Dutch Nao Team

Technical Report 2011
http://www.dutchnaoteam.nl

Faculty of Science, Universiteit van Amsterdam, The Netherlands

September 28, 2011

http://www.dutchnaoteam.nl

Contents

(1 _Introduction|

[2 Qualification|

[3 Competitions|
3.1 Rome Open| e

3.1.2 Developments|.
3.2 Iran Open| o o o e

[3.2.2 Developments|.
3.3 RoboCup Istanbul]
[3.3.1 Developments|.
[3.3.2 Open Challenge|.

4 Program

4.3 Motionl. e

4.6.1 The Algorithm|
4.6.2 The Experiments|

.1 Requirements| L
p.1.1 Programl|.
b.1.2 Simulation|o L

6 pONSsors
6.1 Preparations|

6.2 Contacting companies| e e

% Public Relations
7.1 Getting started|
7.2 Making the script|.

[7.2.1 Thescript in generall oL o

10
10
12
12
13
14
14
14
15
15
16
17
17
19

20
20
20
21
21
21
21

22
22
23

[7.2.3 ()b]ectwel
B
IZ 3 Achjeye“ (S |ISI

25
25
25
25

26
26
26
26

26
27
27
27

29

1 Introduction

The Dutch Nao Team consists of Artificial Intelligence students from the Universiteit van Am-
sterdam, supported by a senior staff-member. The Dutch Nao Team is the continuation of the
Dutch Aibo Team; a cooperation of several Dutch universities who were active in the predeces-
sor of the Standard Platform League [19, 22 [9]. The Dutch Aibo Team has been successful,
both in the competition and with a number of publications [13| [7, 12, 1T, 2], 10]. The Dutch
Aibo Team always published their source-code online including a technical report about the
innovations [20]. The Dutch Nao Team will continue this tradition. The Dutch Nao Team
debuted in the SPL competition at the German Open 2010 [18].

Since the team consists of twenty-three members, the responsibilities have been distributed
over our team as follows:

Supervisor: Dr. Arnoud Visser
Coordinator: Duncan ten Velthuis
Vice-coordinators: Camiel Verschoor, Auke Wiggers

Programmers: Boudewijn Bodéwes, Michael Cabot, Erik van Egmond, Eszter Fodor, Sharon
Gieske, Robert Iepsma, Sander Jetten, Osewa Jozefzoon, Anna Keune, Elise Koster, Hessel
van der Molen, Sander Nugteren, Tim van Rossum, Richard Rozenboom, Justin van
Zanten, Maurits van Bellen, Steven Laan

Public Relations: Merel de Groot, Timothy Dingeman

Sponsors: Romy Moerbeek

2 Qualification

The team that participated in the German Open 2010 [I8] consisted of only two students. Over
the summer the team was extended to twenty-three students. This team had their first meeting
in October 2010.

That day the commitment was made to travel to Istanbul for the RoboCup 2011. In De-
cember a qualification document [5] and qualification Vide(ﬂ were produced. The qualification
document described the research that was to be performed in the upcoming months and how
this was to be achieved.

3 Competitions

3.1 Rome Open

The teams that competed in the Rome Open Standard Platform League were:
1. SPQR+UChile (Italy + Chile)
2. SpelBots (USA)

3. Austrian Kangaroos (Austria)

! Available at http://www.youtube.com/watch?v=p9rWsUJ11Z4

http://www.youtube.com/watch?v=p9rWsUJ1lZ4

Figure 1: The Dutch Nao Team in Rome

4. Portuguese Team (Portugal)
5. Dutch NAO Team (The Netherlands)
6. Los Hidalgos (Spain)

3.1.1 Matches

The first match was lost against the Austrian Kangaroos (0-1), and the second match ended in
a tie against Los Hidalgos (0-0). The third match was again against the Austrian Kangaroos (0-
3). The last match was again a tie against Los Hidalgos (0-0). Later the Spanisch and Austrian
team played the final of the Rome Open, so it was a pitty that the Dutch Nao Team played no
matches against teams in the other pool. The team gained experience from the matches and
due to this the implementation of the program was improved.

3.1.2 Developments

Due to a local power cut the game controller could not broadcast any game information as all
servers were down. Therefore all teams were forced to use a button interface. The team was
not prepared as the button interface was not yet implemented. An attempt was made to make
one overnight, but this was unsuccessful.

3.2 Iran Open
A total of five teams competed in the Iran Open Standard Platform League:

1. Nao Team Humboldt (Germany), first place

2. Cerberus (Turkey), second place

3. MRL (Iran), third place

4. Kouretes+Noxious (Greece/United Kingdom, Oxford joined to form this team)

5. Dutch Nao Team (our team)

Figure 2: The Dutch Nao Team in Teheran

3.2.1 Matches

Due to bad preparation and an unfinished program loader, which is required to start up the
program automatically, most of the matches resulted in failure with either no robots on the
field or robots that were initiated manually. Two matches were last, one match ended in a
tie. These matches were against Cerberus (0-4), NTH (0-2) and Kouretes-Noxious (0-0; lost
through penalty shootout). Although not visible in the results, many improvements were added
to the code. Again, this was a good opportunity to experience real matches and get used to the
process of a tournament. During this tournament the team came across some essential missing
elements in the program.

3.2.2 Developments

The most important development was that the chin camera was used instead of the camera
on the forehead. It was quite a surprise when the team found that the Nao can see the ball
when standing directly in front of it, while the team (and even the scientific advisor) had always
assumed that the forehead camera was the only one in use.

Significant progress was made throughout the week, especially in the main program con-
trolling the flow of states and the vision department (goal recognition). At the start of the
tournament the Aldebaran’s balltracking module was used. However, a different method was
implemented, which used Python OpenCV (an image processing library).

3.3 RoboCup Istanbul

Twenty-seven teams from all over the world competed in the RoboCup 2011. We’ve played
against a few of them:

1. Austen-Villa (Texas), lost, 0-5
2. Nao Team Humboldt (Germany), one draw, 0-0 and one loss, 0-3

3. SPQR+Chile (Ttaly and Chile), match ended 1-1, won this match through penalty shootout.
This was by far the most exciting and the most visually unattractive match.

4. B-Human (Germany), lost, 0-10

Figure 3: The Dutch Nao Team in Istanbul

5. UPennalizers (Pennsylvania), lost, 1-3 (note: one own goal)
6. MRL, lost practice match, 0-3

From this opponents three teams reached the quarter finals, and one was the later champion.
Fach of these matches posed a chance to see the programs capability of coping with real life
conditions (instead of testing in ideal situations). The only matches in which our robot team
suffered from severe technical problems were the matches against SPQR+Chile and B-Human.
Tweaking and bug fixing was done in between matches while larger changes were made during
the night following the matches of that day. It should be noted that the match against B-Human
was played with code that was not yet tested in a practice match.

3.3.1 Developments

Major progress was made in the main program, goalrecognition, the gamecontroller-listener and
buttoninterface, apart from tweaking and bugfixes.

The so-called Soul, where state and phase changes are specified, is the Dutch Nao Team’s
approach to the game problem. It can be seen as a state machine where situations in the game
are represented as the states (see section . Several improvements were made, apart from
tweaking and bugfixes:

e Better use of balltracking throughout the program (e.g. more checks to see if ball is still
there or keeping track of ball at all time)

e Initialization possible in Set state instead of initializing variables in Initial. The former
resulted in technical difficulties during a penalty shootout.

o Keeper uses six instead of eight ball-locations, resulting in faster but slightly less accurate
keeping. Possible because of more precise balltracking.

e Stricter conditions for Nao to kick a ball, to make sure the Nao does not kick without a
ball being there.

The goalrecognition algorithm was rewritten entirely, resulting in faster goalrecognition (see
section [4.2.2)). This improved the algorithm with a factor ten as the algorithm is more efficient.

The gamecontroller was functional before Istanbul but caused problems due the presence
of several other gamecontrollers. Because of their presence the robots started listening to the
other gamecontroller causing the program to crash. This phenomenon was solved by reading
out the incoming message of the gamecontroller and check whether it broadcasted the team id.

The button interface was also functional before Istanbul but caused minor problems due to
variation in the pressing of the chest button. Some referees pressed the button longer than others
causing the robots to switch off entirely or play on without being penalized. This problem has
been partially solved by instead of checking if a button is pressed, check if it has been released.

3.3.2 Open Challenge

For the Open Challenge the ZoneBlocking project was presented. This section describes what
it is and how it is performed (see Appendix [12.2)).

Relative positioning using trigonometry

To position itself in the desired spot, a Nao needs to not only recognize their current position,
but also the desired spot to move to. This was achieved by using copious amounts of trigono-
metrical techniques.

Movement and positioning

After scanning for environmental features, calculating the Nao’s relative position to them, and
doing the math involved in finding the desired standing location, certain motions were neces-
sary to get there. Since the Nao’s walking functions curve slightly to the left and have some
overshoot, it was decided that it would be best if small movements were made of about twenty
centimetres each. For each twenty centimetres walked, the Nao will stop, turn facing the goal,
and re-estimate its walking path. Then, it will continue on its way considering the new mea-
surements. During one of these checks, if the Nao is found standing within the error margin
of twenty centimetres, the walk cycle terminates. The Nao will then determine its angle to the
goal and use this information to turn away from it, facing the opponents’ goal.

This, in contrast to the initial positioning, is done in one move, to block the line between the
goal and the opponent. Using the relative location of the attacking Nao and the assumptions to
the location of the (unseen) goal, it is possible to move the Nao into the opponent’s line while
wasting as little time as possible. This gives a set of blobs that should correspond to opposing
Naos waistbands. These blobs are used to extract the locations of the left and right edges,
using these to calculate the angles to the defending Nao (the Dutch Nao Team had already
done calculations on this, so for this step the pre-existing method was simply used). The width
of the waistband will also directly correspond to the distance of the Nao.

During the competition the code of ZoneBlocking was adjusted to the circumstances in
Istanbul. Unfortunately, it was too difficult to get the relative position to the goal stable
enough for a demonstration during the Open Challenge. As alternative, an demonstration
based on Dynamic Tree Localization was proposed (see Appendix . The proposal got
rejected and a presentation about ZoneBlocking was given without a demonstration.

3.3.3 Research Presentation

Because only a limited amount of time (3 minutes) was given to present about a current research
topic, a presentation was given like an Ignite talkﬂ The research topic was a short summary of

2Scott Berkun - "Why and How to Give an Ignite Talk”, Ep 19. Video uploaded 23 jun 2009 http://www.
youtube . com/watch?v=rRalIPkBFbg

http://www.youtube.com/watch?v=rRa1IPkBFbg
http://www.youtube.com/watch?v=rRa1IPkBFbg

the contribution of the team to the RoboCup Iran Open Symposium 2011 [I7], as indicated in
Fig. [

Research Presentation Standard Platform League
ROhoch 2011 Istanbul International Fair, July 8, 2011 @"“"

= 9% STANBUL - TURKEY.
® THE JOURNEY STARTS HERE

An Experimental Comparison of Mapping
Methods, the Gutmann dataset

Arnoud Visser, David de Bos and Hessel van der Molen

Summary of a paper presented at

RoboCup Iran Open Symposium W e
Tehran International Fai il 8, 2011 RS
ehran International Fair, April 8, S \
intelligent autonomous systems
3 g
(&)

X

1 Universiteit van Amsterdam
Intelligent Systems Laboratory

Figure 4: Title page of the Research Presentation

In the presentation was shown that a RoboCup soccer field is a popular benchmark for
localization, but is only sparsely used as a benchmark for SLAM-algorithms. With a limited
size this benchmark has no scaling issues, while the uncertainty in the sensor and motion model
are high enough to be challenging, which was the message to take home as indicated in Fig.
With the same sensor and motion model three SLAM algorithms were compared: EKF-SLAM,
FastSLAM 1.0 and FastSLAM 2.0 [14]. In this small world the classic EKF-SLAM algorithm
gave the best result, as expected.

Conclusion

« SLAM challenging I
enough at soccer field

* No scaling problems

» All aspects of
uncertainty in motion,
observation,
correspondence are
present

nnnnnnnnnnn

3 place
Technical Challenge

Figure 5: Conclusion of the Research Presentation

4——ba|l close —(—ball seen

ball lost ball seen ReturnField | €4— true —| Unpenalized

N /

ball lost,
phasae ficr:?sﬁed —— | BallNotFound | ¢—— no ball

InGoalArea | ¢——ball close —————| BallFoundKeep

speed > 0.2

BallApproaching

ball lost/
phase finished

ball lost ball seen

;| BaIINotFoundKeep|

Figure 6: The phases for both player (top) and keeper (bottom) and conditions for transition
between phases.

4 Program

The program used in the RoboCup 2011 is written solely in Python. It is compatible with
Python versions 2.61. OpenCV for Python is used, mainly for image processing. The files
used are all original files written by members of the Dutch Nao Team. Different files are used
for different sections, for instance, motions are all specified in a single file and not in the file
containing the main program.

4.1 Architecture

The program solves the game problem using a double state machine in the file soul.py. At the
highest level are the states, which are the game states as specified by the gamecontroller. At
a lower level are the phases, which are specific situations during a game. Transitions between
the states and phases are made based on external input (conditions). For state-transtitions, the
external input is a message from the GameController and/or the button interface (see section
. For phase-transitions, the external input is based on observations (see section .

In each of these phases, checks are made to see if conditions for transition are met (e.g. if
in BallFound phase and ball close enough for a kick, go to Kick phase). An overview of these
phases and conditions can be found in figure [f] An advantage of this approach is that the
main problem, playing a game of soccer, is divided into smaller problems, which can be solved
independently and locally. A second advantage is that phases can be tested without executing
the entire program. In effect, the tests are less time-consuming. On the other hand, the Nao is
not able to process circumstances that are not specified in a phase. The solution implemented
is a straightforward one where phases can not be interrupted until they have finished. This
would not, or less so, be the case if a single program covered the entire game problem. A short
explanation of every phase in our program:

BallFound

10

Contains a findBall call to vision, which returns an x- and y-value representing the relative lo-
cation of the ball (if found). Uses the found location to move Nao towards the ball. Transition
conditions: Ball not found or ball close (close being close enough for a kick). How close this is
depends on circumstances of the field (lighting changes interpretation of distance, how fast the
Nao walks depends on the carpet, etc.)

BallFoundKeep

Similar to BallFound. The main differences are that the keeper does not walk towards the ball
and that old positions of the ball are tracked as well. It is possible to derive speed and direction
of the ball using these old positions and some geometry. If two or more positions are known, a
function through these points f(y) will intersect with the Nao’s y-axis in (y,0). The direction
of the ball, which is the direction in which the Nao should dive, is determined by that specific y.
An estimate of the speed at which the ball is moving towards the Nao (z-direction) is derived
by taking two ballpositions and subtracting the z-positions. Transition conditions: Ball moving
towards keeper (speed high enough) or ball close (low speed).

BallNotFound
When a player can not see the ball, the head moves around to scan for it. If, after a full scan,
the ball is still not found, Nao turns around. Transition condition: Ball found.

BallNotFoundKeep
Similar to BallNotFound, the difference is that the keeper does not turn when a ball is not
found. Transition condition: Ball found.

Kick

Player-only phase. Player is close to the ball and scans for goal. Player takes action if a goal
is found, action depends on which goal is found. Angle towards goal is used as input for the
kicking motion. Transition conditions: Ball lost or phase finished (ball kicked). A special tran-
sition was added later: If the ball somehow moves during the kick phase and is too far to kick,
move to the BallFound phase.

BallApproaching

Keeper-only phase. Ball moves at high speed towards the keeper in a certain direction dir.
Keeper takes action depending on dir (diving or sidestepping, left or right). Transition condi-
tion: Phase finished.

InGoalArea

Keeper-only phase. When the ball is in the goalarea, the keeper walks towards it, kicks it and
walks back. As returning to the center of the goal is still impossible for us, this phase is not
used in the current program.

Unpenalized
When a player or keeper is unpenalized, it moves to this phase first. It tells the player to walk
2 meters in x-direction (forward). Player/keeper then goes to phase ReturnField.

ReturnField
This phase can only be reached from the Unpenalized phase. While the player is walking,
search the ball. Transition conditions: Ball found or end of walk.

11

Keepers behave differently from other players in the field. Therefore, a similar approach is
used but with different names for the phases (e.g. BallFoundKeep instead of BallFound). This
shows another disadvantage of our approach: When a bug is found or a change is made in the
phases for regular players, it has to be changed twice, once for the normal phases and once for
the keeper phases. However, different behaviour for the player and keeper can be made, where
this is needed (e.g. emphasize movement along y-axis for keeper to protect the correct side of
the goal, whereas a player will emphasize movement along the x-axis to reach the ball faster).
A phase contains the following:

e A call to receive visual information and, if needed, further processing of this information
e Omne or more condition checks for transition to other phases

e One or more motion calls

e Optional: print statements for debugging purposes

The exception to this is the Unpenalized phase. This phase cannot be reached from any other
phase when in the Playing state and it does not ask for visual input. It is reached when a
player or keeper was in the Penalized state and is unpenalized. Its sole purpose is to make
this player then walk two metres forward (in the direction it is facing, this should be towards
the field) and thus prevent it from staying at the sideline.

As each phase is implemented as a Python function, it can be called independently. The
system thus works as a loop calling the function corresponding to a game phase. It should
be noted that the phase can be changed in any state but the corresponding function is only
called in the Playing state. Also, a keeper that is penalized will reach the Unpenalized and
ReturnField phase successively, meaning it turns into a regular player after being penalized.

Calls to other aspects of the program (vision and motion) are made through interfaces.
These interfaces are specified in different files. DNT chose to use this approach instead of
regular motion calls to make the main program (soul) easier to understand. An example:
Function StandUp() in motionInterface.py checks the pose of the Nao and then takes action
corresponding to this pose. Instead of checking the pose in the main program, this entire process
is specified in a different file and can be initiated with a simple function call.

4.2 Vision

The ball- and goal-detection are based on color filters. Prior to a match calibration is needed to
set the HSV-color-ranges of the red ball, yellow goal and blue goal. These ranges are then used
to filter the image taken by the Nao resulting in a grayscale image. When detecting the ball the
filtered image is smoothed to remove any noise. If the brightest pixel passes a threshold then
this is assumed to be the ball. The position of the ball is calculated by projecting that pixel
onto the ground using the location and orientation of the camera when the snapshot was taken.
The goal is detected by appending vertical lines in the filtered image to form blobs. These blobs
are tested to see if any describes a goalpost. If two posts are found then the angle towards the
goal is calculated.

All the vision components were set up so to run parallel with each other. This was removed
in the latest release of the program to prevent overheating of the Nao’s head.

4.2.1 Blob and Nao detection

In order to recognize features of the environment, a scan is done for blobs of colour in the
snapshots the Naos make while walking. To do this, first each picture is corrected for varying

12

lighting conditions. This is done by taking a sample snapshot and finding the pixel that most
approximates white. Luckily, since the robots are playing a game of soccer, there will almost
always be a white field line somewhere in the snapshot for sampling. The white point is then
assumed to be white and all other colors are corrected to make this pure white. This will give
consistently coloured snapshots to work with.

Then, the pictures are scanned for colours in a certain range (for example, yellowish colours
for the yellow goal). These color ranges are pre-set according to tests, due to correcting these
colours, the pictures are consistent enough to make this assumption. A new black and white
picture is made representing this scan, with white pixels denoting a positive pixel and black
denoting a negative. This gives a black image with the shape of the object that is scanned for
in white, and usually some noise. Then each line of the image is checked for lines of one or
more white pixels. These pixels represent a blob on a certain line, line blobs. The data on all
of these line blobs is stored along with a unique ID value. Due to this line blobs can be easily
re used.

Once the entire image is scanned, this will result in a database filled with line blobs. The
next step is to convert these line blobs into two-dimensional blobs. This is done by looping
over all the line blobs and checking if any of the line blobs, on a line below the current line,
are within the horizontal range of the current line blob. If this is the case these line blobs are
mapped to one ID value. Once this is done, all the blobs with the same ID are found and the
new maximum edges are calculated. This is stored as a new blob with a new ID, along with
this data.

To detect a Nao, all insignificantly sized blobs are discarded; this filters most of the less
significant noise. Sometimes, faraway Naos are also discarded during this step; however, this is
not a real problem since opponents this far from our goal are no immediate threat. This does
leave the bigger noise groups in the picture. To determine which of these objects are actual
Naos, a check is done on three lines above and two below each blob. If the detected blob does
indeed belong to a Nao, each of these lines should be (approximately) white.

4.2.2 Goal Recognition Algorithm

The following algorithm is based on the shape of the goal. The goal is defined by its two poles.
The poles in the image are rectangular with a length and a width defined by thresholds. Goal
recognition is performed on a color filtered image. The color can be either blue or yellow. In
short, to check if the poles are present, the algorithm searches the image in vertical direction
for lines long enough to be poles. Then it checks if the lines are adjacent and the width is wide
enough to be a goal.

Algorithm step-by-step (the threshold ¢ is 20)
e Filter the image based on color.

— Form a dict of vertical lines.

Iterate from top down steps of ten (0.5¢) pixels, start at ten.

— When a true pixel is found go back nine (0.5¢ — 1) pixels (remember the step of ten).

Start iterating by one pixel until a true pixel is found.

— Then count until twenty (t) pixels are found in a row or until a false pixel is found.
— When a false pixel is found retry at the last known pixel (ten (0.5¢) further).

— When a true pixel is found do the same but bottom up .

— Remember starting and ending pixel.

13

— If no pixels is found there is no need to start from bottom up.

— Bottom up searching cannot go past the starting pixel.

e Group the vertical lines together.

Iterate from left to right.

If the left and right one are adjacent and do not differ in length by more than 50%
— If a group is found and large enough remember it and find another group.

— Return the two largest groups.

4.3 Motion

All of the motions designed are keyframe motions, the kicks being a special case. The kick and
back kick are given an angle (angle to the goal) as input. The result is an open-loop motion
kicking the ball in the specified angle. The keeper movements are of our own design. We use the
walk engine by Aldebaran which is a stable omnidirectional walk. Get-up motions are improved
versions of the motions provided in Choreographe.

4.4 Communication

At first, the program was tuned to listen to a specific IP address. It would receive the input
stream, parse it, and store the information in a GameController object. Recieving the data was
done by the refresh() method, and the object had several get methods to acquire the data from
the object. The refresh method returned true if it had recieved data, and false if it hadn’t.

In the Rome Open, the program was made to display the right LEDs on the chest and feet,
depending on the current team color and the game state (green for playing, red for penalized,
etc.).

After the Rome Open, the button interface was implemented and combined with the game
controller to make a state controller. This is a threaded module which is called to get the game
state according to the buttons and game controller (if game controller is present).

Furthermore, the controlledRefresh method was implemented, which calls the refresh method
repeatedly during a specified interval to see if the game controller is still online (default 4 sec-
onds). If it is, it returns true. If the connection timed out, it returns false, and the state
controller starts listening to the buttoninterface, before trying to connect with the game con-
troller again.

In Istanbul it occured, that some teams were broadcasting their own game controllers on
the same IP address, which caused problems as the program would listen to all of them. The
solution to this was making the program listen to game controllers broadcasting a match with
our team number in it only.

Communication between Naos has been proven to work successfully using built-in methods
provided by Aldebaran. It is possible to store a string in memory of a Nao. Other Nao’s can
receive this specific string if the IP adress is known. This communication will be used to ‘tell’
other Naos how close to the ball they are. Visual information, once processed, can be sent
through use of a (not yet determined) protocol, e.g. 'Ball 0.500 0.300 0.583" would mean a ball
is at relative position (0.5, 0.3) at distance 0.583 meters.

4.5 File architecture

The file hierarchy (see figure[7)) that is used prevents the main program (soul.py) from becoming
a chaos. The contents of the files are described in more detail in Appendix Motions are

14

imports
[GameStateControI motionInterface
imports imports imports

[ButtonControIIerj [Ga meControIIer] (vision)

imports

[IongDistanceTracker] locateGoalzor

Figure 7: Hierarchy of files as used in the RoboCup 2011

specified in a single file. For different visual tasks, different files are used. This is mainly to make
testing easier (tasks can be tested and programs can be altered simultaneously without trouble
due to incompatible versions). To make matters even easier, interfaces (motionInterface and
visionInterface) are used. These interfaces are used because almost every vision task starts
with a snapshot and conversion of this image. It would not be aesthetically pleasing to make
these function calls in the main program every time a vision call is made. The vision interface is
well used; the motion interface is implemented merely for completeness (as vision is comparable
to motion, both are straightforward tasks that do not alter the flow of the main program directly,
unlike the game controller and button interface). The game controller and button interface are
each specified in a file to make testing and altering individual functions easier.

4.6 Localization

While not yet implemented into soul.py a novel localization method has been developed:
Dynamic Tree Localization (DTL). The algorithm is tested with the Gutmann dataset [6] and
is currently extended to work on a NAO.

All the DTL code, the used datasets and the code used to test the algorithm can be found
at the websiteﬂ To run the code, Python 2.61, OpenCV 2.1 and Pygame 1.9.1 have to be
installed. The code is only tested with the 32bit Windows versions of the necessary programs.
It is however assumed that it should be able to work on multiple platforms and with newer
versions which are backwards compatible.

4.6.1 The Algorithm

Dynamic Tree Localization is a localization method which uses a k-d tree [2] to represent the
belief of a robot. The root node of the belief-tree represents the complete environment. Each
sub-node (child) represents a smaller area of the environment than its parent node. The total
surface-size described by all children of a node equals the surface-size of the parent-node:

sur face(childy) @ sur face(childy) @ ... @ sur face(child,) = sur face(parent)

3http://hesselvandermolen.dyndns.org/BachelorProject/index.php?page=Doc

15

http://hesselvandermolen.dyndns.org/BachelorProject/index.php?page=Doc

Figure 8: The environment used to create the Gutmann dataset.

To each node a probability is assigned which describes the likelihood that the robot can be found
in the represented area. From this, the pose estimation of a robot is calculated. Collapsing and
expanding of nodes is done using sets of rules (constraints). For more details about DTL see

Appendix and [§].

4.6.2 The Experiments

To test DTL, the Gutmann dataset is used [6]. This dataset is a 58 minute recording of a
walking AIBO ERS 2100 (equipped with a CMOS camera). The robot walked multiple times
an 8-figure in a 3x2m environment. In this environment 6 different color beacons were placed
for recognition. The robot was joy-sticked around 5 different mark-points. Each time the robot
passed a mark-point, a tag was added to the dataset. Besides the distance and angle towards
the color-beacons, the odometry estimation of the robot also got recorded. An overview of the
environment is shown in Fig.

To repeat the performed experiments to determine the average error towards a mark-
point for DTL (as described in [§]), the file testLocalization.py has to be used. By call-
ing testLocalization.mainBase(), the error toward each mark-point for different tree-sizes
(dmaz € {6,8,10,12}), collapse (0.1 to 0.6 is steps of 0.1) and expand (0.4 to 0.8 in steps of 0.05)
thresholds are calculated. The results are stored in log-files which can be processed by using the
accuracy.sh script provided by Gutmanrﬂ Executing the kidnap-test works in a similar way:
calling testLocalization.mainKidnap(treeDepth, poseFile) results in a log-file poseFile
which contains all information to be able to be processed by Gutmann’s recoverTime.cpp. The
variable treeDepth is the maximum depth of a tree of which the belief consists. In the code
the expand and collapse threshold are set to respectively 0.45 and 0.2.

It turned out that a tree with a depth of 8 nodes results in the best performance [§]. In
Fig. [9 the localization error results are shown. The smallest absolute error is 194mm with
expand and collapse conditions of respectively < 0.45 and < 0.2. With these conditions a tree
with a maximum depth of 10 nodes performs slightly better in accuracy (an error of 193mm)
but is slower with re-localization (kidnapping): 4.1 seconds for dy,.,; = 8 and 4.8 seconds for
dmaz = 10.

Comparing the performance of the current implementation of DTL with the tests performed

1see: http://cres.usc.edu/radishrepository/view-one.php?name=comparison_of_self-localization_|

methods_continued

16

http://cres.usc.edu/radishrepository/view-one.php?name=comparison_of_self-localization_methods_continued
http://cres.usc.edu/radishrepository/view-one.php?name=comparison_of_self-localization_methods_continued

TreeDepth=8

450 -
Collapse Threshold

p =01
p=02
p=03
p<04
p<05
p <086

400

w

m

=]
T

Distance Errar {mrm)
jua)
=
=

)

o

o
T

200 - —

180

.)
0.4 0.4 0.6 07 0.8 09 1
Expand Threshold (p = x)

Figure 9: Accuracy-test results with a maximum tree-depth of 8 nodes.

by Gutmann, [6], it can be seen that the absolute error of DTL is twice as big as the ab-
solute error of the adaptive MCL implementation of Gutmann (193mm versus 87mm). The
re-localization time is somewhere in the middle of the performance of the by Gutmann tested
methods.

4.6.3 The Visualizer

To get a visual overview of the belief of a robot created by DTL, a GUI is build using Pygame:
visualizer.py. In Fig. a screen-shot of the GUI is shown. In the pane on the right side of
the GUI the color and name of all landmarks are shown. Left to this pane the color of each
probability is shown, from 1 (turquoise) to 0 (dark blue). The left pane shows the environment
of the robot, with the landmarks represented as colored circles. The colored rectangles represent
a leaf in the robots belief-tree. The color shows the probability and the small circle with line
inside a rectangle represents the assumed heading of the robot in the covered area. The large
black circle and line represents the ground truth of the robot, while the white circle and line
represents the estimated position and heading.

To start the visualizer, execute visualizer.initGUI(). The GUI will immediately start
reading observations from the dataset. The GUI consists of two parts. The first part initializes
the window, while the second part starts the loop (needed by Pygame) which updates the screen
with the new belief.

Adjusting the maximum tree-depth, expand and collapse thresholds is done in localiza-
tion.py. Setting the data-files (for reading and writing) is done in the Pygame-loop in visual-
izer.py.

4.6.4 DTL on a Nao

Since DTL is build using the same program versions which run on our Naos, DTL itself works on
the robot. It however needed a module which returns observations and a server-client connection
to show the robots belief, remote, on a computer. For the first a module is build which returns
the distance and angle towards color beacons (as used in the Gutmann experiments) given a
picture of the Nao’s bottom camera. The latter evolved into a server-client structure which is
able to stream images from the Nao to a computer.

17

2| Visualizer for Dynamic Tree Localization o] ® |3

Figure 10: A screen-shot of the GUI for DTL.

Beacon Observation / Landmark detection

To test DTL on a Nao, the Nao needs to be able to detect some landmarks. For this job, six
colored beacons are used: pink-yellow-white, yellow-pink-white, blue-yellow-white, yellow-blue-
white, pink-blue-white and blue-pink-white. Detection of the beacons is done by combining the
blob-detection algorithm, [I], created for the RoboCup Open Challenge, with functions from
the Vision-Module of soul.

The module (beaconObs.py) starts by taking a picture with the Nao’s bottom camera. Then,
the system applies for each color (blue, pink and yellow) the blob-detection algorithm. The found
blobs are combined with each other and if two different colored blobs are within a specified
threshold of each other, a landmark is detected. Using the determined pixel-position of the
boundary between two colors of a landmark, and a reading of the Nao’s pose, the distance and
angle towards the landmark in the real world is calculated. In Fig. a shot of the landmark
detection is shown. The red squares are detected blobs, the blue ones are the detected boundaries
between two colors of a landmark (and thus defined as being a landmark). As can be seen, a
landmark is only detected if the two colored-blobs are above each other (center of the Figure:
the horizontal landmark). When two landmark colors of different objects are above each other,
the algorithm claims to see a landmark (top right corner: a goal is matched with a landmark).

Calling beaconObs.getBeaconObsImg() activates the landmark detection module. It per-
forms all steps: from taking a picture to calculating the heading and angle and returning the
information. The variable obs in beaconObs.getBeaconObsImg() holds the list with distance,
angle and landmark signature of the detected landmarks. An overlay of the detected blobs (as
shown in Fig. on the taken picture is stored in the variable im in the same function.

Adjusting the field and landmark signatures

Adjusting the field size and the landmark signatures with its corresponding location is done in
field_tree.py. When adjusting the field size, the dictionary D2C has to be adjusted. If landmarks
signatures or landmark positions have to be changed, the variable FIELD needs to be adaptsed.
Instruction on how to change these variables can be found in field_tree.py.

18

5 | Imag... |- || -] [

Figure 11: Beacon detection.

Showing remote the Nao’s belief
To visualize the robot’s belief remote, a client-server connection has to be made. For this
connection the socket-module of Python is used. The current communication is not yet fully
compatible with the DTL software due to some optimization and changes in the client-server
communication.

The client-server code consists of two different programs: clientStream.py and serverStream.py.
In both files a step-by-step guide can be found on how to setup a connection. The communica-
tion between the server and client takes place in turn-take manner: the server sends a request
for data (and waits), the client responds by sending the data (and waits for a new command),
at which the server in its turn responds with a new request (and waits). In this system the
client and the server are only processing information when they receive a command (client) or
data (server). After sending information the system goes idle, until it receives again.

Our current implementation is only able to handle OpenCV images. This, however, creates
the possibility to see in a real-time manner the result of e.g. filters on a camera image or an
image of the belief of the position of the robot.

4.7 Simulation

At the Universiteit van Amsterdam a physical realistic model of an Aldebaran Nao robot inside
the simulation environment USARsim [4] is developed. A major advantage of this simulator
is that uses the local installation of NaoQiSDK to process commands to the Nao robot, which
means that the same python code can be used for the real robot and the simulated robot.

It was even considered to use a NaoQi system image inside a virtual machine to circumvent
the usage of a local NaoQiSDK, but private discussions with Aldebaran employeeﬂ on the
RoboCup revealed that Aldeberan itself is busy with this development for their open source
release in Fall 2011.

USARsim is a simulation environment based on the Unreal Engine, which enables easily
modification of the environment around the robot (in contrast with Cogmation’s NaoSim) and
create realistic lighting condition.

In the previous version of USARsim (based on UT2004) a wide variety of robot models was
available, including a Sony Qrio and Aibo. The model of the Nao robot is the first type of
walking robot in the new version (based on Unreal Development Kit).

First a Nao model with two joints (T2) was developed, which was gradually upgraded to a
model with 21 joints (T21). The different parts are now nicely scaled, as illustrated in Fig.

5Manuel Rolland and Cedric Gestes

19

r B
Unreal Development Kit (64-bit, D... E@Q
p

Figure 12: A model of an Aldebaran Nao robot in USARsim, including a scaled drawing from
the Aldebaran documentation

Important for a physical realistic simulation is the calibration of the joints’ dynamic behav-
iors. The dynamic behaviors are configured with parameters such as the mass distribution, the
inertia and the gravity.

Several tests related with gravity, forces and constraints have been performed to validate
basic assumptions about the physics of the simulated world. A nice feature of the UDK-model is
that the double constraint for the HipYawPitch joint is seemlessly incorporated into the model.

With the center of mass close to the hip, representing a mass distribution according to
Aldebaran’s specifications, the robot currently can stand up and sit-down. Even more complex
behaviors as the Tai Chi and Thriller dance can be executed without loosing balance.

Currently the walking behavior is fine tuned by letting the real and simulated robot walk an
eight shaped figure. In the near future the complexity of the tests will be increased, including
more complex movements of the Dutch Nao Team.

The development of this open source simulation of a Nao robot not only valuable inside the
Standard Platform League, but should also be interesting for the Soccer Simulation League and
the @ Home League. Outside the RoboCup community this simulation could be valuable for
Human-Robot Interaction research.

5 Installation Guide

5.1 Requirements
5.1.1 Program
The following items are required to run our program soul.py:

e Nao

NaoQi 1.10.52

Computer (Windows/Linux)

Secure Shell Client (Windows) / SSH (Linux)

TurtoiseSVN (Windows) / SVN (Linux)

20

e Link to repository|

5.1.2 Simulation

The simulation environment consist of two parts: UsarSim which represents the SoccerField
(or another world) where one or multiple robots can be spawned and UsarNaoQi which rep-
resents the robot (and translates NaoQi commands into usarsim commands). For UsarSim an
installation guide is availableﬂ For UsarNaoQi an usage guide is available[ﬂ

The UDK version of UsarSim can be downloaded from sourceforge with the command git
clone git://usarsim.git.sourceforge.net/gitroot/usarsim/usarsim, for instance from
a Cygwin shell. To allow the usage of the two cameras of the Nao a tool is needed, which is
(not yet) available under git. An update of this tool which uses the video hook (EasyHook)
native to UDK to get access of the camera images is available for downloadﬂ This tool should
be installed in the directory USARTools.

UsarNaoQi is available for download at http://svn.sandern.com/nao/trunk/usarnaoqil
The code requires an installation of Visual Studio 2008 and an installation of NaoQiSDK. The
location of the NaoQiSDK installation should be specified in the environment variable AL _DIR.

The latest version of UsarNaoQi is tested with NaoQiSDK 1.10.52.

5.2 Guide
5.2.1 Program

Follow these steps to install and run the program soul.py:
1. Download the program from our repository with a SVN program.

2. Move downloaded files from the previous location to the home folder of the Nao (Linux
environment).

3. Navigate to folder ‘home\naoinfo’ (Windows) or ‘/home/naoinfo/’ (Linux).

4. Create a file ‘naoinfo.txt’, line 1 is the playernumber, line 2 the teamnumber. Line 1
should be 1 if Nao is a keeper.

5. Navigate to ‘home\naoqi\lib’ (Windows) or ‘/home/naoqi/lib’ (Linux)
6. Call ‘python loader.py’ from command line.

7. Nao will say that you have to press a footbumper to initiate football mode. Press the
bumper.

In this release, there is no safe way to stop the program. Rebooting the Nao or forcing a stop
in command line both work but are not pretty solutions to the problem.

5.2.2 Simulation

To start the UsarSim including support for the cameras the following command should be given
from the UDK directory: Binaries\Win64\udk.exe RoboSoccer?game=USARBotAPI.ImageServerGame
~log -d3d11".

Shttp://code.google.com/p/dnt-rules/
"http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Installation
Shttp://nao.sandern.com/doku.php?id=usage
%http://nao.sandern.com/downloads/ImageServer Beta3.zip

21

http://svn.sandern.com/nao/trunk/usarnaoqi
http://code.google.com/p/dnt-rules/
http://sourceforge.net/apps/mediawiki/usarsim/index.php?title=Installation
http://nao.sandern.com/doku.php?id=usage
http://nao.sandern.com/downloads/ImageServer_Beta3.zip

Figure 13: The Nao robot in the RoboSoccer environment of USARsim, including the view of
both cameras in the upper left corner.

To spawn a Nao in this RoboSoccer environment the command usarnaoqi.exe should be
given. This program loads its default configuration from the file defaultconfig.xml.

The robot can now be controlled and monitored by any control program, including Alde-
baran’s Choregraphe and TelePathe (see Fig. . The Nao is visible with the default name
"UsarSim1’ in the connection windows of both Aldebaran programs.

The simulated robot can also be controlled with the Dutch Nao Team software by typing
python loader.py on the commandline.

6 Sponsors

The Dutch Nao Team consists of students and most of them do not have enough money to pay
for the travel to the Open competitions or the World RoboCup. Therefore, it is essential to
get some sponsors. There are many companies that are eager to get some brand awareness and
they are prepared to pay for it. It costs time and energy to find the right people from the right
companies, but if it is done well, it might lead to a fine collaboration.

6.1 Preparations

There are a few things that the team needs to make some decisions on, before somebody starts
contacting companies. Firstly, its necessary to know what the team has to offer; banner on
the team’s website, logo on the t-shirts or on the Nao’s etc... Secondly, when the list is ready
with all the possibilities that a company may use, prices for the individual options have to
be determined. Sometimes people may ask whether there are packages (a few options packed
together for a better price) that can be bought. Therefore, it is recommended to make some
small packages (consisting of two or three options) for an attractive price, some normal packages
and one large package, which contains everything that is offered by the team. This is due to the
fact that every company has a different amount of money that they can spend on sponsoring.
A larger company may be willing to pay more in contrary with smaller companies, that will try
to get a better deal. After making the packages it is recommended to prepare some contracts.
This is to prevent that the company has to wait. It is up to the person who takes care of the
sponsoring to know whether to go along with the negotiations or not. When the company is

22

very small, they will not be able to pay as much money as the other companies, but every
amount can be helpful fot the team. So it is good to consider your decision about the sponsor.

Another task is to find the companies that might be interested in sponsoring the team. The
first choices should be Information Technology (IT) companies, because those are the companies
that are primiraly looking for I'T students. The internet is the best place to look for them and
also to find another businesses that might want to collaborate with the team.

6.2 Contacting companies

When all the preparations are finished one can start contacting the companies that have been
found. It is highly recommended that every company communicates with one person. This
in order to prevent double deals. It also looks unprofessional if more than one person try to
contact one person in a company. When a company is interested one should negotiate about
what the company wants exactly. Then the contract can be set up and signed.

7 Public Relations

7.1 Getting started

The Dutch Nao Team is one year old now, which means the Public Relations (PR) department
started from scratch, with no script, site or reference to a tournament the Dutch Nao Team had
participated in. First of all, the team started with the most general concern of PR: launching
the website. Given a website should appeal to a wide variety of people so it should not only
describe technical terms, but also introduce the RoboCup and ourselves on a basic level. In
addition, the site had to be a clear and easy to use, so everyone can find what they are looking
for. To achieve this, a simple menu was made based on the subjects one might wonder about.
Furthermore, the language of the site was English instead of Dutch, because of the international
character of the RoboCup competition.

Secondly, the communication advisor of the UvA, drs. M. van de Laar, was contacted, who
came up with a general script voor PR, which is described in the following section.

7.2 Making the script

7.2.1 The script in general

Public Relations is all about improving reputation and image. To achieve this, you will need a
script revolving the following questions:

e Audience: Who does the team want to reach?
e Objective: What does the team want to achieve?

e Message: What does the team want to communicate?

7.2.2 Audience

The RoboCup is not very well known outside the robotics community, therefore, choosing a
target audience was difficult. The goal was to reach (prospective) students in the teams field
to show the possibilities of robotics and perhaps even to recruit new members. Another goal
was to promote the RoboCup in general to a bigger audience. The team wanted to address the
latter because it would help reaching prospective students and perhaps even sponsors. It was
also important to keep the robotics section of the UvA up to date, because without them there
would not even be the RoboLab.

23

7.2.3 Objective

In the Netherlands only a few people are familiar with the competition. The objective is thus
to promote the reputation of the DNT and promoting the RoboCup. However, it is neither
the task nor the responsibility of the DNT to provide a campaign for the RoboCup in general.
Nonetheless, the ignorance is something to keep in mind when promoting the team.

7.2.4 Message

In short, the message for every group, comes down to:

e (Prospective) Students: See what the Dutch Nao Team does in their field and join!
e Public in general: Learn about the possibilities of robotics!

e UvA: Follow the progress of the team!

7.3 Achievements

For the past year we have mainly been working on the website and a general view of PR. The
biggest obstacle was to decide where to start. Trying to reach our entire audience at once was
too much to handle and on top of that we needed different approaches for each one.

e For our junior prospective students we gave a demonstration at the RoboCup Junior in
science center NEMO. This was done to show youngsters the possibilities of robotics.

e During the RoboCup tournaments everybody wore printed t-shirts to promote the team
and improve our reputation within the league.

e At the Science Park there were posters of the Dutch Nao Team with information about
us, our demonstrations, our progress and of course a reference to our website!

e To keep contact with our supporters a Facebook-page and a Twitter-account were made.
Through these, people from all over the world can follow our progress, thoughts and
experiences.

e And finally, to address the bigger audience, we made a press release about the participation
of the DNT in the World RoboCup in Istanbul. We chose this event for the press release
because a world cup generally is newsworthy for its international character. This particular
press release can be found in Appendix

7.4 Points of improvement for next year

Next year it would be very wise to start with expanding the script to a much more detailed
version. Last year we fiddled about for too long because our ideas were not specific enough and
also: sending general messages to an unspecific audience is not efficient or functional at all.

In addition, the goal to promote the reputation of the RoboCup in general is a job on its
own, so it is something to bear in mind when you are writing to people outside the robotics
community, but it is definitely not up to us to manage their PR!

On top of the press releases and emails, it is time to make a new, more professional website
now that we have finally accomplished something and want it to last.

Furthermore, it is a new years resolution to attend more events for speeches as well as
demonstrations. And last, but not least, we would like to refer to the following site: http:
//www.freepublicity.nu/. Unfortunately we ran across this website at the end of this past
year, but you can find lots of tips and trics there for the PR department.

24

http://www.freepublicity.nu/
http://www.freepublicity.nu/

8 Travel

The Dutch Nao Team travelled to Italy, Iran and Turkey to participate in competitions. For
every journey, several arrangements had been made. This section describes, which arrangements
were made.

8.1 Teheran

This was a special journey as the Dutch Nao Team got invited by the organizing party (Qazvin
University) and the costs for travel and stay were fully covered by them. Therefore, only the
flight had to be booked and a visa had to be requested. It is important to do these two on
time as both require some time. For the visa, the required documents have to be sent to
the organizing committee, which will respond to you when the visa can be requested at the
consulate in Den Haag. The organizing committee will make an official invitation letter for the
participating members. To request the visa in Den Haag all participating members have to be
present at the consulate. Requesting a visa can take up to one day. The flight was booked after
a confirmation of the organizing committee was received. Before leaving, a document [I5] of
all important facts about the country was sent to all participating members. This was to make
sure that participating members were informed about the background of the country, possible
required vaccinations, laws and uses of the inhabitants and advice about staying in the country.
In Iran, the stay, transport, food, tours of the city were all organized by the committee.

8.2 Istanbul

This journey was to the RoboCup2011 where all international teams participated in a robot
football World Cup tournament. The flight and hotel were booked quite late causing the price
of the flight to be higher. A nice hostel was found nearby the location of the event (name of
the hostel is Han hostel, located near Atatrk airport and the Expo Center, where the RoboCup
was held). Again, a document [16] was made with important facts about the country. Next to
that a packing list with necessary materials was made. In Istanbul, breakfast and lunch was
bought from the nearby supermarket. Dinner was bought and consumed at nearby restaurants.
The shuttle service of the hostel was used to travel from hostel to Expo Center and vice versa.
Public transport and the taxi were used only to travel into the city for sightseeing. The last
day of the journey was spend sightseeing around the city of Istanbul. Several cultural locations
were visited by most of the participating members.

8.3 Tips for the next journey

This section describes the advice to the organizers of next year. The following points are
important to take into account for next year:

e Have strict deadlines for participating students. Pay and sign up deadlines are both
important as without money you cannot book the flight and hotel.

Start on time with booking the flight to reduce costs.

Find a hostel/hotel near the location of the event.

Write a travel information document. So all the important information bundled together.

e Communicate clearly with the students participating in the team.

25

9 Management

9.1 Season 2010-2011

At the start of the project, the Dutch Nao Team (DNT) was split into different groups: Vision,
Motion, Communication and Architecture. Each group consisted of a captain and sufficient
members to complete their work. The captains were in control of the groups, as well as being
a programmer. Above the captains were two other positions, the manager and advisor. Since
the team was large at first, splitting the team seemed like a good idea at the time. It did work
because the team started from scratch and had many work to do. After some time, this did
not go so well. It became clear that the groups were dividing the DNT by blaming each other
for bugs, loss of files and other complications. It also seemed that each group saw itself as a
standalone group instead of cooperating with the rest of the team. Halfway through the year,
this setup was changed. Pairs were formed, which would then work on a single task (e.g. goal
recognition, motion). These pairs worked independently and would add their programs only
when finished. We also switched from Dropbox to SVN, a huge improvement which made the
management of files easier (and tidier as well).

9.2 Season 2011-2012

The major problem with participation last year was that it was voluntary, this made it hard
to demand progress when someone was behind on his work. The second year there will only
be members in the team that contribute actively. If anyone outside the team wants to help or
contribute to the RoboCup through related work they still can but that will be either on minor
projects that do not have a deadline or by helping existing pairs. Members that are unable to
do the minimal required work for an extended period of time will have to talk with the manager
and advisor, who will decide if a person can stay or has to leave the Dutch Nao Team..

A second problem was that the team started as a large group (23 people). As everyone, at
that point, lacked experience in managing, the focus lies on keeping the team small. This makes
management and organization easier and everyone in the team will feel more involved.

9.3 RoboCup Junior/Dutch Nao Demo Day

On May 28th, the DNT had a small stand at the RoboCup Junior at NEMO, where the most
recent code was showed off, by letting Naos play soccer on a small pitch which was open for
public throughout the day. In collaboration with Dutch Nao Day a small demonstration was
given.

The goal of the Dutch Nao Demo Day is to bring different Nao-owners that live in the
Netherlands together, show each other the demonstrations created in the different institutes in
the Netherlands and create - in a shared effort - one big demonstration, which is shown at the
end of the day in the theatre of the science center NEMO. This was and (will hopefully remain)
an excellent opportunity to show the efforts of the Dutch Nao Team to the public.

10 Evaluation and Future Improvements

The Dutch Nao Teams debut in the RoboCup2011 exceeded our expectations. Not only did
we score the very first official goal (6 goals in total), we also improved almost every aspect of
the code during and after the RoboCup. We found that playing a match in real life is the best
evaluation you can have.

26

10.1 Future work

The Dutch Nao Team has only worked with open-loop motions until now. The main goal for 2012
is to either create a stable closed-loop walking motion (or base it on Aldebarans omnidirectional
walk) or create a fully dynamic kick. Falling during a kick was one of the main problems in this
years RoboCup. A faster gait would be an important improvement because this teams robots
are currently the slowest in the competition.

Communication between players, which was not used during this RoboCup, is already pos-
sible through modules provided by Aldebaran. It is quite useful - even without localization.
During the matches, all players (except the goalkeeper) would all move towards the ball si-
multaneously, causing them to collide, fall or be penalized for pushing other players. Deciding
which player should move towards the ball is possible if information about the relative location
of the ball is shared with other players.

Nao-recogntion was already implemented for use in the ZoneBlocking project (see section
However, the algorithm as it is now is a slow, straightforward process which can not be
used if it is not improved or rewritten. Ball-recognition and the new goal-recognition algorithm
(see section could also be made more efficient by giving motion calls for the neck joint are
during calculations instead of afterwards.

10.1.1 Line Detection

To find a line on the field, an image is filtered on white pixels (lines are white). In this filtered
image, the Houghlines algorithm, found in OpenCV [3], p. 156], can find lines. Using (intensity)
thresholds, lines with corresponding accumulator value greater than the threshold are returned.
It is also possible to input a minimal required length for a line. When a line is partially invisible,
the algorithm can reconstruct the line. An additional parameter is the maximum length a gap
between lines can be before its not considered to be the same line. Unfortunately, the Houghlines
algorithm returns a lot of redundant lines. This is caused by the different thicknesses of lines
in a 3D world projected onto a 2D plane. A different threshold for lines further away than lines
close by is needed, as currently, the same line close by looks thinner when its further away. The
problem that that causes is that the algorithm finds multiple lines on a single line simply because
it is so thick that it is not considered to be the same one. To reconstruct these thicker lines, lines
that are close to each other, with the same angle, are appended to form a single line. Corners
of the field and T-junctions can be found using the data the Houghlines algorithm returns. The
Nao can use these as landmarks for localization. The angles found for T-junctions will also
contribute to the calibration of the camera, because the 2 lines should always be perpendicular
in the real world. The angle between the two lines that form a T-junction found through this
algorithm will not always be 90 degrees. Therefore, this angle can be used to recalibrate the
camera in order to maximize accuracy of localization.

10.1.2 Kinect your Nao: A human interface

In June 2011, a second-year project involving the Naos, an XBox Kinect and virtual reality
glasses was started. This project had as goal to let a Nao mimic a human operator. Com-
plications involved the balance issues when mimicking legs, the different platforms that were
used (as python was used to control the Nao and C++ to extract data from other devices).
While largely avoiding the balance issue until closed-loop motions are started, the problem of
multiple programming languages was solved through use of a TCP connection between Nao and
corresponding programs.

The TCP server that runs on the Nao is the core of the system. It can connect to a large

27

number of clients which can all send data as long as the protocol for messages is followed. The
messages should always be strings so there is no limit to the possible programming languages,
as long as a connection to the server can be made. Duplicate messages are not a problem either,
since the program only executes the first command in a message containing duplicate (and thus
possibly contradicting) joints and angles. The only constraint is that the buffer for the messages
is not infinitely big, a message from a client can, in the current program, not be larger than
4096 bytes. The slowest client determines how fast the Nao is able to execute given commands,
since the server waits for one message from every client before updating the commands.

After initiating the program with the number of connections as input for the start-function,
clients can connect to the TCP server. Once the inputted number of connections is reached,
the Nao will start executing commands from the clients. The first client that was implemented
is a program collecting data from the Xbox Kinect. It calculates the angles for the joints of the
Nao that correspond to the angles of the users body. This is done through positions of joints
involved in that angle. From these positions vectors are calculated. Using the dot product of
the two vectors, the angle between the angle between the two is determined. To illustrate this
approach: If one wants to calculate the roll of the right shoulder, take the positions of the right
elbow(pg), the right hip(pg) and the right shoulder(pg) in order to calculate /pppspm.

Normal trigonometry is used to solve this, because all the points in space are known and
thus, the angles are easily calculated. Instead, the dot product of vectors is used. This is
because for some joints, three points describing the joint cannot create a triangle in a single
plane. For example, the elbow yaw cannot be calculated in a triangular fashion. The elbow yaw
is the joint that makes you able to turn you lower arm around the axis of your upper arm. So if
it is necessary to create a triangle that calculates the elbow yaw, the positions of the elbow, the
hand and another joint in that plane that is perpendicular to the upper arms axis are needed.
There is no such joint, therefore the angle cant be calculated through trigonometry. A solution
to this problem is that vectors are used, which do not have to have a common point in order
to calculate the angle between them. For instance, for the elbow roll, the vector pointing from
the shoulder to the hip and the vector pointing from the elbow to the hand are used. If the dot
product between the two is calculated, the angle can easily be determined (where 6 is the angle
between the two vectors):

@ - b= ||al|||B]| cos 6

The second client collects data from the gyroscope in the Vuzix virtual reality glasses. This
data is used to determine two angles, a yaw and pitch, for the head of the Nao (the Nao does
not have a neck joint for the roll). It also acts as visual input for the user, acting as a second
screen for the computer it connects to. To create this visual input, Choreographe, a program
by Aldebaran robotics, is used. The benefit of this program is that it can simultaneously show
the camera images and the pose of the Nao in simulation. The latter because the real Naos
body is not visible to users with the glasses on. A third client collects gyroscope data from two
Wii remotes, as well as information about button presses. This data is used to control the Naos
hands and wrists (only for Nao Academic version, which has motors in wrists and hands) and
to make the Nao walk. Though the use of buttons does not contribute to the idea of a human
interface, it is a useful addition to the possibilities of control of the human operator.

With the components that are currently used (the Xbox Kinect, the Vuzix virtual reality
glasses, the Wii remotes, the Aldebaran Nao and Choreograph), the program gives the user a
camera view and the pose of the Nao in simulation through the glasses. The Nao itself will
mimic the users upper body which is made possible through use of the Kinect and Wiimotes,
though this can only be seen in simulation if the user is wearing the VR glasses. Gestures or
buttons on the Wii remotes activate walking of the Nao. This enables the user to execute simple
remote operations, such as lifting a box or pushing a button. It should be noted that calibration

28

of the VR glasses is needed before use of the system with all its current components.

Figure 14: The system in use

The system implemented allows a human user to control humanoid robots through body
motions (see figure . It does not require the user to lift the legs or walk, only the upper
body is mimicked. Requirements for use are perhaps a few hours of practice but no knowledge
of robotics is needed. It is therefore applicable in any area. A few examples of possible use
are teleoperation in dangerous areas (e.g. after natural disasters or warzones), house-holding
tasks but also industrial processes. The human interface makes it relatively easy to learn
the robot a new task since it can simply mimic the user executing the task. This task is
relevant to the RoboCup precisely because of that. While not currently possible, balancing
while mimicking a human operator drastically shortens the time needed to design a motion. A
user can simply execute a motion while seeing the Nao mimic it. This motion is then recorded
and smoothed (removing noise due to inaccuracies by the Kinect, removing control points,
etc.). This simplification of motion design makes it possible for an inexperienced (meaning no
experience with Naos) user to create basic, but smooth, keyframe motions.

11 Acknowledgements
The Dutch Nao Team likes to thank the following people:
e Sander van Noort for his contribution to the simulation.

e The University of Amsterdam for their support, the new lab, the contributions and expe-
rience we get from this project.

e All our Artificial Intelligence teachers for when they took RoboCup into account.
e Adwin Verschoor of Cena—WerkE providing us with full technical support.

e The Italian and Iranian National Committee for their hospitality and travel support

10Visit him at http://www.cenawerk.nl|for computer support

29

http://www.cenawerk.nl

e RoboCup Junior for a great event
e Marthy van de Laar for her help with Public Relations
e The Standard Platform League for blessing us with the Robocup.

Last but not least we would like to thank: Sander Latour, Patrick de Kok, Chiel Kooijmans,
our parents and everybody that has helped for their contributions.

30

References

1]

[11]

[12]

M. van Bellen, R. Iepsma, M. de Groot and A. Swellengrebel, “Zone Blocking”, project
report, Universiteit van Amsterdam, June 2011.

J. L. Bentley, “Multidimensional binary search trees used for associative searching”, Com-
mun. ACM, volume 18(9):pp. 509-517, September 1975.

G. Bradski and A. Kaehler, Learning OpenCV, O’Reilly Media Inc., 2008.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky and C. Scrapper, “USARSim: a robot simula-
tor for research and education”, in “Proceedings of the 2007 IEEE Conference on Robotics
and Automation”, pp. 1400-1405, 2007.

Dutch Nao Team, “Team Description for RoboCup 20117, December 2010.

J.-S. Gutmann and D. Fox, “An Experimental Comparison of Localization Methods Con-
tinued”, in “Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’02)”, October 2002.

M. Liem, A. Visser and F. Groen, “A Hybrid Algorithm for Tracking and Following People
using a Robotic Dog”, in “Proceedings of Third International Conference on HumanRobot
Interaction (HRI 2008)”, pp. 185-192, 2008.

H. van der Molen, ““Self-localization in the RoboCup Soccer Standerd Platform League
with the use of a Dynamic Tree””, Bachelor Thesis, University Of Amsterdam.

S. Oomes, P. Jonker, M. Poel, A. Visser and M. Wiering, “Dutch AIBO Team at RoboCup
20047, in “Proceedings CD of the 8th RoboCup International Symposiums”, July 2004.

B. Slamet and A. Visser, “Purposeful perception by attention-steered robots”, in “Proceed-
ings of the 17th Dutch-Belgian Artificial Intelligence Conference”, pp. 209215, October
2005.

D. van Soest, M. de Greef amd Jrgen Sturm and A. Visser, “Autonomous Color Learn-
ing in an Artificial Environment”, in “Proceedings of the 18th Dutch-Belgian Artificial
Intelligence Conference”, pp. 299-306, October 2006.

J. Sturm, P. van Rossum and A. Visser, “Panoramic Localization in the 4-Legged League:
Removing the dependence on artificial landmarks”, in “RoboCup 2006: Robot Soccer
World Cup X7, pp. 185-192, October 2007.

J. Sturm and A. Visser, “An appearance-based visual compass for mobile robots”, in
“Robotics and Autonomous Systems”, pp. 536-545, 2009.

S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents), The MIT Press, September 2005.

C. R. Verschoor, “Iran Travel Document”, Information document, March 2011.
C. R. Verschoor, “Istanbul Travel Document”, Information document, June 2011.

A. Visser, D. de Bos and H. van der Molen, “An Experimental Comparison of Mapping
Methods, the Gutmann dataset”, in “Proc. of the RoboCup IranOpen 2011 Symposium
(RIOS11)”, April 2011.

31

[18]

[19]

A. Visser, R. Iepsma, M. van Bellen, R. K. Gupta and B. Khalesi, “Dutch Nao Team -
Team Description Paper - Standard Platform League - German Open 2010”, January 2010.

A. Visser, P. van Rossum, J. Westra, J. Sturm, D. van Soest and M. de Greef, “Dutch
AIBO Team at RoboCup 2006”7, in “Proceedings CD of the 10th RoboCup International
Symposium”, June 2006.

A. Visser, P. van Rossum, J. Westra, J. Sturm, D. van Soest and M. de Greef, “Dutch AIBO
Team at RoboCup 2006”, Team description paper for the 10th RoboCup International
Competition, June 2006, Bremen, Germany, June 2006.

A. Visser, J. Sturm and F. Groen, “Robot companion localization at home and in the
office”, in “Proceecings of the 18th Dutch-Belgian Artificial Intelligence Conference”, pp.
347-354, October 2006.

N. Wijngaards, F. Dignum, P. Jonker, T. de Ridder, A. Visser, S. Leijnen, J. Sturm and
S. Weers, “Dutch AIBO Team at RoboCup 2005”, in “Proceedings CD of the 9th RoboCup
International Symposium”, July 2005.

32

12 Appendix

12.1 Team Poster

RoboCup 201 Gtandard Platform League

THE JOURNEY STARTS HERE

-‘\\5-11 Jely FTY
www.dutchnaoteam.nl

@< Dutch Nao Team =

Profile

The Dutch Nao Team consists of Bachelor students from the University of Amsterdam.

+« The Dutch Nao Team is the successor of the Dutch Aibo Team,
wha participated in the 4-Legged competition since 2004

+ Tha Dutch Nao Team has participated at several local compaetitions
(German Spen, Rome Open, Iran Open).

+ The code of the Dutch Nao Team is Fython based.

Assets
+ Diving Goalia

+ Aggressive and Defensive strategles

+ Physizally realistic simulation based an Unreal Engine
Nao balancing on one fest

Approach
+ DOpen Challenge
« Zone Blocking by Relative Localization and Opponent Detection

« Scientific Challenge
+ Lecalizatlon by Dynamic Tree expansian

Other Games
« RoboTag (inspired by the THNO Robotics Summerschool} Biocking the jine of approach of an opponant

+ FRock, Paper, Scissers

Publications

1 Armeud Visser. Dasid de Bos a'\d =awsal van dar Malan, da Sepesieantal Cempacean of Maopbeg ecieds, e Sutesin datesel, Preceadings of the RobaCup DranCpan 2011
Sympasum (RIS Aonl 200
Almcander var der ey, Frank Soy Kees-lsn Oracg snd Arncud Wieser, Cooton Dopreeems of ag rpm Stmbe Spmrec m Aymagesd mbot pepleyng 8 grneme smednoe) chete

funng 2 saccer geme, Soteed ags 9F tve Srd D-GIS Human Facters Exent, p. 4?49 heembar ‘010

33

12.2 Open Challenge Document June

, BTN
Lilla

NGy TEAM

Technical Challenges for the RoboCup 2011

Standard Platform League Competition

Dutch Nao Team

1 Objective

Our objective is to use zone blocking as a defensive strategy. Zone blocking is achieved when a Nao blocks the path

of a Nao of the opposing team towards the goal. It is a defensive strategy to prevent the opponent from scoring. Our
idea is to implement this in two phases. The first will be to shield the goal by lining the Naos up in a circle around the
goal. The second will be the detection of the opponents and stay on the line between the opponent and our goal. This
means that the opponent has to make a passing motion before it can shoot at the goal. Essential in this approach is
the coordination between the defenders.

2 Approach
As mentioned before, we will use two phases to achieve our goal.

The First Phase

During this phase we aim to position our Naos on an ideal defensive circle around our goal. The Naos should also
know their position relative to one another, so they can each assume their proper role in the defensive line.

This phase will consist of a series of steps:

- Determining the ideal area around the goal on which to set up a defensive line.

- Positioning the Naos at strategic locations on this circle using relative positioning to our own goal, while facing the
opposing goal.

- Determining the relative position of each Nao to the other defending Naos (left, middle or right).

- Following these steps we will have our Naos placed on the ideal defensive circle while knowing their relative
positions, after which they may start the second phase, actively blocking specific attackers.

The Second Phase

This phase starts when the Naos are positioned on their defensive circle facing the opponent goal. During this phase
we aim to block the line between an attacking Nao and the goal. In order to achieve this we follow the following
steps:

- Figuring out the relative position to the opponents. For each defending Nao, we will select the closest unguarded
opposing Nao to block.

- Moving in line with the selected opposing Nao, while staying between this Nao and our goal.

3 Scientific contribution
In this challenge there are several issues that have to be solved:

Relative positioning: the ideal defensive circle could be reached by relying on absolute localization. Yet, without
coloured landmarks it is difficult to maintain a robust and accurate location estimate. Instead, for this challenge it is
chosen to orient each Nao with relative measurements; range and bearing towards the two goal posts and towards
the two teammates.

Opponent detection: to be able to orient itself relative towards the opponent, an algorithm to recognize a Nao with
coloured waistband is developed.

Indirect estimates: to stay between an opposing Nao and the own goal, the relative position of that goal has to
maintained. Unfortunately, the goal is in the second phase behind the defending Nao, which means that the estimate
has to be maintained with motion updates and observations of the opponents goal and lines from the middle circle.

34

12.3 Open Challenge Document July

Self-Localization with the use of a Dynamic Tree
Robo World Cup 2011, Open Challenge

Dutch Nao Team

Introduction

In the Standard Platform League the most used self-localization algorithms are Particle Filter
based (for an overview see [1]). Such a filter needs to sample the state space. Sampling a state-
space results in the need of filter extentions which enables the possibility for re-location after
e.g. kidnapping. Building extensions on a method results in slower estimation. To get rid of
the need-for-extension problem a method should be used which incorporates the complete state
space. One of such methods would be Dynamic Tree Localization (DTL) [1].

The Algorithm

With DTL the belief of a robot is represented by a (kd)-tree. The root node represents the
complete environment. Each subnode (child) represents a smaller region of the parent node.
The represented space of all children of a node equals the represented space of the parent node.
Using a probability to determine how likely the robot is in a node, estimating the robot pose is
done easily. Collapsing and expanding of nodes is done using sets of rules (constraints). Using
such a representation has multiple (assumed) advantages:

e The complete state space is described without the need of extenstions.

e A complex belief can be represented

e Convergence to small regions is done exponentional (as with a kd-tree)

e Due to inhabiting probabilities the method is able the handle noisy data

e Online computational cost can be reduced by creating the complete tree in advance

Demonstration

For the Open Challenge we’ll demonstrate the Algorithm, using the Gutmann [2] data-set and/or
a live demonstration with the robot walking in the field.

References
[1] H. van der Molen. “self-localization in the robocup soccer standerd platform league with the
use of a dynamic tree”. Bachelor Thesis, University Of Amsterdam.

[2] de Bos D. van der Molen. H. Visser, A. "an experimental comparison of mapping methods,
the gutmann dataset. In RoboCup IranOpen 2011 Symposium (RIOS11), 2011.

35

12.4 Press release

HET DUTCH NAO TEAM GAAT DEELNEMEN AAN DE WORLD ROBOCUP!
-- Istanbul van 5 tot 11 juli —

De RoboCup is een internationaal robotica toernooi. Dit toernooi is ontstaan ter promotie
en bevordering van onderzoek en educatie op verschillende robotica aspecten: onder
andere Kunstmatige Intelligentie. Er zijn drie takken binnen de RoboCup: voetbal,
hulpverlening en huishoudhulp.

Het doel in de voetballende tak is om robots geheel autonoom een voetbalwedstrijd te
laten spelen. In de wedstrijden waaraan wij meedoen staan acht identieke robots in het
veld (vier tegen vier), waardoor men zich puur specialiseert in de programmatuur van de
robot.

Het voetballen gebeurt volledig autonoom, dat wil zeggen dat de robots niet op afstand
aangestuurd worden en alles zelf moeten doen. Het streven is dat er in 2050 een robot
voetbal team het tegen de menselijke wereldkampioen kan opnemen.

Ons team bestaat uit een groep studenten Kunstmatige Intelligentie onder begeleiding van
dr. A. Visser. Wjj zijn het enige Nederlandse team in deze competitie.

Bij de wereldkampioenschappen die volgende week in Istanbul worden gehouden zitten wij
in de poule met de Universiteit van Texas en de Humboldt Universiteit. De wedstrijden
tegen deze twee teams zijn ingeroosterd op donderdag 7 juli om 14:20 en vrijdag 8 juli om
9:20. Onze voortgang zal te volgen zijn op onze website.

VOLG ONZE VOORTGANG OP
WWW.DUTCHNAOTEAM.NL

36

12.5 File Overview

File Overview

Camiel Verschoor
CamielVerschoor@gmail.com

September 4, 2011

There are several files we use to run our program and this document
describes where they and what they do.

Folders

e naoinfo/: Contains the information about the specific nao.
¢ naoqi/: Contains the program and the preferences.

— 1ib/: Contains the library of our program.
— preferences/: Contains the preferences of the nao.

s Technical Report/: Contains the documentation of the project.

naoinfo/
This folder contains the following files:

s NAOINFO.txt: this file contains the robot and team number of the
specific robot. This file is read by the gameStateController.py

naoqi/lib/
This folder contains the following files:

s buttonController.py: This file listens to the buttons of the nao by
reading out the sensor value of the buttons. The buttons are read out
in the gamestate controller (gameStateController.py)

s gpameController.py: This file listens to the gameController that is
broadeasting our team id. This updates the gamestate of the robot.

The game controller is read out in the gamestate controller (gameStateController.py)

e pameStateController.py: This file bundles the button and game
comtrollers. This file decides, which state the robot should he. The
controller is implemented to the 2011 rules.

37

loader.py: This file loads the football program if a foot bumper
pressed. The file is automatically loads on start up. The file launches
the football soul (soul.py).

locateGoal.py: The old function to locate the goal. This function is
called by the vision interface (visionInterface.py).

locateGoalzor.py: The new function to loecate the goal. This fune-
tion is called by the vision interface (visionInterface.py).

longDistanceTracker.py: The function to locate the ball. This func-
tion is called by the vision interface (visionInterface.py).

e motionInterface.py: This file is the interface of the motions (motions.py).
This was created to have a overview of all the motion functions our
nao can perform.

e motions.py: This file contains all the motions the nao can perform
and reads out poses of the nao. The functions are called by the
motionInterface.py.

e soul.py: This is our main program and is started up by the loader
(loader.py). It bundles the program together and makes the calls to
all the inferfaces.

e testGoalzor.py: This file was created to test the new function to
locate the goal (locateGoalzor.py).

e vision.py: Contains the function to subscribe and unsubseribe to the
cam of the nao. It also contains the function to take a image of the
camera. The functions are called by the visionInterface.py

e visionInterface.py: This file is the interface, which bundles all the
vision functions together. This interface calls the function in the spe-
cific files. For example when using the findGoal() function the inter-
face calls locateGoalzor and returns the output to the main program
(soul.py. It is the connection between the vision functions and the
main program.

naoqi/preferences/

e autoload.ini: This file contains all the modules the nao has to load
on start up. The file loader.py is linked in here as well. On start up
the file loader.py is loaded, which can start the foothall program.

38

	Introduction
	Qualification
	Competitions
	Rome Open
	Matches
	Developments

	Iran Open
	Matches
	Developments

	RoboCup Istanbul
	Developments
	Open Challenge
	Research Presentation

	Program
	Architecture
	Vision
	Blob and Nao detection
	Goal Recognition Algorithm

	Motion
	Communication
	File architecture
	Localization
	The Algorithm
	The Experiments
	The Visualizer
	DTL on a Nao

	Simulation

	Installation Guide
	Requirements
	Program
	Simulation

	Guide
	Program
	Simulation

	Sponsors
	Preparations
	Contacting companies

	Public Relations
	Getting started
	Making the script
	The script in general
	Audience
	Objective
	Message

	Achievements
	Points of improvement for next year

	Travel
	Teheran
	Istanbul
	Tips for the next journey

	Management
	Season 2010-2011
	Season 2011-2012
	RoboCup Junior/Dutch Nao Demo Day

	Evaluation and Future Improvements
	Future work
	Line Detection
	Kinect your Nao: A human interface

	Acknowledgements
	Appendix
	Team Poster
	Open Challenge Document June
	Open Challenge Document July
	Press release
	File Overview

