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Part I

T he Bourbaki-Prokhorov-Schwartz theorem



Daniell-Kolmogorov existence theorem (1)

Setting

Let 7 be a Polish space. To define a random function f : Z —
R, consider all finite subsets S = {sq,...,s,} of &, and probability
distributions g such that,

fs = (f(s1), f(52), ., f(sn)) ~ Ng.

Consistency
for any 5" C S, Mg is marginal to Mg;

for any permutation = of 5, M, gy = Ngom 1.

Theorem 3.1 (Daniell, 1922 Kolmogorov, 1933)
For any consistent collection (I'q S C 2 ), there exists a probability
space (Q2,.%,1N) that permits (f(x) :x € 2 ) as a stochastic process.
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Daniell-Kolmogorov existence theorem (II)

Advantages

THE tool to prove existence of stochastic processes
[1g are easy to work with

Properties of I'lg induce properties of [l

Example (Kolmogorov's continuity theorem)

[T there exist o, > 0 such that, for any S and any s,t € S,
(8
Eng|Xs — Xi| " < K|s —#'*7,

then f is v-HOlder continuous for any 0 < v < 8/ «.

Disadvantage

Q =R% and .Z is Borel o-algebra for pointwise convergence
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Random histograms

Specify
Let 2 be a Hausdorff space with Borel o-algebra #4. To define

a random measure u . B — R, consider finite partitions a =
{Aq,...,Ap} of &, (A e A A+ @), and probability distributions
1o such that,

Moo — (N(Al)a /*L(AQ)v s 7;“(147?/)) ~ MNa.

Coherence
For any [ > «, with pg ~ I‘IB,

BCA; BCAp

Goal
Under which conditions does a coherent system of random his-

tograms define a probability distribution I on the space M (%)
where the p live?



The Bourbaki-Prokhorov-Schwartz theorem (I)

Theorem 6.1 (Bourbaki (1969), Integration II, Ch. 9)
Let (%.,1.3) be an inverse system of Hausdorff spaces, T' a
Hausdorff space and 1., . 'T" — %, a coherent and separating
family of continuous mappings.

Let (1i0,,3) be a coherent inverse system of positive mea-
sures on (%, 1.,3). There exists a bounded positive Radon
measure p on T projecting to ueo for all «, if and only if,

for every ¢ > 0, there is a compact H C T s.t. for all «,

e (@a \ wa(H)> < e.



The Bourbaki-Prokhorov-Schwartz theorem (II)

Setting

Let 2 be Hausdorff with Borel o-algebra . Choose T'= M1(2"),
with a Hausdorff topology that we focus on later.

Projections
For all o = {Aq,..., A}, define histogram projections,
prat MY(2Z) = M (Za) 1 P s Pa = (P(A1), P(A2),..., P(An)),
and maps to coarsen histograms, for 7 > «,

go*aﬁiMl(%B)—)Ml(%a)ipﬁl—>< N Py(B),..., > PB(B))
BCA; BCAp

(pra = Prapopsg (@< B), and pxay = PsaB0Pxpy (@< B<7).)



The Bourbaki-Prokhorov-Schwartz theorem (III)

Coherence and random histograms

For any a, choose a probability distribution I, € Ml(%a) s.t., for
all

—1 _

Bourbaki-Prokhorov-Schwartz

Assume that the histogram projections ¢« are and
continuous. Choose I, that form a coherent system of probability
measures. There exists a Radon probability measure M on M1(.2),
projecting to g for all «, if and only if:

for any ~there is a compact H C Ml(%) s.t. for all a,

Mo (M (Za) \ @xa(H)) <e. (P)



Part II

Phases of random histogram |limits



Histogram limits with the weak-star topology (I)

Weak-star topology
Consider M1(2") with the coarsest topology T s.t.,

MYZ) SR Pr—>/fdP,

is continuous for every bounded, measurable f: Z — R.

Dunford-Pettis-Grothendieck

H c MY (Z) is weak-star compact, if and only if, there exists a
Qe MUZD) s.t.,

im  sup HP _PA LQH = 0.
L—oo PeH
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Histogram limits with the weak-star topology (II)

Support of a Jj-Radon probability measure 1
With G = [ Pdll e MY (.27, (the mean measure of 1),

suppy (M) C {P e M'(2): P <G}
Such M describe random Radon-Nikodym densities dP/dG € L1(Q).

Theorem 11.1 (Existence of weak-star histogram limits)

Let My be coherent probability measures. There is a Jy-Radon prob-
ability measure N on MY Z) projecting to My € MY (2,) for all o, if
and only if:

there is a Q € MY (2 s.t., for every e,6 >0 there is a [ >0 s.t.,
Na({Pa € M'(20) i ||Pa— Pa ALQall1 2, > 0}) <6, (PW)
for all a € <.
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Random histogram limits with the TV topology

Total variational topology

Consider M1(2°) with the total-variational metric,

dpy (P, Q) = ;LEJ%IP(B) — Q(B)|,

and call the metric topology 7y, .

Borel o-algebras are the same!

If 7 is separable and 7 is dominated, Bw = By .

Theorem 12.1 (Existence of total-variational histogram limits)

Let M, be coherent probability measures. There is a Jpy-Radon
probability measure M on MY(%Z) projecting to My € M*(2.) for all
«, if and only if, condition (PW) holds.
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Random histogram limits with the tight topology (I)

Tight topology
Consider M1(2) with the coarsest topology T os.t.,

MYU2Z) SR P|—>/fdP,
is continuous for every bounded, continuous f : Z — R.

Prokhorov
Let .2 be Polish. H c MY(2) is tightly compact, if and only if,
for all ¢ > 0, there is a compact K C £ s.t.,

sup P(Z \ K) <,
PcH

On H inner regularity holds uniformly.

Continuity of projections
The mappings P — P(A) are not continuous! So the histogram
projections 4« are not continuous...
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Random histogram limits with the tight topology (1)

Continuity of projections

To make P — P(A) continuous for all A in all «, we consider a
zero-dimensional refinement % of %Z .

Tight topology
Consider Ml(@) with the coarsest topology 77 s.t.,

MY &) SR Pn—)/fdP,
is continuous for every bounded, continuous f : % — R.

Prokhorov

Let # be Polish. H c MY(#) is tightly compact, if and only if,
for all ¢ > 0, there is a compact K C % s.t.,
sup P(# \ K) < e,
PcH
On H inner reqgularity holds uniformly.
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Random histogram limits with the tight topology (II)

Support of a .7-Radon probability measure 1

With &G again the mean measure of I,

suppr(MN) C {P e MY (2Z) : supp(P) C SUDD(G)}.
Such M are not limited to Radon-Nikodym densities in L1(G).
Theorem 15.1 (Existence of tight histogram limits)
Let My be coherent probability measures. There is a p-Radon prob-

ability measure N on Ml(%) projecting to My € M1(2,) for all «, if
and only if:

for all e, > 0 there is a compact K in % s.t.,
Ma({Po € MY(20) : Pa(Za\ Ka) > 0) <&, (PT)
for all a € & .
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Kingman's completely random measures

Completely random histograms
If A;NA; = o, then v(4;),v(A;) are independent

Cumulants
The positive measures A\ : %4 — |0, 0ol defined by,

M(B) = log /et’/(B) dn(v).

Theorem 16.1 (Kingman, 1967)
If all histograms are completely random and cumulants o-finite,

v=uvn+v¢+ v, (1)

where,
vn, IS non-random, non-atomic

vy is random purely atomic on a fixed 2/ C 2
vy IS random purely atomic, independent of v,
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Phases of random histogram limits (I)

Theorem 17.1 (Phases of random histogram limits)
Let N, be a system of histogram distributions with a limit T1.

(i.) (absolutely-continuous)
Under condition (P\/V), the random P lies in L1(G):

n({P c MY 2): P< G}) = 1.

(ii.) (fixed-atomic)
if, in addition, the My are (normalized) completely random,

P(A) =7 "(wn(A) +vp(A), Z=uv,(2)+v(2).

with v, < ' non-random, non-atomic and v random atomic,
supported on a fixed set.
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Phases of random histogram limits (II)

Theorem 17.1 (continued)
If 2 is Polish,

(iii.) (continuous-singular)
Under condition (PT), random P has support in support of G,

n({P c M) : supp(P) C supp(G)}) = 1.

(iv.) (random-atomic)
if, in addition, histograms are (normalized) completely random,

P(A) = 2~ (vn(A) + v(A) + 1 (1)),

with v, atomic, supported on a random set.
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Part IlI

Quantum field theory
and the Gaussian free field



Particle collider experiments

Gy b A ‘R i 1 P L Y -\

Interior of ATLAS detector (image from CERN, wikipedia)
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Particle collider experiments

Tunnel with

LHC ring (image from CERN, wikipedia)
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Particle collider experiments

Schematic of ATLAS detector (image from CERN, wikipedia)
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Particle collider experiments

ATLAS

EXPERIMENT

Run: 279685
Event: 690925592
2015-09-18 02:47:06 CEST

Schematic of ATLAS detector
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Quantum field theo

Hilbert space representation

In-state

Qut-state

Amplitude

Fock space

o0
Moo = B A",

|iﬂ> = ‘ELEQ,EQ,, ce

(out| — <E1, EQ, E3, ce

ry (I)

)

= |(out|in}|?

n=0
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Quantum field theory (II)
Wightman functions and path integrals

Sources and sinks

outlin) = ([ -+ [ 51(21)#(21) - jm (@) ¢ () oy ... dam )

Wightman functions (satisfying Wightman axioms)
Win(a1, @2, ..., 2m) = ($(x1) ... ¢lam))

Feynman's path integral

(#@), =21  #&) D7

Action
() = [ (6086 +m26*(2) + 26*(2) + i (@)6(x))d'a
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Part IV

The Gaussian Free Field
and emergence of the particle



Gaussian random histogram limits (I)

Signed, non-normalized random histograms

- is a bounded, signed Borel measure on 2
- 2~ is a bounded, signed Borel measure on 2 x %

- Y(Ax B)=3X(Bx A),
~the matrix 2Z,,

Zoz,ij = Z(Az X A])
IS positive definite.

Gaussian random histograms

Dy = <<D(A1), o CD(An)) ~ No = N (0, Za).

Gaussian free field in d dimensions
X = K C R4, and XA ¢(Ax B) = [axpGalz —y)dxdy
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Phases of Gaussian histogram limits

Theorem 28.1 (Tight Gaussian histogram limits)
By o-additivity of X and >-, any Gaussian histogram system is coherent
and has a tight limit N on M1(%Z).

Theorem 28.2 (Weak-star Gaussian histogram limits)
If,

Iimsupz > i < 00,
1

then the histogram system has a weak-star limit T1.
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The Gaussian Free field in d dimensions

d =1 GFF is random function (Brownian motion)
Theorem 28.2 works
The GFF is in the absolutely-continuous phase and we can write,

P(A) = / B(t) dt.

A
The are Brownian paths

d > 2 GFF is a random generalized function
Theorem 28.1 works (and ).
The GFF is in the continuous-singular phase and we can write,

D(A) = /A o (1) da

where ¢ is a random rank-0 generalized function
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Diagonalization of Gaussian histogram limits

Diagonalized covariance
For every «, write >, = ogj o Do o On and consider the coherent

histogram system,
W, = (\U(Al), L W(An)) ~ No = N(O, Do),
With o, 5 = On 0@, 050 og, (B> a), and Yxa = Oq 0 Yxa.

Theorem 28.1 works but theorem 28.2 doesn't.

. And such random histograms are completely random,
W(A) = Wp(A) + W e(A) + W (A).

with,
- vp < En|W| non-random, non-atomic,
-V random atomic, supported on a fixed set,

- vp atomic, supported on a random set.
30



Particles emerge in Gaussian histogram limits

Diagonalization has Fourier transformation as limit
In the limit,

Enw(AW(B) = [ bup—a) d'pd’

Decomposition By completely randomness,

W(A) = Wi(A) + W p(A) +

with (in momentum space)
- VU, non-random,
classical sources, non-zero u, boundary conditions, solitons
- W, random atomic, on a fixed set
on-shell particles, on mass spectrum, ‘“physical particles”
random atomic, on a random set

off-shell particles, quantum-only “virtual particles”
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Wightman functions of the Gaussian free field?

Schwinger functions
For all @ and any A1,...,Am € «, define (¢pa(x1) ... pa(xm))g DY

/Alx---xA (Palz1) - Pa(zm))gdey - dem = En, (Pa(A1) - Pa(Am))

Wick rotation (Osterwalder-Schrader, 1973, 1975)
If the Schwinger functions satisfy

(EO) Temperedness + linear growth
(E1) Euclidean covariance

(E2) Positivity

(E3) Symmetry

(E4) Cluster property

then they can be continued analytically to Wightman functions.
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Part V

Interactions, exact renormalization
and effective field theories



Interacting scalar fields in d dimensions

Theorem 34.1 (Martingale convergence (Doob, 1948))
For any functions Ma(®,) > 0 such that

Eﬁ[MB(CDBN«ga] = Ma(Pa)

there exists a Borel-measurable martingale limit M (®) such that,

]EI‘I[M((DNL@&] = Ma(Pa)
Call M (&) the bare interaction Lagrangian, and define My,

(@) =2, e M@ () = [ pa(@) dn(e)

Corollary 34.2 Since N < M,

Mar(W(A) = Wn(A) + Wp(A) + V(1) = 1
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Effective field theory

Define effective interaction Lagrangians,

= — 109 E[pp;(P)|ZFa]

Theorem 35.1 For any «,
IBZI’IM(qDoz(Al) T ¢a(Am))

= En (pM(CD)((Da(Al) T CDO‘(Am))
— El’la(e_ (PalAg) - (DO‘(Am))

=E/ o(Pa(A1) -+ PalAm)),
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Feynman diagrams

Suppose L, is polynomial in (®q(A) : A € o),

LCV((DOé) — Z >\a,7j q)oz(Al)ni’l .. Cba(An)ni,n
icl
for some finite set I of monomials, and, for the set J of all monomials,

Ena(e_L“(QDO‘)@a(Al) X CDa(Az))

=En,( > T @ ma(Ar) - Bal4))

m=0

=Y MjEna(¢a(A1)mj,1 . %(Aj)mj,n)
jed

Theorem 36.1 (Isserlis theorem)

For multivariate-normally distributed (X1,...,Xn),
E(X77T... X7 =>" ] E(X;X;)
P (ij)ep
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