December 2, 2014

- Deadline: December 15, 2014.
- Send a pdf file with your answers to hvzanten@uva.nl.
- Your name and student number should be on the answer sheet!
- 1. Make the following exercises from the lecture notes: 10.5, 10.6, 11.4, 11.5, 12.1.
- 2. Note that Theorems 12.1 and 12.3 remain true if the Gaussian process defining the prior depends on the sample size n. For a sequence of positive constants c_n , consider the setting of Section 12.2 with as prior Π_n the law of p_{W_n} , where $W_n = c_n W$ and W is a Brownian motion with standard normal initial distribution (as in Section 12.3.1).
 - (a) For a given sequence c_n , determine a (good) upper bound for $-\log Pr(||W_n||_{\infty} < \varepsilon)$ (with $||\cdot||_{\infty}$ the supremum-norm on [0, 1]).
 - (b) For a given sequence c_n , determine the RKHS \mathbb{H}_n of the process W_n and the corresponding RKHS-norm.
 - (c) For a given sequence c_n and a $w_0 \in C^{\beta}[0,1]$ for $\beta \in (0,1]$, determine a (good) upper bound for

$$\inf_{h\in\mathbb{H}_n:\|h-w_0\|_{\infty}\leq\varepsilon}\|h\|_{\mathbb{H}_n}^2.$$

(d) For the density estimation problem, show that there exists a choice for the rescaling sequence c_n such that if $\log p_0 \in C^{\beta}[0,1]$ for $\beta \in (0,1]$, then the posterior contracts around p_0 at the rate $n^{-\beta/(1+2\beta)}$.