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Quantum field theory

Quantum field theory (QFT) is based on the Wightman axioms, prop‐
erties for n‐point functions,〈

ϕ(x1)ϕ(x2) . . . ϕ(xn)
〉

∈ S ′(R4n)
like temperedness, Poincaré invariance, symmetry and positivity [1,
2]. Thus far there is no mathematical theory satisfying the Wightman
axioms although the question has been studied extensively, especially
in a simple d = 4 interacting QFT known as Euclidean ϕ4

4‐theory [3, 4].

Random inverse limit measures

For a directed set A of Borel measurable partitions α = (A1, . . . , A|α|)
of R4, define random histograms Φα with probability distributions Πα,

Φα =
(
Φα(A1), . . . , Φα(A|α|)

)
∼ Πα.

If, for all α and β that refine α,( ∑
B⊂A1

Φβ(B) , . . . ,
∑

B⊂A|α|

Φβ(B)
)

∼ Πα

then Πα, (α ∈ A ) forms a coherent inverse system of measures. Let
φα : M(R4) → R|α| : µ 7→ µα denote histogram projections.

Thm (Bourbaki, 1967) Let A be rich enough and let the Πα form
a coherent inverse system. Then there exists a Radon probability
measure Π on M(R4) such that Πα = Π ◦ φ−1

α for all α, if and only
if, for all ϵ > 0, there exist compact H ⊂ M(R4) such that,

Πα(φα(H)) ≥ 1 − ϵ,

for all α ∈ A .

Π ∈ M 1(M(R4)) is the histogram limit of the inverse system. [5] uses
the above for theDirichlet and Pólya tree random probability measures,
Kingman’s completely random measures [6] and a new stochastic pro‐
cess of Gaussian inverse limit measures useful for QFT.

Gaussian inverse limit measures

Let λ be a signed measure onR4. Let Σ be a signed symmetric measure
on R4 × R4, such that for every α ∈ A , the |α| × |α|‐matrix,

Σα,ij = Σ(Ai × Aj),
is semi‐positive definite. The

Φα =
(
Φα(A1), . . . , Φα(A|α|)

)
∼ N|α|(λα, Σα)

form a (coherent) Gaussian inverse limit system. Gaussian histogram
limits exist under conditions on λ and Σ [5].

Figure 1. A sampled Gaussian histogram on a 64x64 partition (far right), and its 32x32,
16x16 and 8x8 coarsened histograms. Coherence says that the distributions of the
random 8x8, 16x16 and 32x32 histograms must equal the distributions implied by
coarsenings of the 64x64 histogram distribution. The histogram limit is the random object
obtained by infinite refinement. (From [5].)

Thm For any bounded Moore–Aronszajn kernel k, there exists a
centred Gaussian histogram limit Πk, with λ = 0 and,

Σk(A × B) =
∫
A×B

k(x, y) dx dy

For example, take k(x, y) = 4−1
ϵ (x, y), (an ϵ‐regularized version of)

the Green’s function for the Laplacian in d = 4, leading to a random
measure Φ ∼ Π that represents the free massless scalar boson.

Figure 2. Sampled random histograms on a 64x64 partition, with a (regularized) Green’s
function 4−1

ϵ (x, y) for the Laplacian to define Σ, in d = 2; in d = 3; and in d = 4; and a
sample with the Yukawa potential in d = 4. (From [5].)

Interaction Lagrangians

For α’s in a subset of A , and with ϕα(A) = Φα(A)/µ(A), the quantities,

L4,α(Φα) =
∑

A∈α
ϕα(A)4 µ(A), L2,α(Φα) =

∑
A∈α

ϕα(A)2 µ(A)

are sub‐martingales with almost‐sure limits L4 and L2; linear combi‐
nations serve as interaction Lagrangians, e.g. for ϕ4

4‐theory:

ΠI(B) = 1
Z

∫
B

e−gL4(Φ)+m2L2(Φ) dΠ(Φ)

ΠI induces a probability measure on S ′(R4), and,
GI,n(f1, . . . , fn) = EI(Φf1 . . . Φfn

),
(Φf = ∫

f dΦ, for f ∈ S(R4)) defines the n‐point functions.

Fourier domain and quantization

In the Fourier domain 4−1(p, q) ∝ |p|−2δ(p − q), and the Gaussian
histogram limit Π̃ describes a completely random measure,

Φ̃ =
∑
i

wi δpi
,

a marked Poisson process with Π̃‐probability one.
Thm In the Fourier domain quantization in terms of particles
emerges; interacting theories Π̃I are dominated by Π̃ and mani‐
fest in the same quantized form.

This resolves the paradox posed by Haag’s theorem [7]. Expansion of
n‐point functions and Feynman calculus match.

Renormalization and Kadanoff effective action

Refining partitions imply scaling and induce effective actions [8]:

Resσ(Φα)(ΠI)(B) = 1
Z

∫
B

e−Lα(Φα) dΠα(Φα).

with,
Lα(Φα) = − log E

[
e−gL4(Φ)+m2L2(Φ) ∣∣∣ Φα

]
,

the Kadanoff effective interaction Lagrangian for partition α. Coars‐
ening induces renormalization group transformations.
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