
Hough-transform based map stitching after

localization uncertainty

Okke Formsma
University of Amsterdam

August 18, 2012

Abstract

Robots deployed for Urban Search And Rescue need be able to simultaneously
perform mapping tasks and localize themselves, known as the SLAM problem.
Most current methods perform 2D laser scan matching to incrementally build
a map. When traditional scanmatching methods fail, post-processing can be
applied to join the resulting submaps into a coherent whole.

In this report the results of Hough-transform based map stitching (HTMS)
is analyzed on a number of datasets recorded in the USARSim simulation en-
vironment, which were split up at points where the scanmatcher failed. Three
methods to identify scanmatching failures are compared.

It was found that the HTMS method as presented does not yield better maps
than existing scanmatching methods. In indoor environments the rotation esti-
mate given by the HTMS is accurate, but the translation estimate performance
is below par. Suggestions for improvements are provided to guide future re-
search.

ii

Contents

Abstract ii

1 Introduction 1

2 ManifoldSLAM 3
2.1 State . 3
2.2 Gaussian state representation . 4
2.3 Scan matching with the Weighted Scan Matcher 5
2.4 ManifoldSLAM . 7
2.5 Uncertainty measures . 7

3 Map Stitching with the Hough Transform 9
3.1 Hough transform . 9
3.2 Hough spectrum . 10
3.3 Finding rotation θ . 11
3.4 Periodicity of θ . 12
3.5 Finding translation t̂ . 13
3.6 Example . 15

4 Method 18
4.1 Dataset collection . 18
4.2 Map segmentation . 19
4.3 Map stitching . 19
4.4 Evaluation . 19

5 Experiments 20
5.1 Experiment 1: IranOpen 2012 - Pre 2 map 20

5.1.1 Segmenting the map . 21
5.1.2 Stitching . 22

5.2 Experiment 2: IranOpen 2012 Semifinal map with smoke (I) . . . 25
5.3 Experiment 3: IranOpen 2012 Semifinal map with smoke (II) . . 28

6 Discussion and future work 30
6.1 Discussion . 30
6.2 Future work . 31

6.2.1 Better translation estimate 31
6.2.2 Improved peak detection 31
6.2.3 Outdoor environments . 31
6.2.4 Inertia sensor improvements 31

iii

A Additional images 36
A.1 Experiment 1 . 36
A.2 Experiment 2 . 39
A.3 Experiment 3 . 42

iv

Chapter 1

Introduction

A compelling use of robotics is in the Urban Search And Rescue setting. The
goal of Urban Search And Rescue robot teams are to help emergency services
find victims of disasters, and perform duties which are deemed to dangerous for
humans1. In many disaster areas, human responders may be at risk due to fire,
smoke, toxicity, radioactivity or the possiblility of a secondary disaster. A team
of robots is much better suited to explore such dangerous disaster areas than
humans.

Urban Search And Rescue robots face many challenges. They must navigate
unknown environments with many potential hazards. The problem of mapping
an unknown environment and localization within this environment is known as
SLAM, for Simultaneous Localization And Mapping [1, 2]. Testing such algo-
rithms with actual robots in real-life environments is expensive and cumbersome.
Robots and sensors are expensive, as well as creating a disaster-environment.

A high fidelity simulation environment based on the Unreal Engine called
USARSim2 [3] (Urban Search And Rescue Simulation) provides an platform on
which to test the performance of the robots in a disaster environment without
the cost and effort associated with real robots. These environments can both be
indoors and outdoors, and are typically not larger than a housing block. A team
of robots is deployed in this environment with the task of localizing (human)
victims. One of the goals of the USARSim project is to improve autonomous
behavior, allowing one human operator to control a team of up to 16 robots
simultaneously.

The RoboCup international robotics competition utilizes USARSim in their
Rescue Simulation League. This competition draws teams from universities all
over the world to show their advances in robotic control software, focusing on
issues such as human-robot interfaces, autonomous behavior and team coordi-
nation. Much work has been done to increase the realism of the simulation. A
selection of recent work: an assessment for use of USARSim in Human Robot
Interaction [4], for use with walking robots [5], adding realistic laser sensor be-
havior in environments with smoke [6] and creating a omnidirectional camera
sensor [7].

1http://usarsim.sourceforge.net/wiki/index.php/UT_3_Manual
2Urban Search and Rescue simulation website: http://sourceforge.net/apps/mediawiki/

usarsim/index.php?title=Main_Page

1

Teams from all over the world compete in the annual RoboCup Rescue Sim-
ulation competition3. The universities of Oxford and Amsterdam participated
until 2011 with a cooperative team: the Amsterdam Oxford Joint Rescue Forces
[8, 9]. The robot control software used by this team is UsarCommander4. Usar-
Commander contains a number of SLAM implementations, including Manifold-
SLAM. The default Simulatenous Localization And Mapping (SLAM) method
employed by the AOJRF is not robust against sensor failures, which occur for
example when the robot (with the laser scanner) is severly tilted.

In this report a post-processing map stitching method is proposed which per-
forms a global optimization over the map created by an online SLAM method.
A novel method which splits a map when the localization uncertainty exceeds a
certain threshold is presented. The different pieces of the map are then stitched
together using a Hough transform based map stitching method. The dataset for
the experiments consists of sensor data acquired by a robot in the USARSim
environment.

This report is structured as follows. In chapter 2 an overview of the Si-
multaneous Localization and Mapping problem and related algorithms is pro-
vided. Chapter 3 presents the Hough-based stitching method. The experimental
method is described in chapter 4, and experimental results in chapter 5. The
results are discussed in chapter 6 and pointers for future work in chapter 6.2.

3RoboCup general website http://www.robocup.org/
4Amsterdam Oxford Joint Rescue Forces website http://www.jointrescueforces.eu/

2

Chapter 2

ManifoldSLAM

One of the goals of the USAR challenge was to create a useable map of the
environment.

The problem an agent faces when it needs to find it’s way in an unknown
environment is called SLAM, for Simulatenous Localization and Mapping. The
agent has no map of the environment, and also no way of knowing it’s exact
location. It needs to infer the map and it’s position on the map from the
information it gathers from it’s sensors throughout time.

Thus, SLAM is a chicken-and-egg problem: without a map it is hard to
estimate the agent’s position, and without the agent’s position it’s hard to
estimate the map!

In this section we will first examine how the robot keeps track of the state
of the world, and then how the SLAM problem can be solved with Extended
Kalman Filters. Throughout this chapter, the notation by Thrun et al. [10] will
be used.

2.1 State

The state of the world as it is known to the agent is denoted x. The value of
this set of variables may change over time, as the agent collects sensor data from
the environment. The state at time t is denoted xt.

Many variables may be included in the state variable x. For the purpose of
this work, we will assume that it contains at least the agent’s pose and a map
of the environment.

In most SLAM approaches, two types of sensor data is collected: environ-
mental measurement data and control data. Environmental measurement data
collects information about the environment, while control data collects infor-
mation about the robot within the environment. Environmental measurement
data is denoted z (at a specific point in time zt). Examples of environmental
sensors available to an agent are laser scanners, sonars and video cameras. Con-
trol data at a timestep is denoted ut. Control data sensors collect information
intrinsic to the agent: it’s velocity and position. Examples of control sensors are
odometry sensors, inertia sensors and global positioning systems. The control
data u is used as a initial estimate of the robot’s state x, which is then refined
by incorporating the environmental measurement data z.

3

For the purpose of this paper we are mainly interested in the online SLAM
problem, in contrast to the full SLAM problem. Online (or incremental) SLAM
seeks to estimate the current pose xt and map m:

p(xt,m|z1:t, u1:t) (2.1)

In contrast, the full SLAM problem estimates all poses x and map m:

p(x1:t,m|z1:t, u1:t) (2.2)

In practice, the difference is that the full SLAM problem reconsiders the
location of all previous poses in estimating the map, while online SLAM treats
these as given. The full SLAM problem is computationally much more ex-
pensive. Thus for time sensitive applications, such as real time robot control,
usually only online SLAM is performed. In UsarCommander this is also the
case.

The robot’s knowledge of it’s current state is reflected in the belief function.
The belief function gives a posterior probability over the state variable. The
belief at time xt is defined as follows:

bel(xt) = p(xt|z1:t, u1:t) (2.3)

This belief is usually updated in two steps: once when the control data (ut)
is received, and again when new measurement data (zt) is received. The belief
of the robot after the control update is called the prediction, denoted bel(xt):

bel(xt) = p(xt|z1:t−1, u1:t) (2.4)

A general algorithm for calculating beliefs is the Bayes filter. It first calcu-
lates the prediction bel(xt) by integrating out the possible values of the previous
belief xt−1 from previous belief bel(xt−1) and the expectation of the current state
given the previous state and control data p(xt|ut, xt−1).

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (2.5)

The final step is the measurement update, in which the measurement data
zt is incorporated:

bel(xt) = ηp(zt|xt)bel(xt) (2.6)

In the previous formula, η is a normalization constant which ensures that
bel(xt) is a proper probability.

2.2 Gaussian state representation

It is often convenient to represent the belief of the current state as a multivariate
Gaussian. A Gaussian is defined by its mean µ and covariance Σ:

p(x) = det(2πΣ)−
1
2 exp {−1

2
(x− µ)TΣ−1(x− µ)} (2.7)

Gaussian state representations have the advantage of being easily under-
stood and straightforwardly manipulated. This comes with a cost: a Gaussian

4

is unimodal – there is only one maximum (the mean) possible. This makes
Gaussian representations ill suited when there are many different hypothesis
distributed across a map.

In UsarCommander, the state is represented by a 3-dimensional vector:
(x, y, θ) and the corresponding 3-by-3 covariance matrix Σ. x and y are the
respective coordinates of the robot in a global frame, while θ is the rotation
angle of the robot with respect to the y axis. Only

When the state is represented by a Gaussian, the formulas in the previous
section (2.1) can be relatively easily calculated.

2.3 Scan matching with the Weighted Scan Matcher

A robot has access to a variety of sensors, as discussed in section 2.1. Many sen-
sors are not very accurate and reliable: odometry sensors yield erroneous values
when the robot’s wheels spin on a slippery slope, GPS sensors are unreliable
indoors, and inertia sensors experience ‘drift’ – they need to be calibrated every
once in a while. Laser range sensors provide an alternative. It measures with
high precision the distance to the first object in a certain direction.

Laser range sensors are often put in a rotating device, which measures the
distance to objects on a (often horizontal) plane. A field of view of 180◦with a
1◦resolution is common, which yields 181 distance scans. The 181 scans form a
point cloud of 181 points. See image 2.1.

4.1. Overview 41

on their use in mobile robotics is thus quite extensive. [33, 32, 52, 38, 59]

In this chapter, we are concerned with using two or more Laser Range Scanner ob-

servations to estimate the di↵erence in pose between those observations. This problem is

generally phrased as “Laser Scan Registration” or “Laser Scan Matching”. An example of a

successfully completed matching of two scans is shown in Figure 4.2. It is a very important

problem in the scope of mapping and localization.

(a) (b)

Figure 4.2: Two scans A (red) and B (green). a) The second scan B0 at an (erroneously)
estimated location. The failure of alignment is obvious. B shows the true location of the
second scan. In b), the scans have been successfully matched. An integral part of scan
matching is to manipulate the origins of the scans so both scans describe the same geometry
as shown in this figure.

The general problem that Scan Matching tries to solve is to optimize the pose parameters

of a second scan relative to a previous scan such that the two scans describe the same

geometry. While laser scanners produce polar coordinates (an angle and a distance), the

general representation used in these algorithms are so-called “point clouds”, a set of 2D

Euclidean coordinates. This is not only useful in Robotics, but also in Computer Graphics

and Computer Vision. The most important algorithm (see Section 4.2.1) discussed in this

chapter originates from these disciplines.

This chapter will first introduce basic approaches to the Scan Matching problem and

then highlight specific algorithms that were evaluated. Finally, some experimental results

are presented which will motivate the choice for the final implementation discussed later in

Chapter 6.

(a)

4.1. Overview 41

on their use in mobile robotics is thus quite extensive. [33, 32, 52, 38, 59]

In this chapter, we are concerned with using two or more Laser Range Scanner ob-

servations to estimate the di↵erence in pose between those observations. This problem is

generally phrased as “Laser Scan Registration” or “Laser Scan Matching”. An example of a

successfully completed matching of two scans is shown in Figure 4.2. It is a very important

problem in the scope of mapping and localization.

(a) (b)

Figure 4.2: Two scans A (red) and B (green). a) The second scan B0 at an (erroneously)
estimated location. The failure of alignment is obvious. B shows the true location of the
second scan. In b), the scans have been successfully matched. An integral part of scan
matching is to manipulate the origins of the scans so both scans describe the same geometry
as shown in this figure.

The general problem that Scan Matching tries to solve is to optimize the pose parameters

of a second scan relative to a previous scan such that the two scans describe the same

geometry. While laser scanners produce polar coordinates (an angle and a distance), the

general representation used in these algorithms are so-called “point clouds”, a set of 2D

Euclidean coordinates. This is not only useful in Robotics, but also in Computer Graphics

and Computer Vision. The most important algorithm (see Section 4.2.1) discussed in this

chapter originates from these disciplines.

This chapter will first introduce basic approaches to the Scan Matching problem and

then highlight specific algorithms that were evaluated. Finally, some experimental results

are presented which will motivate the choice for the final implementation discussed later in

Chapter 6.

(b)

Figure 2.1: Matching two point clouds. In (a), the red and green point clouds
are obviously not well aligned. In (b), they are much better aligned. Images
courtesy of [11].

The ‘scans’ that the laser range sensor returns are processed through a scan-
matching algorithm. These algorithms compare two scans (or a scan and a map)
to see how they relate to each other. The scanmatcher needs to find out the
relative change in orientation and position between the two scans.

In the context of this paper, we will focus on the Weighted Scan Matcher,
but various other approaches exist. Slamet and Pfingsthorn [11] provide an
excellent overview of various scanmatching algorithms such as Normal Distri-
bution Transform (NDT), Iterative Dual Correspondence (IDC), Metric-based
Iterative Closest Point (MbICP) and ICP.

5

The Weighted Scan Matcher (WSM) was introduced by Pfister et al. [12]. In
contrast to other scan matchers, the influence of a correspondence between two
measurements is weighted with the certainty of how well the two points match.
When two point clouds align perfectly, the uncertainty of these matches is zero.
This will not generally be the case. Points that have less associated uncertainty
will weigh more in the final scan matching result. The Weighted Scan Matcher
explicitly models three error sources: the correspondence error, measurement
error, and bias. See figure 2.2.

Figure 2.2: Geometry of the scan matching process. Courtesy of [12].

The correspondence error results from the limited resolution available to
laser scanners. The resolution in this case is not the resolution in distance
measurement, but the angular resolution of the scanner. At a distance of 5 meter
and an angular resolution of 1◦, the two measurements lie almost 9 centimeters
apart (500 ∗ tan(1◦) ≈ 8.7 . . .). When the robot scans again after rotating 0.5◦,
all measurements will lie in between two previous measurements, and the best
match will be off a few centimeters, depending on the distance from the scanner.
Even worse: a thin object, such as a iron pole, can be easily missed by the
scanning beams as well. All of these errors are examples of the correspondence
error.

The measurement error models the error in the measurement process itself.
This can because of any external factors which make the measurement erroneous.

Finally, the bias incorporates the difference between measurement methods.
For example, laser scanners and sonar have different performance characteristics.
The bias term compensates for this.

In general, the error between two scans ai and bi can be expressed as a
rotation matrix R and translation t:

ε = ai −R · bi − t (2.8)

With the assumption that all noise is Gaussian, measurement ai can be
expressed as the addition of the measurement error δra,i and bias error da,i to
the actual distance ri (similar for bi):

ai = ra,i + δra,i + da,i (2.9)

6

By substituting equation 2.9 into equation 2.8, the full error term is obtained:

ε = (ra,i + δra,i + da,i)−R · (rb,i + δrb,i + db,i)− t
= (ra,i −R · rb,i − t)︸ ︷︷ ︸

correspondence error

+ (δra,i −R · δrb,i)︸ ︷︷ ︸
measurement error

+ (da,i −R · db,i)︸ ︷︷ ︸
bias

(2.10)

In an application where only one range measurement system is employed
(such as a specific type of laser range scanner), the bias error term can be
dropped. (Remember, the bias only models differences between measurement
methods). In addition, the measurement error with modern laser scanners is
so small that the measurements can be taken as a good approximation of the
real measurement ([12]: “For practical computation, we can use [measurements]
θik and lik as a good estimates for the quantities [actual values] Θi

k and Lik.”).
Thus, when the sensor error is small enough, we can safely ignore this source of
error as well.

This simplifies equation 2.10 further, so it contains only the correspondence
error:

ε = ra,i −R · rb,i − t (2.11)

This error term ε is minimized through an iterative algorithm in which the
rotation and translation are estimated in turn. When the algorithm is suitably
converged, it terminates. The full covariance matrix for the scan match is
computed from the individual correspondence errors. We will see how this
covariance matrix comes in handy for the SLAM algorithm and error estimation
procedures in later chapters.

2.4 ManifoldSLAM

ManifoldSLAM was developed by Bayu Slamet and Max Pfingsthorn in 2006
[11] to compete in the RoboCup Urban Search and Rescue Simulation and won
first place. It is based on the Manifold data structure by Howard et al. [13].

Many SLAM algorithms use a Bayesian filter to refine the state by incor-
porate the current knowledge into a new assessment of the current state of the
robot. The SLAM algorithm in use by the AOJRF team takes the map mt−1
and previous position xt−1 as given.

2.5 Uncertainty measures

There is always uncertainty associated with the results of the scan matcher. The
weighted scan matcher models three sources of error for each laser scan line. The
full uncertainty of the new pose is estimated by summing the information gained
by each match that is scanned. More information about how this information
filter works can be found in [10, p.71] and [11, p.72].

The correspondence error is a good measure to estimate the confidence of the
scanmatcher because the weighted scan matcher explicitly discounts irrelevant
error sources. When the correspondence error is high, the uncertainty of the
scanmatcher about the current robot pose is also high.

7

The correspondence error can not easily be compared visually because it is
represented by the covariance of a Gaussian distribution, which in this case is
represented by a 3-by-3 matrix. Prior work by Visser et al. [14] used the trace
of the covariance (the sum of the on-diagonal elements) to acquire a single,
easily compared metric. Slamet and Pfingsthorn [11, p. 61] also mention the
determinent as a good single confidence value that can be derived from this
matrix. The number of matching scan lines is taken as a third measure. A
single scan line in a scan is considered to match when the distance to existing
datapoint on the map is no more than a certain maximum distance.

8

Chapter 3

Map Stitching with the
Hough Transform

ManifoldSLAM only matches a recent part of the map to the current laser scan
to estimate the current position of the robot. The robot is not aware of areas it
has encountered before because of this. In the meantime, an erroneous location
estimate may proliferate. The map stitching algorithm in this chapter can be
used to find a global match between two submaps which have an unknown
relative pose.

Stefano Carpin presented a novel map stitching approach based on the Hough
Transform in [15]. It is an extention of the Hough transform which Censi et al.
introduced as the Hough spectrum [16]. Censi et al. used the Hough spectrum
for a novel scan matcher.

Remember from the SLAM section (2.1) that aligning two maps takes two
parameters: the rotation angle θ and translation vector t = [x, y]T . The Hough
spectrum is used for finding the rotation θ between a scan and reference map.
The implementations of Carpin and Censi et al. diverge in their method of
finding the translation vector t between two scans.

The Hough-based map stitching works with the assumption of an indoor
environment. It is a global method, and does not take into consideration any
prior knowledge about the relative alignment of both pieces of the map.

This chapter is setup as follows. First, we’ll look at what the Hough trans-
form and Hough spectrum are. Then, we’ll take a look at how the best matching
rotation θ̂ is found, and finally we’ll examine translation t further. This chapter
concludes with an elaborate example.

3.1 Hough transform

The Hough transform is in origin a line detection technique, patented by Paul
Hough in 1962 [17]. An improved version, which is presented here, was intro-
duced by Duda and Hart [18]. The Hough transform is also extended to detect
circles, ellipsis and parabolas, and also arbitrary 2D shapes [19].

The Hough transform detects lines in the following manner. A line in Carte-
sian (x, y) space can be defined by it’s angle (θ) and distance from the origin
ρ:

9

x cos θ + y sin θ = ρ (3.1)

Every point in (x, y) space lies on infinitely many lines satisfying equa-
tion 3.1. Every angle θ has a single accompanying distance from the origin
ρ. Thus, a point in (x, y) space can be represented in the Hough domain (θ, ρ)
as a curve. The locations where many curves intersect in the Hough domain
correspond to the lines in the original image; remember that lines correspond
to points in the Hough domain.

Finding the intersection of many curves in the continuous domain is com-
putationally expensive. The discrete Hough transform mitigates this problem
by discretizing the Hough domain into bins. Every point in the original image
‘votes’ for each bin it belongs to in (θ, ρ) representation. The strongest lines
stand out as bins with a high number of votes.

There are nθ angle-bins, and nρ distance bins in discrete Hough transform
HT .

(a) Two lines

0.0 pi 0.25 pi 0.5 pi 0.75 pi
theta / pi

-1.0

-0.5

0.0

0.5

1.0

rh
o
 (

n
o
rm

a
liz

e
d
)

(b) The Hough transform of (a)

Figure 3.1: Example of the discrete Hough transform. Notice the two maxima
in (b) which correspond to the two lines in (a). There seem to be three maxima
(one at 0, one at π

4 and one at π). However, the maxima at 0 and π are the
same maximum; see section 3.4.

3.2 Hough spectrum

The major contribution of Censi et al. [16] is the introduction of the Hough
spectrum. The Hough spectrum (HS) is a measure for the direction of lines in
an image. The discrete Hough transform finds the specific lines in the image,
while the Hough spectrum finds the most pronounced directions of lines in the
image:

HS(k) = η

nρ∑
i=1

HT (i, k)2 1 ≤ k ≤ nθ (3.2)

η is a normalization value to limit HS(k) to the domain [0, 1].

10

As we’ve seen in the previous section, each bin in the discrete Hough trans-
form (HT (i, k)) contains the number of pixels that lie on a line defined by
(θi, ρk). The Hough spectrum is a measure for how strong the lines are on a
specific angle.

Thus, the Hough spectrum yields the highest value in the direction in which
the most pronounced lines run. In an indoor environment, there will usually be
two peaks, separated by a 90◦ angle, corresponding to grid-like structure most
buildings are created (see figure 3.2). Incidentally, in a bee-hive, with hexagonal
chambers, we would see 3 peaks each separated by 60◦ angles. See figure 3.3.

(a) A stylistic map of some rooms

-1.0

-0.5

0.0

0.5

1.0

rh
o
 (

n
o
rm

a
liz

e
d
)

0.0 pi 0.25 pi 0.5 pi 0.75 pi
theta / pi

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

(b) The Hough transform and Hough spectrum of (a)

Figure 3.2: Example of a Hough spectrum in a human-made environment.

(a) Hexagonal chambers

-1.0

-0.5

0.0

0.5

1.0

rh
o
 (

n
o
rm

a
liz

e
d
)

0.0 pi 0.25 pi 0.5 pi 0.75 pi
theta / pi

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

h
o
u
g
h
 s

p
e
ct

ru
m

(b) The Hough transform and Hough spectrum of (a)

Figure 3.3: Example of the Hough spectrum in a hexagonal environment. Notice
the three maxima in the Hough Spectrum.

3.3 Finding rotation θ

In the previous section we’ve seen how to calculate the Hough spectraHSM1
and

HSM2 for maps M1 and M2. We will calculate the best rotation by performing

11

a cross-correlation over the spectra. The cross-correlation of the two signals
shows the similarity of the two spectra as one of them is shifted over the x-axis.
The cross-correlation CCM1,M2

is calculated as follows:

CCM1,M2(k) =

nθ∑
i=1

HSM1(i)×HSM2(i+ k) 1 ≤ k ≤ nθ (3.3)

0 20 40 60 80 100 120 140 160 180
theta

0.0

0.2

0.4

0.6

0.8

1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 1

0 20 40 60 80 100 120 140 160 180
theta

0.0

0.2

0.4

0.6

0.8

1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 2

0 20 40 60 80 100 120 140 160 180
theta

4

5

6

7

8

9

cr
o
ss

-c
o
rr

e
la

ti
o
n

Figure 3.4: The top two plots are the Hough spectra of image 3.1(a). The image
for the second Hough spectrum was rotated 90◦ counter-clockwise. The cross-
correlation shows that the most probable rotation is indeed 90◦, with smaller
peaks for 45◦ and 135◦.

Notice that the spectra have a periodicity of 180◦ (π), and have similar
peaks. However, the peaks are at different angles. The cross-correlation finds
the optimal rotation; see figure 3.4.

3.4 Periodicity of θ

Why do the Hough spectra have a periodicity of π? The answer lies in the
following equations:

x cos θ + y sin θ = ρ (3.4)

x cos(θ + π) + y sin(θ + π) = −ρ (3.5)

Thus, the following equation holds: HT (θα, ρα) = HT (θα+π,−ρα). In turn,

12

the Hough spectrum of θα and θα+π are the same, because HS is summed over
all ρ.

Thus, the domain of θ only needs to be [0, π〉, whereafter it wraps back to
itself. Prior work by Jankowska used the domain [0, 2π〉 [20], which is thus
superfluous.

One must take care when using this representation to remember the possible
alternative hypothesis for θ. Every candidate solution θ̂ found by the cross-
correlation method has an additional solution θ̂ + π!

3.5 Finding translation t̂

In the previous section we found rotation candidates which align the maps
according to the major wall-directions. To find the best match between two
maps, we also need to find the optimal translation between them. Jankowska [20]
takes the same approach as Carpin [15], which is a simplification of the method
by Censi et al. [16]. We will discuss the more complex method later.

The simplified method is to calculate an X-spectrum and Y-spectrum from
the maps, and again perform cross-correlation on these. The X- and Y- spectra
are calculated by summing the number of occupied pixels along one dimension;
see equations 3.6 and 3.7. See figure 3.5 for an example. The optimal translation
is found by cross-correlating the x- and y-spectra from both maps.

X-spectrum(x) =
∑
y∈Y

occupancyMap(x, y) (3.6)

Y-spectrum(y) =
∑
x∈X

occupancyMap(x, y) (3.7)

Before the x- and y-spectra are taken of the image, care must be taken to
align the image to the predominant direction φ. In this way, the angular features
of the environment (walls) show up as spikes in the spectrum. If the image is
not aligned to the predominant direction φ the spectrum yields mostly noise, as
can be seen in figure 3.6.

Censi et al. [16] propose a least-squares error optimization to find t̂. Instead
of taking a X-spectrum and Y-spectrum, the maps are rotated around many
different angles and the spectra of those angles are cross-correlated. A least
squares error solution is fit on the resulting optima. The X- and Y-spectrum
method is a special case of this method; with only 2 constraint sets (one for the
x-direction and one for y), the method yields an exact result for the two free
parameters (x, y).

13

0 50 100 150 200 250 300 350 400
occupied cells

0

100

200

300

400

500

y
Y-spectrum

0 100 200 300 400 500
x

0
50

100
150
200
250
300
350
400
450

o
cc

u
p
ie

d
 c

e
lls

X-spectrum
0 100 200 300 400

0

100

200

300

400

Map

Figure 3.5: The original map (top right) with the y-spectrum (top left) and
x-spectrum (bottom right).

0 5 10 15 20 25 30 35 40 45
occupied cells

0

100

200

300

400

500

y

Y-spectrum

0 100 200 300 400 500
x

0

10

20

30

40

50

60

o
cc

u
p
ie

d
 c

e
lls

X-spectrum
0 100 200 300 400 500

0

100

200

300

400

500

Map

Figure 3.6: The X- and Y-spectra of a map that is not aligned to the predomi-
nant direction φ. Compare the spectra with those from figure 3.5.

14

3.6 Example

Let’s look at an example. We will examine more complicated cases in chapter 5.
In figure 3.7 you see again the image of the artificial map and a small piece
which we will try and map onto the other.

(a) Full map (b) Cutout

Figure 3.7: The map and a cutout that we want to match onto the map

The first step is to find candidate translations θ. We do this by calculating
the Hough spectra and performing cross-correlation on them. See figure 3.8.
The highest peak in the cross-correlation lies at θ1a = 169◦, the second highest
at θ2a = 79◦. Because of the periodicity of the Hough spectrum there are also
two dual-hypothesis: θ1b = 180◦ + 169◦ = 349◦ and θ2b = 180◦ + 79◦ = 259◦,
respectively. Note that the first hypothesis and the second hypothesis lie 90◦

apart, which corresponds to the two main wall-directions in the image.
As you can see in figure 3.8, the first image is not aligned with the predomi-

nant direction φ: the highest peak in the Hough spectrum lies at 90◦. Thus, we
have to rotate it 90◦ counterclockwise before calculating the x- and y-spectra.
Let’s test the first hypothesis θ1a. We will rotate the cutout 169◦ + 90◦ coun-
terclockwise, according to the first hypothesis plus the predominant-direction
correction. See figure 3.9. In figure 3.10 you see the x-, y-spectra and their
cross-correlations.

The maxima in the X- and Y-spectra yield a translation estimate t̂ =
(−60,−89). In figure 3.11(a) the result of the stitch is seen. The map is printed
in blue, the cutout in pink. Keen readers will have noticed that the rotation es-
timate is 90◦ off, and the second hypothesis θ2 might yield a better result. They
are right, as can be seen in figure 3.11 where the results for all θ hypothesis are
shown.

In the experiments section, the optimal rotation θ̂ will be chosen as the
candidate that is closest in degrees from the estimate the inertia sensor gives.

15

0 20 40 60 80 100 120 140 160 180
theta

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 1

0 20 40 60 80 100 120 140 160 180
theta

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 2

0 20 40 60 80 100 120 140 160 180
theta

10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5

cr
o
ss

-c
o
rr

e
la

ti
o
n

Figure 3.8: The Hough spectra of respectively figure 3.7(a) and 3.7(b) and their
cross-correlation.

Figure 3.9: The images from figure 3.7 rotated along φ and φ+θ1a, respectively

16

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0
sp

e
ct

ru
m

 1
X-spectra

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

sp
e
ct

ru
m

 2

600 400 200 0 200 400 600
x

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0
Y-spectra

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

600 400 200 0 200 400 600
y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.10: The X- and Y-spectra and correlation of the images from figure 3.9.

(a) θ1a (b) θ1b

(c) θ2a (d) θ2b

Figure 3.11: The results of map stitching according to all four θ hypothesis.
Hypothesis θ2a yields the correct result.

17

Chapter 4

Method

In this chapter the design of the experiment is outlined. The experiment consists
of three phases: dataset collection, map segmentation and map stitching. Each
of the phases is described in detail below.

4.1 Dataset collection

Three datasets were collected on two recent USARSim maps: the first dataset
in a building without smoke, the second two in a larger building. The robot was
driven around the map. Care was taken to ensure that the robot visited the
same locations a number of times to make the map-stitching method feasible.

Each dataset was recorded, and is available within the code repository1.

Figure 4.1: Screenshot of the simulation environment (Map 1).

1GitHub code repository http://www.github.com/okke-formsma/slam-confidence/

18

4.2 Map segmentation

The datasets are processed through the UsarCommander ManifoldSlam imple-
mentation. At every timestep the scan matcher runs and saves current position
and rotation according to the groundtruth, the inertia sensor and the SLAM
algorithm, as well as the correspondence error matrix as discussed in section 2.3.

After creating the map, three uncertainty metrics are evaluated to decide
where the map should be segmented. The three metrics are the determinant of
the correspondence error, the trace of the correspondence error and the number
of matching scans, as discussed in section 2.5.

The three metrics are manually examined for each map, as we found no prior
research in a good metric for map segmentation. Obvious candidates are the
maxima in the determinant and trace measures and minima for the number of
matching scans. These values are expected to be highly correlated. The dataset
is segmented at the thus acquired uncertainty threshold into consecutive parts.
For example, if the map consisted of 100 timesteps (0 . . . 99) and the uncertainty
metrics indicate that the highest uncertainty was at timesteps 11, 25 and 70, the
dataset is divided into four segments: 0 . . . 10, 11 . . . 24, 26 . . . 69, and 71 . . . 99.
A submap is generated for each segment.

4.3 Map stitching

The segments are matched according to the Hough-transform based map stitch-
ing method as outlined in chapter 3. In that chapter it is explained that there
may be a number of rotation estimates θ̂. We will assume in the experiment
that the smallest absolute rotation candidate |θ̂| will be the most probable. This
is based on the observation that the scanmatcher usually does not yield very
large rotation errors.

The relative X- and Y-positions of the maps are estimated exactly as ex-
plained in the map stitching chapter.

4.4 Evaluation

In line with the exploratory nature of this work the maps will not be evaluated
using a groundtruth-metric. Instead, manual assessment of the results will yield
a qualitative judgment about the quality of the resulting map. The main concern
is whether the resulting map is an improvement upon the map provided by the
ManifoldSLAM algorithm.

19

Chapter 5

Experiments

In this chapter the experimental results are presented. The experimental method
is outlined in chapter 4.

5.1 Experiment 1: IranOpen 2012 - Pre 2 map

This map was used in the Iran Open 2012 competition1. The map features a
grey hospital-like environment with grey tiled floors and walls. In figure 4.1 a
screenshot of the environment is shown along with the map after the Weighted
Scan Matcher was run on the simulation data.

Figure 5.1: The ground truth, inertia sensor and slam path of the robot on a
piece of map 1.

The map shows a lot of noise and errors. As can be seen in figure A.1(a)

1Iran Open 2012 website: http://2012.iranopen.ir/

20

(in the appendix), the inertia sensor gives a rather good location-estimate, but
the rotation estimate from position 160 onwards is off by more than 10◦. The
scanmatcher fails regularly because it takes the inertia sensor location estimate
as begin point for its search. When the location according to SLAM and inertia
sensor diverge too far, the SLAM matcher fails – it only searches a local neigh-
borhood around the initial seed pose given by the inertia sensor. The result of
this is a map with jagged lines, as can be seen in figure 5.1 and figure 5.2.

16000 18000 20000 22000 24000 26000 28000

14000

12000

10000

8000

6000

4000

310

320

groundtruth
ins
slam

Figure 5.2: A small part of the path the robot moved in map 1. The wrong
rotation estimate of the inertia sensor (yellow line) makes the slam-matcher (red
line) think the robot moved in another direction than it did in reality (blue line).
When the inertia sensor reading and SLAM result diverge too far, the SLAM
location is reset to the inertia sensor estimate. This results in a jagged path
estimate from the SLAM sensor.

5.1.1 Segmenting the map

The confidence measures of the first map are shown in figure 5.3(a). It is imme-
diately apparent that the extreme values of the three metrics coincide. When
the scan matcher matches few scanlines, the determinant and trace values are
at their maximum. When the scan matcher matches no scanlines, the deter-
minant and trace of the covariance matrix are undefined. These show up as
red dots on the x-axis. When the scan matcher matches many scanlines, its
increased confidence in a correct match is reflected in a covariance matrix with
small determinant and trace.

In figure 5.3(b) the values of the three confidence measures are plotted
against each other to emphasize their correlation. The (Spearman) rank corre-
lation gives an indication how well the relationship between the two variables
can be described by a monotonic function. The spearman rank correlation co-
efficients between the confidence measures is as follows. Between trace and
determinant 0.85, between number of matches and determinant −0.50, and be-
tween number of matches and trace −0.48, all with a p-value � 10−10. This
means that all three confidence measures are strongly correlated.

When there are no matches at all, the scanmatcher has failed most spec-
tacularly. In that case, the covariance matrix can not even be computed. In

21

0 50 100 150
100
101
102
103
104
105
106
107
108
109

Determinant
Trace
NaN

0 50 100 150
t

0

50

100

150

200

matches

(a) Confidence measures through time

0 50 100 150 200
matches

100

101

102

103

104

105

106

107

108
tr

a
ce

0 50 100 150 200
matches

100

101

102

103

104

105

d
e
te

rm
in

a
n
t

100 101 102 103 104 105 106 107 108

trace

100

101

102

103

104

105

d
e
te

rm
in

a
n
t

(b) Scatter plot between the three confidence measures.

Figure 5.3: Confidence measures for map 1.

extention, the determinant or trace of the covariance matrix can not be com-
puted either. This occurs at the following timesteps: 66 67 68 96 103 113 159
164 168 175. The greatest rift lies at 66 ≤ t ≤ 68, where there were 3 consecu-
tive timesteps that could not be matched. The submaps that are procured can
be found in the appendix, figure A.2.

The map segments are not ‘clean’: there is still considerable noise and imper-
fections in the submaps. Take for example piece 2 (figure A.2(b)), which depicts
four rooms. These rooms should line up perfectly, but they are all rotated and
shifted slightly.

5.1.2 Stitching

The Hough map stitching procedure as outlined in chapter 3 between the first
two sub-maps results in an optimal rotation θ1 of 13◦, with a much less pro-
nounced secondary hypothesis θ2 of 103◦, as can be seen in figure 5.4. The X-
and Y-spectra for θ1a are shown in figure 5.5. The resulting map is shown in

22

figure 5.6.

0 20 40 60 80 100 120 140 160 180
theta

0.0

0.2

0.4

0.6

0.8

1.0
h
o
u
g
h
 s

p
e
ct

ru
m

 1

0 20 40 60 80 100 120 140 160 180
theta

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 2

0 20 40 60 80 100 120 140 160 180
theta

5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

cr
o
ss

-c
o
rr

e
la

ti
o
n

Figure 5.4: Finding optimal rotation θ through correlating Hough spectra.

The result of this stitch is far from optimal. While the rotation angle θ1a is
optimal and the images are rotated correctly, the translation estimate t is very
much off. The Hough-transform based map stitching method requires a large
overlapping area between the two submaps. Because the submaps overlap very
little, the stitching method fails.

In the next figure, 5.7, the final result of stitching all submaps in figure A.2
is shown. Each of the steps is separately shown in the appendix (figure A.1).
The final result is not perfect. This is hardly surprising, considering the quality
of the segments that were stitched together.

23

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

sp
e
ct

ru
m

 1

X-spectra

0 50 100150200250300350400450
0.0

0.2

0.4

0.6

0.8

1.0

sp
e
ct

ru
m

 2

600 400 200 0 200 400 600 800
x

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Y-spectra

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

300 200 100 0 100 200 300
y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Finding optimal translation t through correlating Hough spectra.

Figure 5.6: The best stitch according to θ1a and optimal t.

Figure 5.7: The result of stitching all partial maps (see figure A.2) according to
the Hough stitching method. Compare to the original SLAM result, figure 5.1.

24

5.2 Experiment 2: IranOpen 2012 Semifinal map
with smoke (I)

The second map is again a map from the IranOpen 2012 championship. The
map was used for the semi-final. It is rather large, and consists of many corridors
and rooms filled with desks, chairs and computers. Some of the hallways are
obstructed, and there is smoke everywhere. See figure 5.8.

Figure 5.8: A screenshot of map 2.

The agent was driven in a large circular path (50m diameter) through the
building, as can be seen in figure 5.9. Again, the path given by the inertia
sensor seems to lie closer to the groundtruth than the SLAM path. The SLAM
path strays on many places from the path by the inertia sensor and SLAM, and
is ‘pulled back’ to the location given by the inertia sensor when the difference
becomes too large.

The error measures extracted from the Weighted Scan Matcher are shown
in figure 5.10. Just as in the previous experiments, there are a number of
time steps where no matching scan lines were found. At these timesteps, the
covariance matrix around the location estimate could not be computed, and are
respresented by a red circle at the x-axis. Instead of segmenting the map at
every timestep where the number of matches was zero, a different approach is
tried for this experiment. The map is segmented on at those timesteps where
there are 2 or more consecutive timesteps in which there were no matching
scanlines. The resulting 3 submaps are shown in the appendix, figure A.4.

The result of stitching the submaps with the Hough transform based stitch-
ing method can be inspected in figure 5.11. As can be easily visually inspected,
this result is much worse than the result by the manifold SLAM.

25

Figure 5.9: The Ground Truth data, inertia sensor data and WSM slam result
for map 2.

0 200 400 600 800 1000
100
101
102
103
104
105
106
107
108
109 Determinant

Trace
NaN

0 200 400 600 800 1000
t

0

50

100

150

200

250

matches

Figure 5.10: Confidence measures for map 2.

26

Figure 5.11: The resulting map after stitching all segments extracted from map
2.

27

5.3 Experiment 3: IranOpen 2012 Semifinal map
with smoke (II)

Due to the inferior results of the algorithm in the first two experiments, the final
experiment will deviate from the first two. At the first two maps, the overlap
between submaps is rather limited. For this final experiment, two maps with
large overlap were created by driving the robot around in the same environment
twice instead of breaking the map according to the uncertainty values. The map
for this final experiment is the same as in the second experiment. The submaps
are shown in figure 5.12.

(a) Piece 1 (b) Piece 2

Figure 5.12: Map 3 pieces. The submaps overlap considerably.

The Hough-spectra and cross-correlation of the two maps are shown in fig-
ure 5.13. As expected from visual inspection of the maps, the optimal rotation θ
resulting from the cross-correlation is 0◦. The corresponding final map is shown
in figure 5.14.

28

0 20 40 60 80 100 120 140 160 180
theta

0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 1

0 20 40 60 80 100 120 140 160 180
theta

0.4
0.5
0.6
0.7
0.8
0.9
1.0

h
o
u
g
h
 s

p
e
ct

ru
m

 2

0 20 40 60 80 100 120 140 160 180
theta

69.5
70.0
70.5
71.0
71.5
72.0
72.5
73.0

cr
o
ss

-c
o
rr

e
la

ti
o
n

Figure 5.13: The Hough spectra and cross-correlation for experiment 3.

Figure 5.14: The result of Hough map stitching for experiment 3. Cyan parts
are from piece 1, magenta are from piece 2. Blue parts show overlap from both
pieces.

29

Chapter 6

Discussion and future work

6.1 Discussion

The results of the map stitching method are inferior to the original maps created
by ManifoldSLAM. The rotation estimates are usually correct, but the transla-
tion estimates are below par. Only for maps with very large overlapping areas,
such as in the third experiment, is the result satisfactory. Additionally, this
method has problems when the segments that are stitched are very noisy, such
as in the first experiment. This limits the use of the Hough-stitching method
to cases where the submaps can be guaranteed to be relatively clean.

The quality of the rotation estimates is very high in the test environment
because the test environments were all human-made. The grid structure in
which the walls are placed yields very clear results in the Hough spectrum. In
outdoor environments, this is probably not the case, and the results would suffer
likewise.

Overall, the existing SLAM approaches all work very well. This raises the
bar for post-processing methods such as the one outlined in this work. Näıve
methods which do not use all available information are at a disadvantage.

The X- and Y-spectrum method to find the best translation estimate has
proven to be not good enough. Although this method is very simple and has
a beautiful symmetry with the Hough-spectrum method, too much information
is lost in the transformation of the map to the spectra. Also, not all available
information is being used by this method. A full global search is initiated, while
the probable translation of the map is very small; it is impossible for a robot to
teleport to another side of the map. However, if the method is used for merging
the information from multiple robots, a global search is preferable.

The method to cut the map in smaller pieces seems to work reasonably well
- the ‘number of scans matching is zero’ decision value seemed to select good
locations to divide the map into sections. Many of the errors in the map were
caused by the rotational error in the inertia sensor. The behavior of the inertia
sensor seems to quirky, which will be discussed in section 6.2.4.

Finally, it would have been interesting to see the performance of the Hough
based map stitching algorithm on an outdoor environment. However, the poor
results of the (probably easier) indoor environments suggest that this method
is not yet robust enough to face such a challenge.

30

6.2 Future work

In this section a number of improvements to the Hough map stitching algorithm
and the USARSim simulation environment are proposed.

6.2.1 Better translation estimate

The most room for improvement in the Hough-based map stitching method
is in the translation estimate. As discussed in the previous section, the X-
and Y-spectra do not suffice. Most scanmatching algorithms, as discussed in
section 2.3, perform the rotation- and translation estimates separately. The
Hough based map stitching method could give a good initial estimate for the
rotation, so that the scanmatcher only needs to find the optimal translation.

Additional improvements would be to incorporate the knowledge about the
last position of the robot and the inertia sensor estimate as a basis for the
translation estimate, as opposed to a global search.

Finally, in the spectrum method it is supposed that the X- and Y- spectra
are independent and their maxima are independent as well. They are dependent
on each other - the actual real location is a (x, y) coordinate on which x and y
are dependent of each other.

6.2.2 Improved peak detection

To find the optimal rotation and translation, an argmax function is run on the
spectra. While this usually gave a pretty good result, the peak surrounding the
maximum was sometimes skewed left or right. To select the center of such a
peak instead of the single maximum result, it might be beneficial to convolve
the signal with an Gaussian filter, which smooths the peaks.

6.2.3 Outdoor environments

The Hough based map stitching method builds on the assumption that there
are many straight lines in the map, which are in a grid-like form. For outdoor
environments, this assumption may very well be false. A preliminary experiment
which is not detailed in this report showed detrimental performance in outdoor
environments. Future implementations of the Hough-based based map stitching
method could explicitly check whether the environment is regular enough to
warrant the ‘straight lines assumption’.

6.2.4 Inertia sensor improvements

It seems that the inertia sensor, as it is currently implemented in USARSim,
returns inconsistent data. When the rotation estimate has an error, the ab-
solute location estimate from the sensor should be consistent with this. For
example, if the rotation estimate is 10◦ while the real rotation is 0◦ and the
robot moves 5 meter forward, it should return a new position estimate of
(x, y, θ) = (5 sin(10◦), 5 cos(10◦), 10◦) instead of (5, 5, 10◦). Otherwise, the data
it returns is not consistent.

Alternately, the UsarCommander software could use the scanmatcher data
to calibrate the inertia sensor. If the inertia sensor registers that the robot has

31

turned, but the laser scan data is not in agreement, the inertia sensor could be
‘reset’ or it’s data could be filtered to fit the laser scan results.

32

Acknowledgements

I would like to thank Arnoud Visser for his supervision of the project. His help in
understanding the UsarCommander software was also indispensible. In addition,
I would like to thank Julian de Hoog for sending me Magdalena Jankowska’s
thesis on Hough transform based map stitching.

I would like to thank my friends and family for their support, and in partic-
ular Leonie, who enforced the final deadline.

33

Bibliography

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
part I”, Robotics & Automation Magazine, IEEE, volume 13(2):pp. 99–110,
2006.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (SLAM): Part II”, Robotics & Automation Magazine, IEEE, vol-
ume 13(3):pp. 108–117, 2006.

[3] B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis and C. Scrapper, “USAR-
Sim: a validated simulator for research in robotics and automation”, in
“Workshop on Robot Simulators: Available Software, Scientific Applica-
tions, and Future Trends at IEEE/RSJ”, 2008.

[4] J. Wang, M. Lewis, S. Hughes, M. Koes and S. Carpin, “Validating us-
arsim for use in hri research”, in “Proceedings of the Human Factors and
Ergonomics Society Annual Meeting”, volume 49, pp. 457–461, SAGE Pub-
lications, 2005.

[5] S. van Noort and A. Visser, “Validation of the dynamics of an humanoid
robot in USARSim”, 2012.

[6] O. Formsma, N. Dijkshoorn, S. van Noort and A. Visser, “Realistic sim-
ulation of laser range finder behavior in a smoky environment”, RoboCup
2010: Robot Soccer World Cup XIV, pp. 336–349, 2011.

[7] T. Schmits and A. Visser, “An omnidirectional camera simulation for the
USARSim world”, RoboCup 2008: Robot Soccer World Cup XII, pp. 296–
307, 2009.

[8] N. Dijkshoorn, H. Flynn, O. Formsma, S. van Noort, C. van Weelden,
C. Bastiaan, N. Out, O. Zwennes et al., “Amsterdam Oxford Joint Rescue
Forces Team Description Paper Virtual Robot competition Rescue Simu-
lation League RoboCup 2011”, 2011.

[9] A. Visser, N. Dijkshoorn, S. van Noort, O. Zwennes, M. de Waard, S. Katt
and R. Rozeboom, “UvA Rescue Team Description Paper Virtual Robot
competition Rescue Simulation League RoboCup 2012”, 2012.

[10] S. Thrun, “Probabilistic robotics”, Communications of the ACM, vol-
ume 45(3):pp. 52–57, 2002.

34

[11] B. Slamet and M. Pfingsthorn, “Manifoldslam: a multi-agent simultane-
ous localization and mapping system for the robocup rescue virtual robots
competition”, 2006.

[12] S. Pfister, K. Kriechbaum, S. Roumeliotis and J. Burdick, “Weighted range
sensor matching algorithms for mobile robot displacement estimation”, in
“Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Interna-
tional Conference on”, volume 2, pp. 1667–1674, IEEE, 2002.

[13] A. Howard, G. Sukhatme and M. Mataric, “Multirobot simultaneous lo-
calization and mapping using manifold representations”, Proceedings of the
IEEE, volume 94(7):pp. 1360–1369, 2006.

[14] A. Visser, B. Slamet and M. Pfingsthorn, “Robust weighted scan matching
with quadtrees”, 2009.

[15] S. Carpin, “Merging maps via Hough transform”, in “Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on”,
pp. 1878–1883, IEEE, 2008.

[16] A. Censi, L. Iocchi and G. Grisetti, “Scan matching in the Hough domain”,
in “Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on”, pp. 2739–2744, Ieee, 2005.

[17] P. Hough, “Method and means for recognizing complex patterns”, Decem-
ber 18 1962, uS Patent 3,069,654.

[18] R. Duda and P. Hart, “Use of the Hough transformation to detect lines and
curves in pictures”, Communications of the ACM, volume 15(1):pp. 11–15,
1972.

[19] D. Ballard, “Generalizing the Hough transform to detect arbitrary shapes”,
Pattern recognition, volume 13(2):pp. 111–122, 1981.

[20] M. Jankowska, “A hough transform based approach to map stitching”,
2009.

35

Appendix A

Additional images

This appendix contains additional images belonging to the experiments which
were too unwieldy to put in the main text body.

A.1 Experiment 1

16000 18000 20000 22000 24000

25000

20000

15000

10000

5000

0

0

10

20

30

40

50

60708090

100

110

120130
140

150

160

170

180

190200
210

220

230

240

250

260

270280

290

300

310

320

330

340

groundtruth
ins
slam

(a) The path of the robot ac-
cording to the groundtruth,
inertia sensor and SLAM

16000 18000 20000 22000 24000

25000

20000

15000

10000

5000

0

0

10

20

30

40

50

607080
90

100

110

120130
140

150

160

170

180

190200
210

220

230

240

250

260

270
280

290

300

310

320

330

340

(b) The path of the robot ac-
cording to SLAM, with associ-
ated uncertainty ellipsis. The
error is plotted with yellow
circles if there was infinite er-
ror (no matches at all).

Figure A.1: Map 1 paths

36

(a) Piece 1: 0 ≤ t ≤ 65

(b) Piece 2: 69 ≤ t ≤ 95

(c) Piece 3: 97 ≤ t ≤ 102 (d) Piece 4: 104 ≤ t ≤ 112

(e) Piece 5: 114 ≤ t ≤ 158

(f) Piece 6: 160 ≤ t ≤
163

(g) Piece 7: 165 ≤ t ≤
167

(h) Piece 8: 169 ≤ t ≤
174

(i) Piece 9: 176 ≤ t ≤ 182

Figure A.2: Map 1 parts

37

(a) step 1 (b) step 2

(c) step 3 (d) step 4

(e) step 5 (f) step 6

(g) step 7 (h) step 8

Figure A.3: Map 1 stitching steps

38

A.2 Experiment 2

39

(a) Piece 1: 0 ≤ t ≤ 291

(b) Piece 2: 297 ≤ t ≤ 747

(c) Piece 3: 750 ≤ t ≤ 1002

Figure A.4: Map 2 parts

40

(a) After merging piece 1 and 2

(b) Adding piece 3

Figure A.5: Map 2 results

41

A.3 Experiment 3

42

(a) Piece 1

(b) Piece 2

Figure A.6: Map 3 parts

43

Figure A.7: Map 3 results

44

