KdV institute UvA

January 2015

- Deadline: March 2015
- Send a pdf file with your answers to B.Kleijn@uva.nl.
- Your name and student number should be on your submission.
- 1. Consider Hodges' estimators S_n of example 13.4. Show that, for any rate sequence (ϵ_n) , $\epsilon_n \downarrow 0$, $\epsilon_n (S_n 0) \stackrel{0}{\leadsto} 0$.
- 2. Let $\mathcal{P} = \{P_{\theta} : \theta > 0\}$ be the model of Poisson distributions P_{θ} with means θ . Show that this model is LAN for all $\theta > 0$.
- 3. Let $\Theta = \mathbb{R}$ and let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be the model of normal distributions $N(\theta, 1)$ of unit variance with means θ . Show that this model is LAN for all θ .
- 4. Let f be a Lebesgue density on \mathbb{R} that is symmetric around the origin. Define the model $\mathcal{P} = \{P_{\mu,\sigma} : \mu \in \mathbb{R}, \sigma \in (0,\infty)\}$ by densities $f_{\mu,\sigma}(x) = \sigma^{-1}f((x-\mu)/\sigma)$. Show that the Fisher information matrix is diagonal.
- 5. Let $\Theta = (0, \infty)$ and $\mathcal{P} = \{N(0, \theta^2) : \theta \in \Theta\}$. Let Π be a thick prior on Θ . Show that this model satisfies the conditions of the Bernstein-von Mises theorem 14.1. Find the problematic range of parameter values in this model. (*Hint: calculate the Fisher information, find a problematic limit for it and describe the effect on the limiting sequence of normal distributions for parameter values close to the problematic limit.*)
- 6. Prove the following: for $\theta \in \Theta = \mathbb{R}$, let $F_{\theta}(x) = (1 e^{-(x-\theta)}) \vee 0$ be the standard exponential distribution function located at θ . Assume that X_1, X_2, \ldots form an *i.i.d.* sample from F_{θ_0} , for some θ_0 . Let Π be a thick prior on Θ . Then the associated posterior distribution satisfies, with $h = n(\theta \theta_0)$,

$$\sup_{A} \left| \prod_{n} \left(h \in A \mid X_{1}, \dots, X_{n} \right) - \operatorname{Exp}_{n(\hat{\theta}_{n} - \theta_{0})}^{-}(A) \right| \xrightarrow{\theta_{0}} 0,$$

where $\hat{\theta}_n = X_{(1)}$ is the maximum likelihood estimate for θ_0 and Exp_a^- denotes the standard negative exponential distribution located at a.