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Elements of functional
analysis

A.1 Separating hyperplane theorem

Let v 2 Rn and � 2 R be given and consider the set H = {x 2 Rn : hv, xi = �}.
For x 2 H we have ⌦

v, x� (�/kvk2)v
↵

= 0,

so H = v? + (�/kvk2)v. The complement of H consists of the two sets {x :
hv, xi < �} and {x : hv, xi > �} on the two “sides” of the hyperplane.

The following theorem says that for two disjoint, convex sets, one compact
and one closed, there exists two “parallel” hyperplanes such that the sets lie
strictly one di↵erent sides of those hyperplanes.

The assumption that one of the sets is compact can not be dropped (see
Exercise 1)

Theorem A.1.1 (Separating hyperplane theorem). Let K and C be dis-
joint, convex subsets of Rn, K compact and C closed. There exist v 2 Rn and
�1, �2 2 R such that

hv, xi < �1 < �2 < hv, yi
for all x 2 K and y 2 C.

Proof. Consider the function f : K ! R defined by f(x) = inf{kx � yk : y 2
C}, i.e. f(x) is the distance of x to C. The function f is continuous (check) and
since K is compact, there exists x0 2 K such that f attains its minimum at x0.
Let yn 2 C be such that kx0 � ynk ! f(x0). By the parallelogram law we have

���
yn � ym

2

���
2

=
���

yn � x0

2
� ym � x0

2

���
2

= 1
2kyn � x0k2 + 1

2kym � x0k2 �
���

yn + ym

2
� x0

���
2
.
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By convexity (yn + ym)/2 2 C, so that k(yn + ym)/2� x0k � f(x0). Hence, we
have ���

yn � ym

2

���
2
 1

2kyn � x0k2 + 1
2kym � x0k2 � f2(x0).

The right-hand side of this display converges to 0 as n, m ! 1. So the yn

form a Cauchy sequence and hence they converge to some y0 2 Rn. Since C
is closed, y0 2 C. Let v = y0 � x0. Since K and C are disjoint, v 6= 0. It
follows that 0 < kvk2 = hv, y0 � x0i = hv, y0i � hv, x0i. It remains to show that
hv, xi  hv, x0i and hv, y0i  hv, yi for all x 2 K and y 2 C.

Take y 2 C. Since C is convex, the line segment y0 + �(y � y0), � 2 [0, 1],
belongs to C. Since y0 minimizes the distance to x0, we have

ky0 � x0k  ky0 � x0 + �(y � y0)k

for every �. By squaring this we find that

0  2� hy0 � x0, y � y0i+ �2ky � y0k2.

Dividing by � and then letting � ! 0 gives hv, y � y0i � 0, as desired.
A similar argument shows that hv, xi  hv, x0i for x 2 K.

The polar C0 of a set C ✓ Rn is defined as

C0 = {y 2 Rn : hx, yi  1 for all x 2 C}.

Note that in the special case that C is closed under multiplication with positive
scalars, we have C0 = {y 2 Rn : hx, yi  0 for all x 2 C} (check). For a given
x, the set C0

x = {z : hx, zi  0} is the set of all vectors that lie on the same
side of x? as �x. The polar is in this case the intersection of all the sets C0

x for
x 2 C.

To illustrate the bipolar theorem geometrically, consider a V -shaped set: C
the union of two rays emanating from the origin. Then one readily sees that
the polar of the polar of C precisely equals the convex hull of C. The general
result is as follows.

Theorem A.1.2 (Bipolar theorem). Let C ✓ Rn contain 0. Then the
bipolar C00 = (C0)0 equals the closed convex hull of C.

Proof. It is clear that C00 is a closed, convex set containing C, so the closed
convex hull A of C is a subset of C00. Suppose that the converse inclusion does
not hold. Then there exists a point x0 2 C00 that is not in A. By the separating
hyperplane theorem there then exists a vector v 2 Rn and �1, �2 2 R such that
hx0, vi > �1 > �2 > hy, vi for all y 2 A. Since 0 2 C ✓ A we have �1 > 0.
Dividing by �1 shows there exists a vector v 2 Rn such that hx0, vi > 1 > hy, vi
for all y 2 A. The second inequality implies that v 2 C0, and then the first one
implies that x0 62 C00, which gives a contradiction.
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A.2 Topological vector spaces

A vector space X is called a topological vector space if it is endowed with a
topology which is such that every point of X is a closed set and the addition
and scalar multiplication operations are continuous.

It is easy to see that translation by a fixed vector and multiplication by a
nonzero scalar are homeomorphisms of a topological vector space. This implies
in particular that the topology is translation-invariant, meaning that a set E ✓
X is open if and only if each of its translates x + E is open.

Topological vector spaces have nice separation properties. Combined with
the fact that points are closed sets, the next theorem implies for instance that
they are always Hausdor↵.

Theorem A.2.1. Suppose that K and C are disjoint subsets of a topological
vector space X, K compact and C closed. Then there exits a neighborhood V
of 0 such that K + V and C + V are disjoint.

Proof. The continuity of addition implies that for every neighborhood W of 0
there exist neighborhoods V1 and V2 of 0 such that V1 + V2 ✓ W (check). Now
put U = V1 \ V2 \ (�V1) \ (�V2). Then U is symmetric (i.e. U = �U) and
U + U ✓ W . Applying the same procedure to the neighborhood U we see that
for every neighborhood W of 0 there exists a symmetric neighborhood U such
that U + U + U ✓ W (etc.).

Pick an x 2 K. Then X\C is an open neighborhood of x. By translation
invariance and the preceding paragraph there exists a symmetric neighborhood
Vx of 0 such that x + Vx + Vx + Vx does not intersect C. By the symmetry
of Vx this implies that x + Vx + Vx and C + Vx are disjoint (check). Since
K is compact, it is covered by finitely many sets x1 + Vx1 , . . . , xn + Vxn . Put
V = Vx1 \ · · · \ Vxn . Then

K + V ✓
[

(xi + Vxi + V ) ✓
[

(xi + Vxi + Vxi)

and none of the terms in the last union intersects C + V .

The following lemma implies that if V is a neighborhood of 0 in a topo-
logical vector space X, then for every x 2 X it holds that x 2 rV if r is large
enough. A set V with this property is called absorbing.

Lemma A.2.2. Suppose V is a neighborhood of 0 in a topological vector space
X and rn is a sequence of positive numbers tending to infinity. Then

[
rnV = X.

Proof. Fix x 2 X. Then since V is open in X and � 7! �x from R to X is
continuous, {� : �x 2 V } is open in R. The set contains 0, and hence it contains
1/rn for n large enough. This completes the proof.
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For an arbitrary absorbing subset A (for instance a neighborhood of 0) of a
topological vector space X we define the Minkowsky functional µA : X ! [0,1)
by

µA(x) = inf{t > 0 : x/t 2 A}.

Note that µA is indeed finite-valued, since A is absorbing. The following lemma
collects properties that we need later.

Lemma A.2.3. Let A be a convex, absorbing subset of a topological vector
space X and let µA be its Minkowsky functional.

(i) µA(x + y)  µA(x) + µA(y) for all x, y 2 X.

(ii) µA(tx) = tµA(x) for all x 2 X and t � 0.

Proof. For x, y 2 X and " > 0, consider t = µA(x) + ", s = µA(y) + ". Then
by definition of µA, x/t 2 A and y/s 2 A. Hence, the convex combination

x + y

s + t
=

t

s + t

x

t
+

s

s + t

y

s

belongs to A as well. This proves (i). The proof of (ii) is easy.

For the proof of the following characterization of continuous linear func-
tionals we need the notion of a balanced neighborhood. A set B ✓ X is said to
be balanced if ↵B ✓ B for every scalar ↵ 2 R with |↵|  1.

Lemma A.2.4. Every neighborhood of 0 contains a balanced neighborhood of
0.

Proof. Let U be a neighborhood of 0. Since scalar multiplication is continuous,
there exists a � > 0 and a neighborhood V of 0 in X such that ↵V ✓ U whenever
|↵| < �. Then W = [|↵|<� ↵V is a balanced neighborhood of 0.

A linear map ⇤ : X ! R is called a linear functional on the space X. A
linear functional on X is called bounded on a subset A ✓ X if there exists a
number K > 0 such that |⇤x|  K for all x 2 A.

Theorem A.2.5. Let ⇤ be a nontrivial linear functional on a topological vector
space X. Then ⇤ is continuous if and only if ⇤ is bounded on a neighborhood
of 0.

Proof. Suppose ⇤ is continuous. Then the null space N = {x 2 X : ⇤x = 0}
is closed. Since ⇤ is nontrivial, there exists x 2 X\N . By Theorem A.2.1 there
exists a balanced neighborhood V of 0 such that x+V and N are disjoint. Then
⇤(V ) is a balanced subset of R. Suppose it is not bounded. Then since it is
balanced, it most be all of R. In particular, there then exists a y 2 V such that
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⇤y = �⇤x. But then x + y 2 N , a contradiction. Hence, ⇤(V ) is bounded, i.e.
⇤ is bounded on V .

Conversely, suppose that |⇤x|  M for all x 2 V . For r > 0, put W =
(r/M)V . Then for x 2 W , say x = (r/M)y for y 2 V , we have |⇤x| =
(r/M)|⇤y|  r. Hence, ⇤ is continuous at 0. By translation invariance, it is
continuous everywhere.

A.3 Hahn-Banach theorem

The proof of the following version of the Hahn-Banach theorem relies on the
axiom of choice, in the form of the Hausdor↵ maximality theorem:

Every nonempty partially ordered set P contains a totally ordered subset Q
which is maximal with respect to the property of being totally ordered.

A proof of this fact can for instance be found in Rudin (1987), pp. 395–396.

Theorem A.3.1 (Hahn-Banach theorem). Suppose X is a (real) vector
space and p : X ! R satisfies p(x + y)  p(x) + p(y) and p(tx) = tp(x) for
x, y 2 X and t � 0. Then if f is a linear functional on a subspace M of X such
that f(x)  p(x) for all x 2 M , f extends to a linear functional ⇤ on the whole
space X such that

�p(�x)  ⇤x  p(x)

for all x 2 X.

Proof. Suppose M is a proper subspace of X and pick x1 2 X\M . For x, y 2 M
we have

f(x) + f(y) = f(x + y)  p(x + y)  p(x� x1) + p(y + x1),

hence f(x)� p(x� x1)  p(y + x1)� f(y). So there exists an ↵ such that

f(x)� ↵  p(x� x1), f(y) + ↵  p(y + x1) (A.1)

for all x, y 2 M . Now let M1 be the vector space spanned by M and x1. An
element of M1 is of the form x+�x1 for some � 2 R. So we can extend f to M1

by setting f1(x + �x1) = f(x) + �↵. Then f1 is a well-defined linear functional
on M1 and the inequalities in (A.1) imply that f1(x)  p(x) for all x 2 M1

(check).
Let C be the collection of pairs (M 0, f 0), where M 0 is a subspace of X

containing M and f 0 is a linear extension of f to M 0 such that f  p on
M 0. Put an ordering on C by saying that (M 0, f 0)  (M 00, f 00) if M 0 ✓ M 00

and f 00|M 0 = f 0. This is a partial ordering and C is not empty. Hence, by
the Hausdor↵ maximality theorem, we can extract a maximal totally ordered
subcollection C0. Let M̃ be the union of all M 0 for which (M 0, f 0) 2 C0. Then
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M̃ is a subspace of X (check). If x 2 M̃ then x 2 M 0 for some M 0 such that
(M 0, f 0) 2 C0. We then put ⇤x = f 0(x). This defines a linear function ⇤ on
M̃ and we have that ⇤  p on M̃ (check). If M̃ were a proper subspace of X
the construction of the preceding paragraph would give us a further extension
of ⇤, contradicting the maximality of C0. Hence, M̃ = X. This completes the
proof, upon noting that ⇤  p implies that �p(�x)  �⇤(�x) = ⇤x for all
x 2 X.

Before we use the Hahn-Banach theorem to prove the infinite-dimensional
version of the separating hyperplane theorem we introduce some more concepts
and notation.

A topological vector space X is called locally convex if for every neighbor-
hood V of 0 there exists a convex neighborhood U of 0 such that U ✓ V . The
space of continuous linear maps from X to R is denoted by X⇤. It is called the
dual of X, and is treated in more detail in the next section.

Theorem A.3.2 (Separation theorem). Let A and B be disjoint, nonempty,
convex subsets of a topological vector space X.

(i) If A is open there exist ⇤ 2 X⇤ and � 2 R such that

⇤x < �  ⇤y

for every x 2 A and y 2 B.

(ii) If X is locally convex, A is compact and B is closed, there exist ⇤ 2 X⇤

and �1, �2 2 R such that

⇤x < �1 < �2 < ⇤y

for every x 2 A and y 2 B.

Proof. (i). Pick a0 2 A and b0 2 B and put x0 = b0�a0. Define C = A�B+x0

and note that C is a convex, open neighborhood of 0. Let µC be the Minkowsky
functional of C.

Let M be the linear subspace generated by x0 and define a linear functional
f on M by putting f(�x0) = �. Since A and B are disjoint, x0 62 C so we have
µC(x0) � 1 and hence, for � � 0, f(�x0) = �  �µC(x0) = µC(�x0). For
� < 0 we have f(�x0) < 0  µC(�x0). By Lemma A.2.3 and the Hahn-Banach
theorem, Theorem A.3.1, the functional f extends to a linear functional ⇤ on
X, and the extension satisfies ⇤x  µC(x) for all x 2 X. In particular ⇤  1
on C, so that |⇤|  1 on the neighborhood C \�C of 0. By Theorem A.2.5 this
implies that ⇤ is continuous, i.e. ⇤ 2 X⇤.

Now for a 2 A and b 2 B we have that

⇤a� ⇤b + 1 = ⇤(a� b + x0)  µC(a� b + x0) < 1,

since a � b + x0 2 C and C is open (Exercise 2), so ⇤a < ⇤b. It follows that
⇤(A) and ⇤(B) are disjoint, convex subsets of R, the first one lying on the left
of the second one. Since A is open and ⇤ is nonconstant, ⇤(A) is open as well
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(Exercise 3). Letting � be the right end point of ⇤(A) completes the proof of
(i).

(ii). By Theorem A.2.1 and the local convexity of X there exists a convex
neighborhood V of 0 such that (A + V )\B = ?. By the proof of part (i) there
exists ⇤ 2 X⇤ such that ⇤(A+V ) and ⇤(B) are disjoint, convex subsets of R, the
first one lying on the left of the second one, the first one being open. Moreover,
⇤(A) is a compact subset of ⇤(A + V ). The proof is now easily completed.

Corollary A.3.3. If X is a locally convex topological vector space, X⇤ sepa-
rates the points of X.

Proof. given distinct points x, y 2 X, apply the separation theorem with A =
{x} and B = {y}.

For x 2 X and ⇤ 2 X⇤ we define, in analogy with the finite-dimensional
situation, hx, ⇤i = ⇤x. The polar C0 of a set C ✓ X is defined as

C0 = {⇤ 2 X⇤ : hx,⇤i  1 for all x 2 C}.

Similarly, the bipolar is defined as

C00 = (C0)0 = {x 2 X : hx, ⇤i  1 for all ⇤ 2 C0}.

Theorem A.3.4 (Bipolar theorem). The bipolar C00 of a subset C of a
locally convex topological vector space X equals the closed convex hull of C.

Proof. It is clear that C00 is a convex set containing C, so the closed convex
hull A of C is a subset of C00. Suppose that the reverse inclusion does not
hold. Then there exists a point x0 2 C00 that is not in A. By the separation
theorem there then exists a functional ⇤ 2 X⇤ such that ⇤x0 > 1 > ⇤y for all
y 2 A (check). The second inequality implies that ⇤ 2 C0, and then the first
one implies that x0 62 C00, which is a contradiction.

A.4 Dual space

The dual of a topological vector space X is the space X⇤ of continuous linear
functionals on X. By Theorem A.2.5 this is the same as the space of linear
functionals that are bounded on a neighborhood of 0.

It is easy to see that if the topology on X is induced by a norm k · k, a
linear functional ⇤ belongs to X⇤ if and only if the unit ball in X is mapped
into a bounded subset of R. In that case we define the norm of ⇤ by

k⇤k = sup
kxk1

|⇤(x)|
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and we have the relation |⇤(x)|  k⇤k kxk for every x 2 X.

Example A.4.1. Let (E, E , µ) be a measure space with µ a finite measure,
p 2 [1,1) and X = Lp(E, E , µ). Consider a continuous linear functional ⇤ on
X. Then the map ⌫ : E ! R defined by ⌫(B) = ⇤(1B) is a signed measure (note
that the finiteness of µ implies that ⌫ is well-defined). Indeed, if Bn are disjoint
elements of E and B = [Bn, then 1[knBk ! 1B in Lp. Since ⇤ is continuous,
this implies that ⌫ is countably additive. If µ(B) = 0 then 1B vanishes in Lp

and hence ⌫(B) = 0, so ⌫ ⌧ µ. Hence, by the Radon-Nikodym theorem, there
exists a g 2 L1 such that

⇤(1B) = ⌫(B) =
Z

B

g dµ

for all B 2 E . By linearity we then have

⇤(f) =
Z

fg dµ (A.2)

for all simple functions f . Every bounded measurable function f is the uni-
form limit of simple functions and since µ is finite, uniform convergence implies
convergence in Lp. It follows that (A.2) holds for all f 2 L1.

Suppose that p > 1 and let q be the conjugate exponent. For En = {x :
|g(x)|  n} we have, since g is bounded on En and ⇤ is continuous and hence
bounded,
Z

En

|g|q dµ =
Z

En

|g|q�1sign(g)g dµ = ⇤(1En |g|q�1sign(g))  k⇤k
⇣ Z

En

|g|q dµ
⌘1/p

.

It follows that ⇣ Z

En

|g|q dµ
⌘1/q

 k⇤k (A.3)

and letting n !1 shows that g 2 Lq. If p = 1 then for every B 2 E we have
���
Z

B

g dµ
��� = |⇤(1B)|  k⇤kµ(B).

But this implies that |g|  k⇤k a.e. (indeed: if not there would exist an " > 0
such that the set B = {x : |g(x)| > k⇤k+ "} has positive µ-measure, leading to
a contradiction), hence g 2 L1.

So in all cases the function g in (A.2) belongs to Lq. We proved already
that (A.2) holds for all bounded functions f . Now ⇤ is continuous on Lp by
assumption and Hölders inequality implies that the right-hand side is continuous
for f 2 Lp as well. This shows that the relation holds in fact for all f 2 Lp.
Uniqueness of g is easy to prove. We conclude that we may identify the dual of
Lp with Lq. Moreover, using (A.3) it is easy to see that for ⇤ 2 (Lp)⇤ given by
(A.2), we have k⇤k = kgkLq (Exercise 4). ⌅

Let X be a topological vector space with dual X⇤. Every point x 2 X
induces a linear functional on X⇤, defined by ⇤ 7! ⇤x. The weak⇤-topology of
X⇤ is the weakest (i.e. smallest) topology making all these maps continuous.
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The following theorem states that X⇤ with the weak⇤-topology is a locally
convex topological vector space. This implies for instance that we can apply the
separation theorem to it. In general, the space X⇤ endowed with the weak⇤-
topology is not a Banach space. (In fact, it is not even metrizable if X is an
infinite-dimensional Banach space.)

Theorem A.4.2. The dual X⇤ of a topological vector space X, endowed with
the weak⇤-topology, is a locally convex topological vector space. Its dual is given
by {⇤ 7! ⇤x : x 2 X}.

Proof. Denote by fx be the linear functional ⇤ 7! ⇤x. If ⇤ 6= ⇤0 in X⇤, there
exists an x 2 X such that fx⇤ 6= fx⇤0. Hence, in R there exist disjoint neigh-
borhoods U of fx⇤ and U 0 of fx⇤0. Since fx is continuous, f�1

x (U) and f�1
x (U 0)

are disjoint neighborhoods of ⇤ and ⇤0. This shows that X⇤ is Hausdor↵, and
in particular that points are closed.

To show that the weak⇤-topology is translation invariant, consider an open
base set

U = {⇤ : ⇤x1 2 B1, . . . ,⇤xn 2 Bn}

and ⇤0 2 X⇤. Then ⇤0 + U = {⇤ : ⇤x1 2 B1 + ⇤0x1 . . . , ⇤xn 2 Bn + ⇤0xn} is
an open base set as well. It follows that the topology is translation invariant.
Note that the open sets V of the form

V = {⇤ : |⇤x1| < r1, . . . , |⇤xn| < rn} (A.4)

for x1, . . . , xn 2 X and r1, . . . , rn > 0 form a local base at 0. Every such set V
is convex, balanced and absorbing (check). In particular, X⇤ is a locally convex
space.

For the set V in the preceding display we have V/2 + V/2 = V and hence
addition is continuous at (0, 0). As for scalar multiplication, suppose that ↵⇤ 2
V for some scalar ↵ 2 R and ⇤ 2 X⇤. By Exercise 2, there exists t > 0 such that
t < 1/|↵| and ⇤ 2 tV . For " > 0 and ⇤0 2 tV we have that (↵+")⇤0 2 (↵+")tV .
Hence, since V is balanced, (↵+")⇤0 2 V for all " such that |↵|t+|"|t  1. Since
|↵|t < 1 there is a nonempty interval around 0 of " satisfying this condition.
Hence, scalar multiplication is continuous.

It remains to identify the dual of X⇤ (endowed with the weak⇤-topology). If
x 2 X, the linear map ⇤ 7! ⇤(x) is weak⇤-continuous by definition of the weak⇤-
topology. Conversely, let f : X⇤ ! R be weak⇤-continuous. By Theorem A.2.5,
f is bounded on a neighborhood of 0, and hence also on a base set V of the form
(A.4). This implies that f vanishes on the set N = {⇤ : ⇤x1 = · · · = ⇤xn = 0}
(Exercise 5). Now N is the kernel of the linear map ⇡ : X⇤ ! Rn defined by
⇡(⇤) = (⇤x1, . . . ,⇤xn). It follows that the linear map F : ⇡(X⇤) ! R given by
F (⇡(⇤)) = f(⇤) is well defined (check). We can extend F to a linear functional
on Rn. It is then necessarily of the form F (z1, . . . , zn) =

P
↵izi for certain real

numbers ↵i. In particular,

f(⇤) = F (⇤x1, . . . ,⇤xn) =
X

↵i⇤xi.

So indeed, f(⇤) = ⇤x, with x =
P

↵ixi.
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If X is a Banach space its dual X⇤ is endowed with a norm, and the unit
ball in X⇤ is the set {⇤ 2 X⇤ : |⇤x|  kxk for all x 2 X}. In the norm-
topology this set is not compact in general (think of an infinite-dimensional
Hilbert space). In the weak⇤-topology however, it is always compact.

Theorem A.4.3 (Banach-Alaoglu). The unit ball of the dual of a Banach
space is weak⇤-compact.

Proof. Denote the Banach space by X and let B⇤ be the unit ball in its dual. By
Tychonov’s theorem, P = ⇧x2X [�kxk, kxk] is compact (relative to the product
topology). We can view P as a collection of functions on X, with f 2 P if and
only if |f(x)|  kxk for all x 2 X. As such, we have B⇤ ✓ X⇤ \ P . Hence, B⇤

inherits two topologies: the weak⇤-topology from X⇤ and the product topology
from P . These two topologies on B⇤ coincide. To see this, take ⇤0 2 B⇤. The
sets of the form

V1 = {⇤ 2 X⇤ : |⇤x1 � ⇤0x1| < r1, . . . , |⇤xn � ⇤0x1| < rn}

and
V2 = {f 2 P : |f(x1)� ⇤0x1| < r1, . . . , |f(xn)� ⇤0x1| < rn}

form a local base for the weak⇤-topology and, respectively, the product topology
at ⇤0. Since B⇤ ✓ X⇤\P we have V1\B⇤ = V2\B⇤ and hence the two relative
topologies coincide.

Next we show that B⇤ is closed in P . Take f0 in the closure of B⇤ (with
respect to the product topology). For x, y 2 X, ↵, � 2 R and " > 0 we have
that the set

U = {f 2 P : |f(x)�f0(x)| < ", |f(y)�f0(y)| < ", |f(↵x+�y)�f0(↵x+�y)| < "}

is an open neighborhood of f0. Hence, there exist an f 2 U \ B⇤. Since f is
linear we have

f0(↵x + �y)� ↵f0(x)� �f0(y)
= (f0 � f)(↵x + �y)� ↵(f0 � f)(x)� �(f0 � f)(y)

and hence

|f0(↵x + �y)� ↵f0(x)� �f0(y)|  (1 + |↵| + |�|)".

Since " was arbitrary, it follows that f0 is linear. By definition of P we have
that |f0(x)|  kxk for every x 2 X, so indeed f0 2 B⇤.

The proof is now completed upon noting that by the preceding paragraph,
B⇤ is compact with respect to the product topology. But by the first part of
the proof, the latter topology coincides on B⇤ with the weak⇤-topology.
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Example A.4.4. Although the weak⇤-topology has some nice properties ac-
cording to Theorem A.4.2, it is good to note that it is typically “strange”.
Consider for instance a finite measure µ on the line and view L1(µ) as the dual
of L1(µ). Then from the form of the local base at 0 given in the proof of the
theorem one sees that a sequence fn in L1 converges in the weak⇤-topology to
0 if

R
fng dµ ! 0 for every g 2 L1. By dominated convergence, this holds for

instance for fn = 1(�n,n)c . This sequence does however not converge to 0 in
the ordinary, uniform topology on L1. More generally, to say that a function
f 2 L1 belongs to the weak⇤-closure of a set C ✓ L1 does not necessarily
mean that f is well-approximated by elements of C in a uniform or any other
intuitively reasonable way. ⌅
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A.5 Exercises

1. Give an example which shows that the separation theorem does not hold
in general if the assumption of compactness of one of the sets in dropped.

2. Suppose that C is an open neighborhood of 0 in a topological vector space
and let µC be its Minkowsky functional. Show that for all x 2 C it holds
that µC(x) < 1.

3. Show that a non-constant linear functional on a topological vector space
maps open sets to open sets.

4. In Example A.4.1, show that for the functional ⇤ on Lp defined by (A.2)
we have k⇤k = kgkLq .

5. In the last part of the proof of Theorem A.4.2, show that the functional
f vanishes on the set N .



B

Elements of martingale
theory

B.1 Basic definitions

Let (⌦,F , P) be a probability space. A collection of Rd-valued random variables
X = (Xt)t2T indexed by a set T ✓ R is called a (d-dimensional) stochastic
process. We call the process continuous (or cadlag), it its trajectories t 7! Xt(!)
are continuous (or cadlag). The process is called bounded if there exists a finite
number K such that a.s. kXtk  K for all t.

A filtration is a collection (Ft)t2T of sub-�-fields of F such that Fs ✓ Ft

for all s  t. It is said to satisfy the usual conditions if it is right-continuous,
i.e. \s>tFs = Ft for all t and F0 contains all the P-null sets in F . A process X
is called adapted to (Ft) is for every t, Xt is Ft-measurable. For a process X
and t 2 T we define FX

t to be the �-field generated by the collection of random
variables {Xs : s  t}. The filtration (FX

t ) is called the natural filtration of the
process X. It is the smallest filtration to which it is adapted. A process X =
(Xt)t2[0,T ] is called progressively measurable relative to the filtration (Ft)t2[0,T ]

if for all t, the map (!, s) 7! Xs(!) on ⌦⇥ [0, t] is Ft ⌦ B([0, t])-measurable.
A [0,1]-valued random variable ⌧ is called a stopping time relative to the

filtration (Ft) if {⌧  t} 2 Ft for every t. If ⌧ is a stopping time and X a
process, the stopped process X⌧ is defined by X⌧

t = X⌧^t. A localizing sequence
is a sequence of stopping times ⌧n increasing a.s. to infinity. A process X is said
to have a property P locally if there exists a localizing sequence ⌧n such that for
every n, the stopped process X⌧n has the property P.

A process M is called a martingale relative to the filtration (Ft) if every
Mt is integrable and for all s  t it holds that E(Mt | Fs) = Ms a.s.. In
accordance with the previously introduced notation the process M is called a
local martingale if there exists a localizing sequence ⌧n such that for every n, the
stopped process M⌧n is a martingale. Every martingale is a local martingale,
but not vice versa..
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B.2 Theorems

For a filtration (Ft) and a stopping time ⌧ we define

F⌧ = {A 2 F : A \ {⌧  t} 2 Ft for all t}.

The set F⌧ is always a �-field and should be thought of as the collection of
events describing the history before time ⌧ .

Theorem B.2.1 (Optional stopping theorem). Let M be a cadlag, uni-
formly integrable martingale. Then for all stopping times �  ⌧ ,

E(M⌧ | F�) = M�.

Theorem B.2.2 (Kakutani’s theorem). Let X1, X2, . . . be independent non-
negative random variables with mean 1. Define M0 = 1 and Mn = X1X2 · · ·Xn.
It holds that M is uniformly integrable if and only if

P
(1�E

p
Xn) < 1. If M

is not uniformly integrable, then Mn ! 0 a.s..

Corollary B.2.3. Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two sequences
of independent random variables. Assume Xi has a positive density fi with
respect to a dominating measure µ, and Yi has a positive density gi with respect
to µ. Then the laws of the sequences X and Y are equivalent probability
measures on (R1,B(R1)) if and only if

nX

i=1

Z
(
p

fi �
p

gi)2 dµ < 1.

If the laws are not equivalent, they are mutually singular.

Proof. Let (⌦,F) = (R1,B(R1)) and Z = (Z1, Z2, . . .) the coordinate process
on (⌦,F), so Zi(!) = !i. Let Fn ✓ F be the �-field generated by Z1, . . . , Zn.
Since the densities fi and gi are all positive, the distributions PX and PY of the
sequences X and Y are equivalent on Fn. For A 2 Fn we have

PX(A) =
Z

A

Mn dPY ,

where the Radon Nikodym derivative is defined by Mn =
Qn

i=1 fi(Zi)/gi(Zi).
Observe that under PY , the process M is a martingale to which the preced-
ing theorem applies. It is readily verified that the measures PX and PY are
equivalent on the whole �-field F if and only if M is uniformly integrable with
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respect to PY (Exercise 1). Hence, by the preceding theorem, the measures are
equivalent if and only if

nX

i=1

⇣
1�

Z p
figi dµ

⌘
< 1.

The proof of the first part is completed by noting that
R

(
p

fi �
p

gi)2 dµ =
2� 2

R p
figi dµ.

We noted that if PX and PY are not equivalent, then M is not uniformly
integrable relative to PY . Hence, by the preceding theorem, Mn ! 0, PY -
a.s.. We can reverse the roles of X and Y , which amounts to replacing M by
1/M . Then we find that if PX and PY are not equivalent, 1/Mn ! 0, PX -
a.s.. It follows that for the event A = {Mn ! 0} we have PY (A) = 1 and
PX(A) = 0.

Example B.2.4. Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two sequences
of independent random variables. Suppose that P(Xi = 1) = P(Xi = �1) = 1/2
and P(Yi = 1) = 1 � P(Yi) = �1 = 1/2 + "i for some "i 2 (�1/2, 1/2). By
the corollary, applied with µ the counting measure, fi(1) = fi(�1) = 1/2,
gi(1) = 1�gi(�1) = 1/2+ "i, the laws of the sequences X and Y are equivalent
if and only if

X ⇣
(
p

1/2�
p

1/2 + "i)2 + (
p

1/2�
p

1/2� "i)2
⌘

< 1.

By Taylor’s formula the function h(x) = (
p

1/2 �
p

1/2 + x)2 + (
p

1/2 �p
1/2� x)2 behaves like a multiple of x2 near x = 0 (check!). It follows that

the sequences are equivalent if and only if
P

"2
i < 1.
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B.3 Exercises

1. In the proof of Corollary B.2.3, show that the measures PX and PY are
equivalent on the whole �-field F if and only if M is uniformly integrable.
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