelihood, 10
model, 4, 147

Bayesian, 18, 25
dimension, 7
dominated, 4, 173
full, 4, 116
full non-parametric, 4
hierarchical Bayes, 98, 99
identifiable, 5
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misspecified, 6
non-parametric, 7
normal, 7
parametric, 7
parametrized, 5
smooth parametric, 123
well-specified, 6, 147

model distributions
Bayesian, 18
frequentist, 4

model selection, 104, 105
monotone class, 382, 388
monotone sequence, 382
monotony

set-theoretic, 381

neighbourhood, 397
net, 398

Cauchy, 404
net prior, 347
norm, 415

semi-, 415
total variational, 384
total-variation, 4, 10, 384
uniform, 420

normed space, 415
null

hypothesis, 51
null-set, 384

prior, 172

odds ratio
posterior, 60, 219
prior, 60

optimality criteria, 10
ordering

complete, 64
partial, 64

overfitting, 105

packing number, 181
parameter

nuisance, 9, 124
of interest, 9, 124

parameter space, 5
discrete, 48
finite, 46
metric, 48

partial ordering, 409
partition, 381

generated by basis, 256
point-estimator, 8
pointwise convergence, 394, 423
Polish space, 392

Portmanteau lemma, 423
positive homogeneity, 415
posterior, 19
posterior consistency, 170

almost-surely, 170
at a point, 170
Bayesian, 170, 172

posterior convergence
at a rate, 178, 215

posterior distribution, 12
posterior mean, 35
posterior median, 37
posterior merging

strong, 205
weak, 205

posterior mode, 39
posterior odds, 60, 219
power function, 52, 54
power sequence, 56
power-set, 7
powerset, 253, 381, 385
pre-compact, 416
pre-image, 387
prediction, 12
predictive distribution

posterior, 19, 32
prior, 19

preferred
Bayes, 68
minimax, 65

prior, 12, 18
conjugate, 110
Dirichlet process, 22
Ghosal-Ghosh-van der Vaart (GGV-), 179,

191
improper, 93
informative, 88
Jeffreys, 95
Kullback-Leibler, 191
Kullback-Leibler (KL-), 175
non-informative, 92
objective, 92
reference, 97
subjective, 88
tailfree, 253

prior distribution
conditional, 90

prior mass
lower bound, 175, 184
upper bound, 202

probability density, 390
–see function–probability density, 390

probability density function, 4
probability space, 384, 393
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product space, 393, 409
projection, 237
projection map, 400
Prokhorov’s theorem, 418
property

(K1), 394
(K2), 394
(R), 421
Baire, 407
Cauchy, 410
Prokhorov, 418
Radon, 26

Radon measure
absolute value, 420
bounded, 420
positive, 420
probability, 421
signed, 420

Radon property, 422
Radon-Nikodym derivative, 390
random graph, 4
random histogram, 238
random variable, 388
randomization, 54
randomized test, 54
rate

uniform testing, 58
rate of convergence, 9, 16, 126
reference prior, 97
regression error, 323
regression function, 324
regularity, 392
regularization, 105
representation theorem

Riesz-Markov-Kakutani, 421
ring, 381
risk

Bayes, 68
minimax, 65

risk family, 64
maximal, 66, 71

risk function
(randomized decision rule), 66
Bayesian, 37, 68

risk-function, 64

sample space, 3, 63
sample-average, 9
sampling distribution, 43
Scheffé’s lemma, 424
score function, 127
score functions, 130
second countable, 25

semicontinuity, 401
separation

uniform, 58
separation axioms, 401
sequence, 398
set, 381

bi-polar, 416
polar, 416
residual, 190

set-function, 383
σ -additive, 383
σ -finite, 384
countably additive, 383
finitely additive, 236, 383

shrinkage estimation, 108
shrinkage estimator, 108
sieve, 180
sieve prior, 348, 352
sigma-algebra, 3, 15

countably generated, 382
generated, 382, 387

signed measure
bounded, 384

significance level
asymptotic, 56

significance level–see level, 52
significance level–see level, significance, 51
simple function, 388
simplex, 7, 114, 236
singularity, 384
Sobolev space, 173
Souslin space, 173, 392, 407
space

Banach, 415
metric, 5, 170, 192, 405
normed, 415
Polish, 173
separable, 173

state, 63
state space, 63
statistic, 8, 42

complete, 36
sufficient, 36

statistical decision theory, 63
statistical decision theory–see decision theory,

63
statistical model, 410
stochastic order symbol, 423
stochastic process, 393
strong Radon property, 422
studentization, 44
sub-additivity, 415
subbasis

topological, 398
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subset, 381
bounded, metric, 406
clopen, 397, 402
closed, 397
dense, 321, 400
meager, 407
nowhere dense, 407
open, 397
relatively compact, 402
residual, 27, 321, 407

super-efficiency, v
superefficiency, 109, 128
support

of a function, 401
of a measure, 25
of a Radon measure, 26

symmetric difference, 381
symmetric testing, 60

tail, 398
tailfree, 253
test

asymptotic, 53, 56
asymptotically more powerful, 57
likelihood ratio, 56
minimax Hellinger, 58, 182
minimax optimal, 58
Neyman-Pearson, 51
symmetric, 51
uniformly asymptotically most powerful, 57
uniformly most powerful, 52

test function, 54
test sequence

asymptotically consistent, 56
minimax optimal, 58
uniformly consistent, 58

test statistic, 51
test-statistic, 52
testing power

uniform, 57
theorem

Alexandrov-Urysohn, 408
Arzelá-Ascoli, 327
Baire, 407
Brouwer, 408
central limit, 9, 16, 44, 53, 126, 131, 163,

386
complete class, v, 70, 71
continuous mapping, 156, 422
Daniell-Kolmogorov, 240–242, 393
De Finetti’s, 387
dominated convergence, 166, 389
factorization, 36
Freedman inconsistency, 190

Fubini’s, 389
Glivenko-Cantelli, 10
Hahn-Banach (analytic), 416
Hahn-Banach (geometric), 417
Hurewicz, 309
Jackson’s approximation, 348
Kechris-Louveau-Woodin, 309
law of large numbers, 9, 84, 125, 131, 161,

176, 202, 244, 308, 386
Lehmann-Scheffé, 36
Le Cam-Schwartz, 171, 411
minimax, 65, 185
monotone class, 388
monotone convergence, 389
Prokhorov, 374
Radon-Nikodym, 390
Riesz representation, 144, 419
Tychonov, 403
Urysohn metrization, 406
Weierstrass, 348

theorem Ascoli-Arzelà, 414
topological space, 397

σ -compact, 183, 402, 408, 414
Baire, 307, 321, 406
compact, 402
completely metrizable, 406
completely regular, 234, 236, 402, 411, 412,

418, 421, 422
connected, 402
first countable, 399
Hausdorff, 236, 401
homeomorphic, 400
Lindelöf, 400
locally compact, 402, 411, 414, 420
metrizable, 406
normal, 402
Polish, 407
product, 400
regular, 402
second countable, 399, 406, 408, 414
separable, 400
sum, 400
zero-dimensional, 408

topological vector space, 415
barrelled, 420

topology, 169, 397
TC , 411
TK , 411
Tn, 410
coarser, 399
compact convergence, 412
discrete, 253, 399
final, 401
finer, 399
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generated by basis, 398
generated by subbasis, 398
induced by uniformity, 225, 404
initial, 401
inverse limit, 255
Le Cam-Schwartz, 256, 410, 423
Le Cam-Schwartz, n-th, 410
Le Cam-Schwartz, first, 236
Le Cam-Schwartz, inverse limit, 410
metric, 384, 405
norm, 415
pointwise convergence, 412
subspace, 399
trivial, 399
uniform convergence, 412
vague, 411, 421, 422
weak, 66, 174, 205, 235, 256, 296, 314, 321,

387, 411, 422
zero-dimensional, 402

triangle inequality, 406
type-I error, 52
type-II error, 52

ultrafilter, 399
unbiased inference, 88
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