
Bayesian Visual Surveillance
From Object Detection to Distributed Cameras

Bayesian Visual Surveillance
From Object Detection to Distributed Cameras

ACADEMISH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P.F. van der Heijden
ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit
op dinsdag 17 januari 2006, te 12:00 uur

door
Wojciech Piotr Zajdel
geboren te Kraków, Polen

Promotiecommisie:

Promotor: Prof. dr. ir. F.C.A. Groen
Co-promotor: Dr. ir. B.J.A. Kröse

Overige leden: Prof. dr. ir. D.M. Gavrila
Prof. dr. J. Biemond
Prof. dr. J.L. Crowley
Dr. ir. T. Heskes
Dr. ir. F.P. Voorbraak

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This work was supported by the technology Foundation STW (project nr. ANN.5312)
applied science division of NWO and the technology program of the Dutch Ministry of
Economic Affairs.

Advanced School for Computing and Imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 119.

This book has been typeset by the author using LATEX 2ε.
Cover design by: Krzysztof Radoszek.
Produced by: Nowy Projekt (www.nowyprojekt.pl).

ISBN: 90-9020252-8
c© 2005, W. Zajdel, all rights reserved.

CONTENTS

1 Introduction 1

2 Probabilistic Graphical Models 7
2.1 Probabilistic Reasoning . 7

2.1.1 Motivation . 7
2.1.2 Background . 8

2.2 Graphical models . 9
2.2.1 Undirected graphical models . 11
2.2.2 Directed graphical models . 12
2.2.3 Factor Graphs . 16

2.3 Inference methods . 17
2.3.1 Overview . 17
2.3.2 Message-passing algorithms . 19

2.4 Learning methods . 26
2.4.1 Overview . 26
2.4.2 Frequentist learning . 26
2.4.3 Bayesian learning . 28

2.5 Summary . 29

3 Sequential data association for multi-object tracking with sparse cameras 31
3.1 Introduction . 31
3.2 Overview . 33
3.3 Probabilistic generative model . 35
3.4 Associating observations . 38

3.4.1 EM for a tractable structure space 39
3.4.2 Approximate EM for an intractable structure space 40
3.4.3 Relation to other methods . 42

3.5 Experiments . 42
3.6 Conclusions . 48
3.7 Appendix . 50

CONTENTS

4 A Hybrid Graphical Model for Online Multicamera Tracking 53
4.1 Introduction . 53
4.2 Probabilistic Generative Model . 54

4.2.1 Model for a single observation . 55
4.2.2 Prior density for states . 57
4.2.3 Model for a sequence of observations 57
4.2.4 Graphical representation . 59

4.3 Online tracking . 59
4.3.1 Probabilistic filtering . 60
4.3.2 Approximate filtering . 61
4.3.3 Algorithm . 61
4.3.4 Limiting memory and computational costs 63

4.4 Experiments . 64
4.5 Discussion . 71
4.6 Conclusions . 74
4.7 Appendix . 74

5 A model of spatial pixel correlations for background segmentation 79
5.1 Introduction . 79
5.2 Probabilistic modeling of pixel correlations 81

5.2.1 Probabilistic framework . 82
5.2.2 Markov Random Fields . 83

5.3 Clipped factor analysis model . 84
5.3.1 Inference . 86
5.3.2 Learning . 89

5.4 Experiments . 90
5.5 Conclusions . 98
5.6 Appendix . 100

6 Conclusions 107
6.1 Summary of conclusions . 107
6.2 Future research . 109

Summary 111

Samenvatting 115

Bibliography 119

Acknowledgments 127

CHAPTER 1

INTRODUCTION

In 1949, when Eric Blair (a.k.a George Orwell) published the “1984” novel, the idea
of omnipresent surveillance systems was considered a dangerous utopia. When 50
years later, in 1999, John de Mol introduced his “Big Brother” show on Dutch TV, the
idea proved feasible and made a spectacular comeback. Despite occasional controver-
sies, in recent years visual surveillance systems seem to have made steady progress on
their way from evil and oppressive to practical and indispensable. Societal develop-
ments, like the aging of population, globalization, increased mobility have lead to an
increased demand for computer systems for assistance in safety, comfort or communi-
cation. These trends, together with steady advances in technology, inspire research on
“smart” environments that observe the users in it and make decisions on the basis of
the measurements. Examples are safety systems for elderly, traffic control systems, or
security systems in public places. In order to be “aware” of what is going on, these
systems are equipped with various sensors, such as infrared detectors, radar, cameras,
microphones, mounted at many locations.

Visual surveillance Many systems rely exclusively on cameras as the sensing devices.
Such vision-based systems attract research attention due to common availability of cam-
eras, for example, embedded in the closed-circuit TV (CCTV) networks. Moreover,
video data (in contrast to e.g., radar data) can be directly interpreted by humans and
provide relatively high-resolution measurements that give access to many details about
the environment. On the downside, high sensor resolution implies large quantities of
video data that require tedious analysis in order to find out specific information of in-
terest. While human operators are still indispensable to analyze highly-complicated
scenes, computer techniques potentially reduce the effort of an operator, by e.g., pro-
cessing video fragments with fairly structured scenes, and only notifying the operator
in case of “suspicious” events. Besides the above on-line support for security person-
nel, computer-based analysis of video might also be applied to off-line processing of
pre-recorded video material.
Visual surveillance embeds a range of image understanding techniques that automate
the analysis of video data in order to extract various emergency events in machine-

2 INTRODUCTION

interpretable way. These techniques can be studied in a variety of settings and configu-
rations due to the fact that the information of interest is highly domain-specific. In the
simplest case, one aims to detect and count some specific objects of interest, like humans
or vehicles. More elaborate applications involve analyzing a sequence of video frames
and following an object through the sequence. The most sophisticated scenarios entail
interpreting behavior of an object to detect theft, violence, unattended luggage or illegal
vehicle maneuvers.

An important aspect of visual surveillance is the camera setup. Basic configurations
rely on a single camera and assume that the scene of interest can be completely covered
by the camera field of view. Alternatively, one can consider multiple cameras that ob-
serve the same scene. Such configurations are useful for extracting depth information
about the scene (e.g., stereovision) and resolving cases when objects in the scene occlude
each other. Finally, in wide areas (eq. airports, highways or shopping centers) the field
of view of a single camera cannot fully cover the entire region of interest. Therefore,
wide-area surveillance largely relies on multiple, and importantly, sparsely distributed
cameras. Sparse distribution implies that the cameras provide information only about
selected areas — disjoint scenes spread over the complete area under surveillance.

Issues in visual surveillance Automated visual surveillance is a complex task, since
it involves analyzing raw video data in order to find relatively high-level summaries of
the video content. Given this complexity automated surveillance methods typically fol-
low a hierarchical approach, where the analysis occurs at a number of intermediate lev-
els (Collins et al., 2001; Haritaoglu et al., 2000; Wren et al., 1997; Zhao and Nevita, 2004).
At the basic level(s), the analysis of raw pixels yields pixel annotations or “events” that
summarize of the video content at various levels of abstraction. The higher-level pro-
cessing steps take events as input and produce higher-level events until the desired
information can be extracted in a machine-readable form.

Regardless of the high-level goals (e.g. theft, violence detection), typical visual surveil-
lance applications need basic “bookkeeping” of the objects of interest. From the view-
point adopted in this thesis, it is convenient to distinguish between the following book-
keeping tasks: (i) detecting an object in a video frame, (ii) keeping track of the object
across multiple frames of video stream of a single camera, and (iii) keeping track of the
object in video streams of different cameras. Since these tasks constitute a significant
part of the surveillance research, we review them briefly.

• object detection Object detection problems can be considered as the lowest level
video analysis tasks. In essence, object detection is a pixel classification problem:
every pixel in the frame of video sequence has to be classified as a “non-object”
pixel or a pixel representing (one of the) objects of interest. Examples include face
detection, vehicle detection (Huang and Russell, 1998; Kato et al., 2002), pedes-
trian detection (Gavrila and Giebel, 2001). The classification (or detection) results
from a variety of application-specific criteria. One possibility is to train a classifier

3

using prior examples of the objects (e.g. face detection). Another possibility entails
introducing assumptions about the scene (e.g., the detected object are in motion,
while the other objects are static (Rittscher et al., 2000; Stauffer and Grimson, 1999;
Sullivan et al., 2000)).

• multi-object tracking with single camera Once an object is detected in a frame,
visual tracking is the process of finding the location of that object in subsequent
frames of the video sequence. When tracking multiple objects simultaneously
present in the field of view, one has to resolve the correspondence between ob-
jects in the current frame with the objects in the previous frame (so called, data
association problem). Tracking largely relies on the assumption of smooth motion,
which allows to predict object’s location in new frame on the basis of past loca-
tions. Additional cues follow from that fact that appearance (e.g., color, texture)
of an object changes slowly between consecutive frames (Cai and Aggarwal, 1999;
Dockstader and Tekalp, 2001; Hager and Belhumeur, 1998; Isard and Blake, 1998;
Jang et al., 1997; Koller et al., 1994; Wren et al., 1997).

• multi-object tracking with multiple cameras Additional bookkeeping tasks arise
when surveillance systems apply multiple cameras to collect the video data. Here,
one has to associate appearances of an object from different video streams with
each other. In case when the cameras observe the same scene, the object will ap-
pear simultaneously in all streams (Cai, 1997; Cai and Aggarwal, 1999; Li et al.,
2002; Pedersini et al., 2001; Ruiz-Alzola et al., 2000; Ukita and Matsuyama, 2002),
and association can be simplified by camera calibration techniques. Alternatively,
every camera observes a scene disjoint from the scenes observed by the other
cameras. In this case, association problems are usually more difficult, and have
not been studied equally extensively. Examples include vehicle monitoring sys-
tems (Huang and Russell, 1998; Pasula et al., 1999) and tracking humans (Collins
et al., 2001; Javed et al., 2003; Kettnaker and Zabih, 1999).

Objectives This thesis address selected problems that arise specifically in wide-area
surveillance applications, that is, applications relying on sparsely distributed cameras.
Our key interest are techniques that help bridge the visual gap between the sparsely
distributed fields of view of the cameras. The intended contributions of the thesis lie in
either novel probabilistic formulations of the discussed problems or novel probabilistic
inference techniques applied to known probabilistic formulations.

The primary objective is reidentification of a person, as it moves between the areas vis-
ible to the cameras. Suppose, that we detect and track a person within the field of view
of one camera. When the monitored person leaves the visible area tracking stops. Later
the person appears at a possibly different camera; he or she is detected again. The ques-
tion that we attempt to answer is whether the two observed objects are in fact the same
individual. This objective is particularly relevant given the fact that current surveillance
solutions tend to rely on systems of cameras, rather than just a single sensor. Further,

4 INTRODUCTION

tracking with sparse cameras has received relatively moderate interest in the surveil-
lance research so far (at least compared to other tracking problems).

The second objective is accurate detection of people in video frames. In the context of
applications considered in the thesis, re-identification relies mainly on appearance of
the people. Therefore accurate detection of humans in video is necessary for accurate
characterization of appearance, which underlies accurate identification.

Probabilistic Approach One of the key issues in the mentioned tasks is the ambiguity
of the video data. Factors like camera jitter, illumination changes, variation in object
pose imply that the same person will appear differently each time it is observed. Addi-
tional ambiguities follow from the fact that various people will appear similar to each
other or to other uninteresting objects in the scene.

In this thesis the inherent uncertainty in the video data is approached within a prob-
abilistic framework. For every problem, we represent the input data and the sought
output quantities as random variables. The variables representing the input are con-
sidered as observed variables. The variables representing the output are considered as
hidden variables. The relation between all variables is expressed in terms of a probability
distribution, also referred to as a probabilistic model. Given the model and the data, we
apply probabilistic inference methods to estimate the relevant information.

Arguably, for many computer vision problems probabilistic methods turn out more
suitable than alternative paradigms for reasoning with uncertainty, like fuzzy logic,
default reasoning or rule-based methods (extensions to logical rule-based systems).
Firstly, probabilistic methods typically scale better with the size of the problem by using
vector-based implementations to manipulate probability distributions and appropriate
approximation techniques. More importantly, in our view, probabilistic methods offer
more principled approach to computational intractabilities arising in uncertain reason-
ing problems. In a probabilistic formulation the problem is first encoded by a proba-
bilistic model and then solved by an inference method. When designing a model we
focus on possibly exact encoding of all domain-specific knowledge. This approach sep-
arates knowledge representation from inference, which boils down to often intractable
optimization or integration problems. These problems have been extensively studied
in mathematics, physics and computer science communities, and there are many well-
motivated efficient approximate algorithms available. A comparison of such algorithms
for computer vision problems can be found in (Frey and Jojic, 2005).

Overview of the thesis Chapter 2 provides a comprehensive overview of probabilistic
techniques, which form a unifying foundation for studying the problems considered in
the subsequent chapters. The probabilistic methods can be conveniently studied in the
graphical framework, where, in essence, a probability distribution is represented as a
graph, and various computations involving probabilities correspond to manipulation of

5

the underlying graph. Graphical representation facilitates decomposing often complex
computational problems in to a series of simpler subtasks, each defined on a subgraph.

In Chapter 3 we consider the problem of re-identification of multiple people that are be-
ing tracked through a wide area with sparsely distributed cameras. In the chapter this
task is formulated as a problem of partitioning of a large number of observations (each
representing an observed person) into several clusters (each grouping observations of
a single person). Our aim is twofold: (i) to design a parametric probabilistic model
that evaluates likelihood of hypothetical partitions, and (ii) to design a procedure that
combines search for the optimal partition with the search for optimal model parame-
ters. Essentially, the presented solution defines a dynamic Bayes network (DBN) as a
probabilistic model for the observations of a single object. The edges of the network
define the correspondences between observations of the same object. Accordingly, we
derive an approximate EM-like method for selecting the most likely structure of DBN
and learning model parameters.

Chapter 4 approaches the same problem in a different way. We assume that every per-
son can be associated with an unique, albeit hidden label that identifies the person. We
formulate a probabilistic model that ties the hidden labels of people with their measure-
ments (observations) provided by a camera. Given the model and a series of observa-
tions, we consider the problem of inferring a corresponding series of labels. Inference is
based on the assumed-density filtering algorithm which is applied to compute marginal
posterior distributions on labels. From these distributions one can find the most likely
labels, which resolve association ambiguities. The presented approach facilitates a prin-
cipled estimation of the number of objects and various model parameters by Bayesian
inference.

Chapter 5 describes a probabilistic approach aimed at detecting humans in video data.
Specifically, given a video frame the aim is to accurately characterize the image region
which represents a human. This problem can be viewed as the task of assigning to every
pixel of an image a binary label that indicates whether the pixel represents a human
or a background. Popular approaches for this problem consider the labels as random
variables with an appropriate prior distribution, which ensures that the labeled pixels
form spatially coherent regions. Typically, the prior takes the form of a Markov Random
Field (MRF) model that, due to difficulties with learning, assumes only generic short-
range coupling of pixel labels. This chapter presents an alternative model that takes
spatial correlations into account in a more flexible way. The model can be easily learned
from exemplary data to incorporate correlations characteristic for foreground objects
in a given scene (e.g. human silhouettes). For inference in the model we derive an
approximate, but computationally efficient Expectation-Propagation algorithm.

Chapter 6 summarizes the conclusions from the previous chapters of the thesis and
indicates directions for future research.

6 INTRODUCTION

CHAPTER 2

PROBABILISTIC GRAPHICAL MODELS

This chapter presents the formalism of probabilistic graphical models, which are the
main tool for development of multi-object tracking techniques presented in this thesis.1

We briefly motivate the suitability of probabilistic modeling for tracking, review the
most common types of graphical models and present an overview of inference prob-
lems arising in various applications. Further, we focus on a specific class of inference
methods — message-passing algorithms, which provide a unified approach for infer-
ence in models developed in the thesis. Finally, we discuss methods for probabilistic
learning of model parameters.

2.1 Probabilistic Reasoning

Probabilistic reasoning is a formalism to express and process uncertain knowledge that
inevitably arises in many complex real-world problems. In essence, probabilistic meth-
ods express uncertain statements by means of probabilities and reason under uncer-
tainty by employing probability theory to manipulate the probabilities. These type of
methods have gained wide-spread usage in various artificial intelligence applications,
including, but not limited to, signal and image processing, machine learning, decision
making, bioinformatics or information retrieval.

2.1.1 Motivation

Probabilistic methods derive their applicability from a number of factors that introduce
uncertainty to our knowledge relevant to a given problem. First, our knowledge is
based on incomplete or imprecise measurements of the physical quantities in question.
The measurements might be incomplete due to limited resolution of the sensors, but
might be also imprecise due to noise in the measurement process. Various statistical or

1Parts of the material in this chapter have appeared as a chapter (Zajdel et al., 2005a) in the Intelligent
Algorithms book.

8 PROBABILISTIC GRAPHICAL MODELS

systematic artifacts of the process can be often easily captured by a probability distri-
bution. Second, sometimes the physical mechanisms that underlie a given problem are
not known exactly. Therefore, due to “ignorance” one approximates these mechanisms
with probabilistic formulations. Finally, in some problems the underlying mechanisms
are known, but are too complex for exact specification. Due to “laziness” we may delib-
erately approximate the complicated relations with simplified probabilistic relations.

In particular, the above factors occur in multi-object tracking problems discussed in this
thesis. Therefore probabilistic reasoning provides a natural approach for these prob-
lems. In multi-object tracking the goal is to infer the identity of an observed object from
the measurements provided by a camera. Since cameras cannot directly observe the
identity of an object, tracking relies on related, but often ambiguous properties that can
be measured, such as location or various appearance features. Moreover, noise sources,
like camera jitter or shadows introduce additional uncertainty in the measured quan-
tities. Therefore the relation between the identity of an object and its measurements is
conveniently, although only approximately, formulated as a probability distribution.

2.1.2 Background

Our description of probabilistic methods assumes the following notation. We represent
all quantities relevant to a given problem as random variables xv, where v ∈ V is a
variable index and V denotes the collection of indices for all variables. A variable xv

takes values in a set denoted as Xv. Thus, a multinomial (i.e. discrete) variable xv with
K possible states takes values in Xv = {1, . . . , K}. An m-dimensional real-valued (i.e.
continuous) variable xv takes values in Xv = R

m. For any subset A ⊆ V we define as
xA = {xv|v ∈ A} the collection of the corresponding variables, which take values in a
Cartesian product XA =

∏

v∈A Xv. We identify two specific subsets of variables, denoted
as H and E, such that H ∪E = V . The subset H contains indices of all unobserved (also
known as latent or hidden) variables. The subset E contains indices of the observed
variables, i.e. such variables for which we know the value (also known as the evidence).

The basis of any probabilistic method is a probabilistic model. A model encodes stochas-
tic relations between all observed and unobserved variables relevant to a given problem.
A model is a joint probability distribution (or joint for short), denoted as

p(xV) = p(xH , xE).

Models that involve only discrete variables will be referred to as discrete models; mod-
els with exclusively real-valued variables — as continuous models, and models with
both types of variables — as hybrid models. Importantly, in many applications defining
a model proves complicated due to a large number of involved variables. Section 2.2
presents the formalism of graphical models, which provide a convenient language for
design of large-scale probabilistic models.

2.2 GRAPHICAL MODELS 9

Given the observed variables xE , probabilistic methods answer queries about a hidden
variable, say xv, by probabilistic inference, that is, by computing a conditional probabil-
ity distribution p(xv|xE). From this distribution one can derive various characteristics
of the variable, like the most likely value, the expected value, the confidence intervals,
etc. It is worth noticing however, that probabilistic inference in large-scale model entails
integration or maximization over often intractably large domains. Therefore, for many
applications the required distributions cannot be computed in a tractable way. In Sec-
tion 2.3 we review various exact and approximate algorithms for probabilistic inference.

Another important concept is probabilistic learning. Often a model is a parametric func-
tion p(xV |θ) dependent on unknown parameters θ. Probabilistic learning attempts to
estimate the parameters from a “training” data set xD. There exist two main approaches
to probabilistic learning: frequentist and Bayesian. The former finds a single optimal
parameter configuration θ∗ by maximizing a function that measures how well the pa-
rameters fit to the training data (we discuss two most common methods: MAP and ML
learning). The later considers an augmented model p(xV , θ, xD) where parameters be-
come additional random variables, which can be estimated by regular inference. Both
approaches are discussed in more detail in Section 2.4.

Example Throughout the chapter we illustrate the discussed concepts with the follow-
ing example. Suppose there is a room with two people. Each person wears uniformly
colored clothes. Suppose that we take three pictures, such that at every picture there
is only one person visible. For the person in the ith, i ∈ {1, 2, 3}, picture we com-
pute a three-dimensional average color denoted as ci ∈ R

3. Given the colors ci, we
want tell which pictures present the same person. This information can be encoded by
labels si, where each label si ∈ {a, b} denotes the person in the ith image. In a prob-
abilistic framework, color vectors ci are considered as continuous evidence variables,
xE = {c1, c2, c3}, and labels si as hidden discrete variables, xH = {s1, s2, s3}. We de-
sign a model p(xH , xE) = p(s1, s2, s3, c1, c2, c3) from which we will be able to compute
distributions like p(si|c1, c2, c3) and find out the hidden labels from the data.

2.2 Graphical models

Graphical models (Jordan, 1998; Lauritzen, 1996; Pearl, 1988) offer a flexible language
for studying large-scale probabilistic models. As explained below, the graphical frame-
work relies on factorial models, that is, models where the joint probability distribution
of a large number of variables is as a product of, in general, simple factors each de-
fined on a small subset of variables. In order to achieve factorial representation of a
model the graphical formalism exploits various assumptions and simplifications. As a
result, graphical models facilitate efficient, albeit in some cases approximate, approach
to complicated multi-variate probabilistic problems.

10 PROBABILISTIC GRAPHICAL MODELS

Representation complexity A fundamental problem with models that include a large
number of variables is that their joint distribution is difficult to represent. For exam-
ple, in a model with N multinomial random variables, each defined on K states, there
are KN joint state configurations. Therefore an “exhaustive” or “naive” definition of
the joint distribution requires KN − 1 parameters that indicate probability mass as-
signed to every configuration. In the case of continuous or hybrid models typically
the problem does not become simpler. A model with N , m-dimensional real-valued
variables requires defining a probability density function (pdf): R

Nm → (0,+∞) on a
Nm-dimensional configuration space. Analogously, a hybrid model consists of a joint
distribution for the discrete variables and a separate pdf on the continuous variables for
each configuration of the discrete states.

Conditional independence Theoretically, an exhaustive definition of model would be
necessary if all variables were directly dependent on each other. However, in practice,
one can assume that certain variables, which we denote collectively as xA, are condition-
ally independent of variables xB given variables xC . We express this fact as

p(xA|xB, xC) = p(xA|xC) ∝ f(xA, xC), (2.1)
where the key point is that probability of xA is not a function of xB as long as xC are
known.
Conditional independence assumptions (Lauritzen, 1996) allow expressing the joint dis-
tribution as a product of terms, which are defined on subsets of variables, thereby sim-
plifying the representation of the model. To see this property we rewrite the joint using
the definition of a conditional probability

p(xA, xB, xC) = p(xA|xB, xC)p(xB, xC)

and simplify p(xA|xB, xC) using the conditional independence assumption (2.1)
p(xA, xB, xC) = p(xA|xC)p(xB, xC) ∝ f(xA, xC)f(xB, xC). (2.2)

Suppose that xA and xB represent a single variable each, and xC the remaining N − 2
variables. The joint distribution expressed as a product requires only O(K (N−1)) param-
eters. Naturally, one may find or assume further conditional independencies within the
factors. Sometimes exploiting such independence properties may reduce the complex-
ity of representation from exponential to nearly linear in the number of variables.
Finding appropriate conditional independencies in a given domain resembles knowl-
edge engineering tasks. A knowledge engineer has to have enough understanding
about the domain to describe it with relevant variables and deduct conditional inde-
pendencies among the variables. Alternatively, for some problems, one may use “train-
ing” data that provide observed values of (some) variables in the model, and attempt
to automatically estimate conditional indecencies from these data. Such an approach is
known as structure learning or model selection (see Section2.4). However, the prevail-
ing approach is to experimentally evaluate a few intuitively designed models based on
different independence assumptions and select the optimal one.

2.2 GRAPHICAL MODELS 11

Graphical representation Graphical models represent a factorial distribution with a
graph, where random variables are nodes and edges (or their lack) indicate the factor-
ization structure. At the first sight, graphical models just effectively visualize a joint
probability distribution. However, the formalism proves useful in development of effi-
cient inference algorithms, which can be expressed as recursions operating on a graph.
Moreover, the underlying graph brings forward various properties of an inference al-
gorithm. For example, the popular belief propagation algorithm is exact only for models
that can be represented as tree-structured graphs. The algorithm can be also executed
on graphs with cycles, but in this case it is only an approximation. Further, graphical
models constitute a unified implementation environment for seemingly different infer-
ence algorithms.

In the rest of this section we review two most popular types of graphical models –
with directed and undirected arcs. (There is also a class of models with directed and
undirected arcs, known as chain graphs.) Finally we present factor graphs, which allow
unified treatment of all types of graphical models.

2.2.1 Undirected graphical models

Intuitively, undirected models depict a factorial expression (that is a product of func-
tions or factors) as an undirected graph. In the graph, variables are nodes and all ar-
guments to a single function make a fully-connected subset of nodes, i.e., a clique. For
example, the model (2.2) corresponds to a graph with N vertices and two cliques.

Formally, undirected graphical models are undirected graphs, where every variable v ∈
V is associated with an unique vertex, and the probability distribution p(xV) is a product
of functions defined on maximal cliques. (A maximal clique is a clique that is not a
subset of another clique.) With every cliqueC there is an associated compatibility function
ψC(xC) that takes as arguments the vertices from C. The product over all cliques in the
graph yields the joint distribution

p(xV) =
1

Z

∏

C

ψC(xC), (2.3)

where Z is a constant ensuring normalization of p(xV). Note, that the compatibility
functions ψC(xC) are not required to be proper probability distributions. As long as the
product (2.3) is normalizable, the terms ψC(xC) can be non-negative, but otherwise ar-
bitrary, real-valued functions.

The undirected graphical models are also known as Markov networks or Markov ran-
dom fields (MRFs). These models find applications mainly in statistical physics (e.g.
the Ising model, the Boltzmann machine (Chandler, 1987; Hinton and Sejnowski, 1986))
and computer vision (e.g. (Freeman et al., 2000)) communities. The latter application is
illustrated below with a typical model.

12 PROBABILISTIC GRAPHICAL MODELS

x1 x2

x3 x4

y1 y2

y3 y4

Figure 2.1: An MRF model characteristic for low-level vision problems. The hidden nodes xi

(each associated with the ith pixel) form a 2D lattice. The figure shows a graph that corresponds
to four pixels, and includes eight cliques: four of type {xi, xk} and four of type {xi, yi}.

Low-level vision Figure 2.1 shows an MRF model typical for low-level vision prob-
lems (Freeman et al., 2000), where with every pixel i there is an associated hidden vari-
able xi. For example, in image segmentation problems xi is a discrete variable that
indicates the segment associated with a pixel. Every hidden variable xi has its observed
counterpart yi, which usually denotes the color of the pixel. In the figure one can iden-
tify eight cliques (each consisting of a pair of adjacent nodes). The corresponding joint
distribution is

p(x1:4, y1:4) =
1

Z
ψ(x1, x2)ψ(x1, x4)ψ(x2, x3)ψ(x3, x4)

4∏

i=1

ψ(xi, yi).

Typically the functions ψ(xi, xj) are chosen to enforce some local consistency constraints
(e.g. smooth segment edges), and ψ(xi, yi) couple the observed and the hidden vari-
ables (e.g. we can interpret ψ(xi, yi) as a conditional distribution p(yi|xi), and chose it
as a Gaussian N (µk, Vk), where µk, Vk are parameters of the kth segment, k = xi). In
Chapter 5 we analyze in more detail MRFs and alternative models applied to a binary
segmentation problem, where a pixel has to be assigned either to a background segment
(representing a static scene) or a foreground segment (representing an object in motion).

2.2.2 Directed graphical models

In the directed case, a model is represented by a directed acyclic graph with edges lead-
ing from a parent node to a child node. Every variable v ∈ V corresponds to an unique
vertex in the graph. Directed models express the joint distribution as

p(xV) =
∏

v∈V

p(xv|xπ(v)), (2.4)

where π(v) denote the set of parents for vertex v. For a vertex v with a non-empty parent
set, π(v) 6= ∅, the factor p(xv|xπ(v)) is a conditional probability distribution. For a vertex
v where π(v) = ∅, the factor p(xv) is a prior probability distribution.

2.2 GRAPHICAL MODELS 13

Directed models are also known under other names, like Bayesian networks (BNs), gen-
erative models, causal models or belief networks (Pearl, 1988). This type of models are
mainly used in artificial intelligence or machine learning communities, and are espe-
cially convenient for problems involving time-series data.

Generative interpretation Characteristically, one may interpret edges in a directed
model as “generative” or “causal” relations, and assume that parent nodes generate or
cause the child node. In this thesis we adopt the “generative” semantics since causality
is a deeper concept (Pearl, 1988), which may not always provide a suitable interpreta-
tion for problems with rather abstract variables as discussed in the following chapters.
Accordingly, we will assume that parent nodes generate a child node and refer to a
directed graph as a generative model.

The semantics of generative relations provide basic intuition for finding suitable con-
ditional independencies relevant to a given problem. Given the expertise about the
domain, a knowledge engineer can find out or at least assume which variables generate
or cause other variables. We can then assume that a variable xv given its direct causes is
conditionally independent of its indirect causes, i.e.,

p(xv|direct-causes(v), indirect-causes(v)) = p(xv|direct-causes(v)).

Therefore by analyzing generative relations for a given domain, we can identify con-
ditional independence relations, which greatly simplify the representation of a model.
Additionally, conditional distributions p(xv|direct-causes(v)) can often be easily quanti-
fied by studying to what extent various causes influence the child variable.

Example To illustrate the construction of a generative model we return to the picture-
recognition example from Section 2.1.2. We denote the target model as p(c1:3, s1:3), where
x1:i is a shortcut for {x1, . . . , xi}. The definition begins with a general factorization

p(s1:3, c1:3) = p(c1:3|s1:3)p(s1:3), where p(s1:3) =
3∏

i=1

p(si).

We refer to p(s1:3) as a prior (since it involves only hidden variables). The prior is ex-
pressed as a product based on an assumption that the before receiving any data the iden-
tities of the persons are independent. Next, we attempt to define the conditional model
p(c1:3|s1:3) where conditioning on s1:3 means that we known which person is depicted
in every picture. For example assigning s1:3 = {a, b, a} indicates that c1 and c3 represent
one person, and c2 the other. In most cases one can assume a picture of one person
does not include any information about the other person. Therefore observations of dif-
ferent people are independent and the conditional distribution p(c1:3|s1:3 = {a, b, a}) =
p(c1, c3|s1:3 = {a, b, a})p(c2|s1:3 = {a, b, a}) will be factorial. Importantly, when c1 and

14 PROBABILISTIC GRAPHICAL MODELS

s1
c1

f a

s2
c2

fb

s3
c3

Figure 2.2: A directed graphical model representing factorization of the model in the picture-
recognition problem. Rectangular nodes represent discrete variables, ovals — continuous.

c3 describe the same person, these variables are dependent, and we cannot factorize
p(c1, c3|s1:3 = {a, b, a}) further.
The problem with the above approach is that we need several types of pdfs for various
configurations of s1:3. Recall, that ci ∈ R

3. If the labels indicate that all pictures show the
same person, we need a pdf p(c1, c2, c3) which is a function R

9 → (0,+∞). In general we
need pdfs of the form R

3n → (0,+∞) where n is the number of pictures hypothetically
showing the same person. Therefore generalizations to problems with more pictures
are not straightforward. A better approach is to introduce hidden variables f a, fb that
represent the actual (but unknown) color of each person. We refer to each f s as a state of
person s. We can assume that the states are independent from each other and the other
variables in the model. Next, it is quite reasonable to assume that the observed color
c is generated by the actual color of a person, i.e., given the state, the color c does not
depend on other observations of the same person. The joint model is

p(f a, fb, c1:3, s1:3) = p(f a)p(fb)
3∏

i=1

p(si)p(ci|si, f
a, fb). (2.5)

Now, we define a generic pdf p(ci|f s),

p(ci|si, f
a, fb) =

{

p(ci|f a, si = a)

p(ci|fb, si = b)
,

where we substitute the state of a person indicated by label si. This approach relies on
a single pdf p(ci|f s) and can be easily generalized to problems with more persons or
pictures. Additionally, we separated the states from the measured features, therefore
a state f s can be chosen as a low-dimensional, compact representation of the person’s
appearance. Figure 2.2 illustrates the assumed factorization of the complete model.
The example demonstrates that introducing additional variables to the model does not
necessarily make the model more complicated if appropriate conditional independence
assumptions can be identified. Furthermore, the additional variables often ease specifi-
cation of conditional probabilities related to causal/generative relations. Consequently,
in problems presented in the rest of the thesis we will often introduce “imaginary” hid-
den variables in order to elicit suitable generative relations.

2.2 GRAPHICAL MODELS 15

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are a class of directed models that represent proba-
bility distributions for time-sequences of random variables (Dean and Kanazawa, 1989;
Ghahramani, 2001; Murphy, 2002). In such time-series graphs, the causal links point for-
ward in time reflecting a natural assumption that variables further in time are caused
by (a subset of) past variables.
We denote the discrete time index as t = 1, 2, . . ., and a set of variables associated with
index t as xt. A sequence of variables (x1, . . . , xT) will be denoted as x1:T . Formally, a
DBN is defined on a semi-infinite set of variables (x1, x2, . . .). The definition includes
two models: a prior model p(x1) for the variables at the initial time index, and a condi-
tional probability p(xt|xt−1). Given a fixed time horizon T , the definition implies a joint
distribution for a sequence x1:T

p(x1:T) = p(x1)
T∏

t=1

p(xt|xt−1). (2.6)

A DBN can also be viewed as an algorithm that constructs a regular directed graph for
p(x1:T) by first drawing a graph for p(x1) and extending it with a sequence of concate-
nated graphs corresponding to p(xt|xt−1).
DBNs offer a convenient framework for reasoning about latent time-processes that, at
every time instance, produce an observable output (Kröse et al., 2004; Zajdel et al.,
2005a). Here, the set of variables xt at a single time step includes two terms: a hidden
variable zt that represents the state of the process in question, and an observed variable
yt that represents the output.
In particular, DBNs apply very naturally to multi-object tracking problems, where we
can consider every object as a latent process. Depending on a modeling assumptions,
the hidden state of the process might include object’s identity or various other character-
istics. The measurements of object’s characteristics (e.g. appearance features) obtained
from a camera correspond to the observations of the latent process.

First-order systems Commonly there are two assumptions about the latent process.
First, the hidden state variable evolves with first order Markovian dynamics, that is,
the state zt is caused exclusively by zt−1. Second, the observed variable yt is caused
exclusively by the corresponding state zt. Therefore a model for such a process includes:
a state transition model p(zt|zt−1), an observation, also known as a sensor or a measurement,
model p(yt|zt), and a prior model p(z1) for the initial state. These models yield a DBN,
where xt = {zt, yt} and

p(x1) = p(z1, y1) = p(z1)p(y1|z1)

p(xt|xt−1) = p(zt, yt|zt−1, yt−1) = p(zt|zt−1)p(yt|zt). (2.7)

16 PROBABILISTIC GRAPHICAL MODELS

The simplification in (2.7) follows from the assumptions about the transition and obser-
vation models in first-order Markov systems.

The most important instances of models based on the above assumptions are hidden
Markov models (HMMs) and linear dynamical systems (LDSs). In the case of HMM
models (Ghahramani, 2001), terms zt and yt are multinomial (i.e. discrete) variables.
The prior, transition and observation models take the form of probability tables. In
the case of LDS models (Roweis and Ghahramani, 1999), also known as Kalman filter
models (KFMs), the terms zt ∈ R

m and yt ∈ R
n are continuous vectors. The transition

and observation models assume linear dependencies and additive noise;

zt = Azt−1 + wt yt = Czt + vt,

where wt ∼ N (0, Q), vt ∼ N (0, R), i.e., the noise is Gaussian distributed. For computa-
tional simplicity, the prior model is chosen Gaussian. Therefore

p(z1) = N (z1|m0, V0) p(zt|zt−1) = N (zt|Azt−1, Q) p(yt|zt) = N (y1|Czt, R),

where m0, V0 are the prior mean and covariance, A, C are, respectively, transition and
observation matrices, and Q, R are covariance matrices describing the noise. The co-
variances R and Q can be assumed diagonal without loss of generality (Roweis and
Ghahramani, 1999).

Higher-order systems One may be tempted to consider DBNs as purely first-order
Markovian systems, due to the transition model formulated as p(xt|xt−1). However,
by augmenting the set xt with suitable variables we can express arbitrary fixed-order
Markov processes. For example, a second-order model emerges when we define xt =
{yt, zt, zt−1} and let

p(xt|xt−1) = p(yt, zt, zt−1|yt−1, z
′
t−1, zt−2) = p(yt|zt)δ(zt−1 − z′t−1)p(zt|zt−1, zt−2),

where δ(a) is a Dirac-delta function, defined as δ(a) = 1 (or 0) iff a = 0 (otherwise). In a
similar way we obtain models where the current observation yt depends on a sequence
of past data yt−h:t−1, where h > 0 is a fixed range. An example of such a system is a
mixed-memory Markov model (Saul and Jordan, 1999).

2.2.3 Factor Graphs

We have shown the undirected and directed graphical models as two languages to rep-
resent factorial multi-variate probability distributions. These languages usually facil-
itate finding out factorization of the joint distribution in an intuitive way. Below, we
present another graphical formalism, so called factor graphs, which provides a conve-
nient language for studying factorial expressions in inference problems. In fact, factor

2.3 INFERENCE METHODS 17

graphs make a common backbone for unification of various inference algorithms that
have been independently developed for the directed and undirected models.
A factor graph (Kschischang et al., 2001) represents a factorial expression, that is, a
product of several functions (factors), as an undirected graph with two types of nodes:
variable nodes that correspond to random variables, and factor nodes that correspond to
individual functions. The edges in the graph connect functions with their arguments
(variables). Therefore a factor graph is a bipartite graph. Figure 2.3 shows a factor graph
that encodes the factorial model (2.5) of the picture-recognition problem.
We will denote the set of factor nodes as F , and variable nodes as V . For every factor
node f ∈ F we let ψf denote the associated function, and n(f) ⊂ V denote the adjacent
variable nodes. In this notation xn(f) gives a set of variables that are arguments to the
function ψf . Therefore, the associated factorial distribution is encoded as

p(xV) =
1

Z

∏

f∈F

ψf (xn(f)), (2.8)

with Z denoting a normalization term. With these notation it is quite straightforward to
translate factorial expressions associated with directed or undirected models to a factor
graph. In the directed case (see equation (2.4)): for every variable xv we introduce one
factor f and we define the factor function ψf (xv, xπ(v)) = p(xv|xπ(v)), where π(v) ⊂ V
is a (possibly empty) set of parents for variable xv. In the undirected case (see equa-
tion (2.3)): we associate a single factor f with every clique C, and define the factor
function ψf (xC) = ψC(xC), where xC is the set of variables included in the clique C ⊂ V .
As the next section will show, various standard inference algorithms can be viewed as
instances of a generic “message-passing” scheme that exploits factorization encoded by
a factor graph. From inference point of view, it is important to distinguish between
cyclic and cycle-free (also known as singly-connected or tree-structured) factor graphs.
(A graph is cycle-free iff it is a tree, i.e., there is only a single path connecting any pair
of nodes. Otherwise the graph has a cycle.) The distinction is important because cycles
in a graph make inference significantly more difficult.

2.3 Inference methods

2.3.1 Overview

Probabilistic inference is a general term that refers to a class of computational problems
related to the probabilistic framework. Given a model p(xH , xE) and the observed data
xE we want to solve one of the following tasks.

(a) Computing a marginal posterior distribution p(xv|xE), where v ∈ H . This is the
basic distribution that conveys information about a hidden variable inferred from

18 PROBABILISTIC GRAPHICAL MODELS

c1
p(c1|s1, f

a, fb)

p(s1) s1 f a p(fa)

c2

s2 fb

c3

s3

Figure 2.3: A factor graph encoding the factorial model (2.5) defined for the example picture-
recognition problem. Transparent nodes depict random variables; filled nodes depict individual
factors in the joint probability distribution.

the evidence. In the context of graphical models, we will refer to the distribution
p(xv|xE) as a belief at node xv, denoted as q(xv).

(b) Computing probability of the observed data p(xE).(This quantity is also known
as the data likelihood or the evidence.) In case when we have several models
competing to explain the data, the data likelihood is the primary criterion to select
the best model (model selection). In case when we have several data sets and a
single model, the data likelihood allows to find the data set that best matches the
model (classification).

(c) Computing various expectations 〈f(xv)〉 =
∫
f(xv)p(xv|xE) dxv, where f is a given

function. The expectations are typically required for learning algorithms, but
might be of interest itself depending on an application. This task becomes rela-
tively simple after computing p(xv|xE). However, frequently exact computation
of p(xv|xE) is intractable, therefore one might directly approximate expectations.

(d) Computing the MAP (maximum a-posteriori) value arg maxXA
p(xA|xE), where

A ⊂ H denotes a collection of hidden variables.
Computing a marginal density and computing the data likelihood (tasks a and b) are
two instances of a common problem, which boils down to integrating out a subset of
variables from the joint p(xH , xE). Consider first computing the data likelihood

p(xE) =
∑

xH∈XH

p(xH , xE),

where we sum over the space XH of all configurations of hidden variables. Next, we
express the marginal posterior density using the Bayes’ rule:

p(xv|xE) =
∑

∼{xv}

p(xH |xE) =
∑

∼{xv}

p(xH , xE)

p(xE)
=

1

p(xE)

∑

∼{xv}

p(xH , xE),

where “∼ {xv}” denotes all configurations of the form {x′H ∈ XH |x′v = xv}. Therefore,
in both cases the key task is to integrate function p(xH , xE) over a subset of variables.

2.3 INFERENCE METHODS 19

In practice, the key challenge of probabilistic inference is computational complexity of
integration. For example, suppose we have a model with N hidden multinomial vari-
ables x1:N , each xi ∈ {1, . . . , K}. A “naive” way to compute a marginal p(xi|xE) requires
summing over KN−1 configurations of the remaining hidden variables. In case of con-
tinuous variables summation is replaced with integration and the problem (in general)
becomes even harder. For the same reason, computing the MAP state for a subset of
hidden variables (see task d) is generally intractable since it entails maximization over
exponentially many configurations xA ∈ XA.

Many, either exact or approximate, algorithms have been developed to overcome the
intractability of probabilistic inference. These algorithms fall roughly into two classes:
stochastic methods and variational methods. Stochastic methods replace analytical in-
tegration with Monte-Carlo approximations (Andrieu et al., 2003; Gilks et al., 1996).
Variational methods estimate the target posterior distribution by minimizing a related
quantity, known as free energy. By relaxing the minimization problem in various ways
(e.g. dropping certain constraints), one can construct various approximate inference
algorithms. A general overview of inference methods can be found in (Jordan, 1998;
Murphy, 2002).

In the next section we focus on a class of variational methods commonly summarized
as “message-passing” or “belief propagation” algorithms. As we show, all inference
techniques applied in the thesis are instances of this class of methods. (Another major
classes of variational methods are: cluster variational methods (Yedidia et al., 2005) and
so called “mean-field” approximations (Jaakkola, 2001; Jordan et al., 1998) — although
these are sometimes also presented as message-passing algorithms (Winn, 2003).)

2.3.2 Message-passing algorithms

Alternatively to the variational derivation, the message-passing algorithms can be ob-
tained by applying the distributive law for efficient integration of factorial expressions.
We begin with such a derivation as it proves much more intuitive. Since various forms
of factorized models are conveniently encoded by a factor graph, we present these al-
gorithms as message-passing operations in a factor graph.

We consider the following algorithms. First, we present the sum-product algorithm as a
general method for fast and exact integration in cycle-free graphs with discrete or Gaus-
sian variables. Second, we consider graphs with cycles and describe the approximate
loopy-belief propagation algorithm. Third, we move on to graphs that include contin-
uous variables and discuss the expectation-propagation algorithm. Finally, we present
variational framework as a theoretical foundation for the presented methods.

20 PROBABILISTIC GRAPHICAL MODELS

Sum-product algorithm

Message-passing algorithms can be viewed as instances of a general computational rule
known as the sum-product algorithm. The sum-product algorithm integrates factorized
functions of multiple variables by exploiting the “distributive law” to limit the number
of computations (Aji and McEliece, 2000). In the simplest form the law says that ac+ab =
a(c + b), thus it reduces three operations on the left side to only two operations on the
right side. Consider now integrating variables x1, x2, x4, x5 from the following product

q(x3) =
1

Z

∑

x1,x2,x3,x4

ψb(x2, x3)ψa(x1, x2)ψd(x5, x2)ψc(x3, x4). (2.9)

where every variable is a multinomial with K states. Distributive law allows us to
“push” sums into the product, therefore splits the summation into several intermediate
results

q(x3) =
1

Z

∑

x2

ψb(x2, x3)
∑

x1

ψa(x1, x2)

︸ ︷︷ ︸

sa(x2)

∑

x5

ψd(x5, x2)

︸ ︷︷ ︸

sd(x2)
︸ ︷︷ ︸

πb(x2)
︸ ︷︷ ︸

sb(x3)

∑

x4

ψc(x3, x4)

︸ ︷︷ ︸

sc(x3)

, (2.10)

Despite that there areK4 configurations of the integrated variables, we now have to add
only 4K terms. There intermediate results can be classified as (i) partial sums indicated
as sa(x2), sd(x2), sc(x3), sb(x3), and (ii) partial products, indicated as πb(x2).
Interestingly, every intermediate result can be associated with an edge in the factor
graph that represents the integrated expression. Consider Fig. 2.4, which presents fac-
tor graph for the discussed example. We use f ∈ {a, . . . ,d} to index factors and v ∈
{1, . . . , 5} to index variables. We observe in (2.10) that every partial sum sf (xv) is a
function of a single variable xv and involves a single ψf . Therefore one can associate
this sum with an edge (f, v) in the factor graph. It is convenient to denote the par-
tial sum as sf (xv) = mf→v(xv) and view it as a message from the factor node f to the
adjacent variable node v. Analogously, each partial product πf (xv) is a function of a
single variable xv, and includes partials sums sg(xv) from all but one factor, denoted
as f . Therefore we associate this product with an edge (f, v) and view it as a message
πf (xv) = mv→f (xv) form the variable node v to the factor f .
Given the graphical interpretation the sum-product algorithm can be viewed as a book-
keeping scheme that efficiently computes all messages in a factor graph. The messages
are initialized to unit functions, and updated (“passed” or “sent”) as

mv→f (xv) =
∏

f ′ 6=f

mf ′→v(xv) (2.11)

mf→v(xv) =
∑

∼{xv}

ψf (xn(f))
∏

v′ 6=v

mv′→f (xv′), (2.12)

2.3 INFERENCE METHODS 21

x5

d

x1

a

x2

b
x3

c

x4

mc→3mb→3ma→2 m2→b

md→2

ma→2(x2) = sa(x2)

md→2(x2) = sd(x2)

mc→3(x3) = sc(x3)

m2→b(x2) = πb(x2)

Figure 2.4: (Right) A factor graph corresponding to factorial expression (2.9). The graph includes
four factor nodes f ∈ F = {a, b, c,d} indicating the functions ψa, ψb, ψc, ψd, and five variable
nodes xv, v ∈ V = {1, . . . , 5}. (Left) The correspondence between message passed along edges
in the graph and intermediate results in the equation (2.10).

for all edges (v, f), where n(f) ⊂ V indicates variable nodes adjacent to factor node
f . These update rules generalize message definitions observed in the example (2.10).
To understand the role of messages suppose we remove an edge (f, v) from the factor
graph. We obtain two disconnected graphs: G1 that includes node f and G2 that includes
node v. A message mf→v(xv) represents all information about xv that can be inferred
from graph G1. A message mv→f (xv) represents all information about xv that can be
inferred from graph G2. When computing mv→f (xv) in (2.11) we collect information
from all adjacent factors f ′ different that f . When computing mf→v(xv) in (2.12) we
collect information about other variables v′, combine it with the local factor function ψf

and integrate the other variables to obtain information about xv. Given the messages,
we compute the belief as

q(xv) =
1

Z
mf→v(xv)mv→f (xv), (2.13)

where and f is any factor adjacent to the node v.
The above procedure provides exact inference for cycle-free factor graphs, where we
can choose any order for passing messages. A particularly efficient is the following one.
Any vertex, say u, waits until it receives messages from all but one neighbor, denoted as
w. Next, the vertex u sends a message tow and waits for a return message fromw. When
the message arrives, u sends messages to all remaining neighbors. The procedure is
started at leaves (vertices that have only a single neighbor) and stopped when a message
passes once along every edge in each direction.
The sum-product algorithm is mainly applied to models with exclusively discrete vari-
ables and generalizes many well-known algorithms developed for models that can be
presented as instances of such graphs (Kschischang et al., 2001; Yedidia et al., 2005).
Examples are: the belief propagation algorithm (for general Bayes networks), the forward-
backward procedure (for HMMs). The sum-product algorithm can also be executed in
graphs with continuous variables, as long as the integrals in (2.12) have analytical solu-
tion. An important instance of such an algorithm is the Kalman filtering-smoothing proce-
dure for LDS models (here messages, beliefs and factor functions are always Gaussian
functions). We use Kalman-filter equations in Chapter 3.

22 PROBABILISTIC GRAPHICAL MODELS

Loopy-belief propagation

Unfortunately, in general the sum-product algorithm cannot compute exact marginals
for models, where the underlying factor graph contains cycles (Kschischang et al., 2001).
There are two approaches for inference in such models. One possibility, which we dis-
cuss below, is to run the sum-product algorithm despite the cycles and compute approx-
imate marginals. Another possibility entails converting the graph with cycles to a cor-
responding cycle-free graph. (This is what effectively the junction-tree algorithm (Pearl,
1988) does. The algorithm is exact, however, it may have running time exponential in
the number of nodes.)

Loopy-belief propagation (LBP) is an algorithm obtained by iterative executing the sum-
product rule on a cyclic factor graph (Murphy et al., 1999). Note, that each “message-
passing” operation (either (2.11) or (2.12)) is local in the sense that it involves only quan-
tities related to the sending and receiving nodes. Therefore regardless of the global
cycles one may pass messages without changing the update equations. However, mod-
ifications are required for the termination condition. LBP initializes all messages to
uniform functions (also known as uniform potentials), and considers (2.11)–(2.12) as
update equations that in each iteration re-estimate the messages. The algorithm termi-
nates either when the messages do not improve beyond a certain threshold or simply
after executing a fixed number of updates.

The LPB algorithm often yields surprisingly accurate results (Murphy et al., 1999), and
has become a standard computationally tractable technique for computer vision prob-
lems (Freeman et al., 2000). However, in some cases the sum-product iterations fail to
converge, and the precise convergence conditions are in general not known (Heskes,
2003; Welling and Teh, 2001). In this thesis we apply the LBP algorithm for inference in
a variety of MRF models presented in Chapter 5.

Expectation Propagation

The expectation-propagation (EP) algorithm (Minka, 2001b) can be viewed as another
refinement of the sum-product rule that facilities approximate inference in hybrid mod-
els (with both continuous and discrete variables) or purely continuous-variable mod-
els. Inference in such models requires solving integrals that often become either very
complicated or non-analytical. Intuitively, EP assumes a simple parametric family of
functions that represent the messages. When computing a message the algorithm ap-
proximates a complicated integral with the “closest” function from the assumed family.

To derive EP we modify the sum-product procedure in the following way. Based on
the relation (2.13) we eliminate the variable-to-factor messages mv→f in favor of beliefs.
Next, we reformulate the update equations in such a way that the belief is expressed
directly as a solution to the integral. Consequently, we can directly approximate beliefs
rather than messages. These modifications lead to the EP algorithm, which iterates the

2.3 INFERENCE METHODS 23

following recursion

mnew
f→v(xv) =

Zqnew(xv)

q(xv)
mf→v(xv) (2.14)

qnew(xv) = arg minq KL(q̃||q) (2.15)

q̃(xv) =
1

Z

∑

∼{xv}

ψf (xn(f))
∏

v′∈n(f)

q(xv′)

mf→v(xv)
, (2.16)

where KL(q̃||q) denotes the Kullback-Leibler (KL) divergence2 between the “true” belief
q̃ and the approximating belief q. Minimization in (2.15) essentially means that the new
belief qnew preserves the moments of the actual belief q̃. It is quite easy to show that for
a discrete variable xv, the EP update rule is identical with the sum-product or LBP al-
gorithms, because for multinomial distributions minimization of KL-divergence yields
qnew(xv) = q̃(xv).

The key feature of the EP algorithm is that beliefs and messages are represented with
a suitable approximating family. Typically, this family is chosen such that the inte-
gral (2.16) has an analytical solution, denoted as a temporary belief q̃. However, in most
cases the belief q̃ cannot be represented in the assumed form. In (2.15) we replace it
with the closest approximating belief. We note further that approximating beliefs rather
than messages (i.e., delaying approximation) often yields better results since a belief in-
cludes total information available at a given node, while a message only partial (Heskes
and Zoeter, 2002; Minka, 2001b). Moreover, in contrast to a message, a belief is always a
probability distribution, and we can use an established criterion — KL divergence — to
find the best approximation.

Exponential family Exponential family (Brown, 1986; Wainwright and Jordan, 2003)
encapsulates a class of probability distributions that are particularly suitable for imple-
menting the EP algorithm. The general form of the family is

q(x|θ) = exp(θ>g(x) − A(θ)),

where θ = (θ1, . . . , θn)> is a vector of canonical parameters, g(x) = (g1(x), . . . , gn(x))>

are functions, so called, sufficient statistics of x, and A(θ) < ∞ is a normalization term.
Distributions from this family are sometimes represented using an alternative formula-
tion, based on mean parameters µ(θ) = (µ1(θ), . . . , µn(θ))>. The mean parameters are
defined as

µi(θ) =

∫

x

gi(x)p(x|θ) dx = 〈gi(x)〉θ .

2The KL divergence is defined as KL(p||r) =
∫

x
p(x) log(p(x)/r(x)) and is non-symmetric. When p

denotes the “true” distribution, and r an approximating distribution, then KL(p||r) is sometimes known
as “the other KL-divergence”.

24 PROBABILISTIC GRAPHICAL MODELS

Importantly, converting between the canonical and the mean parameters is relatively
simple (for most of the standard distributions from the family).

Many popular probability density functions turn out to belong to the exponential fam-
ily. Examples are: Gaussian (Normal), multinomial, Gamma, Bernoulli, Poisson dis-
tributions. To see the relationship between the usual mean parametrization and the
canonical counterpart, consider the Gaussian density for a scalar variable x

N (x|m, v) = (2πv)−
1
2 exp(− 1

2v
(x−m)2)

= exp(θ1g1(x) + θ2g2(x) − A(θ1, θ2)),

where m is the expected value and v is the variance. In the canonical parametrization
the sufficient statistics are g1(x) = x and g2(x) = −1

2
x2, and the canonical parameters

θ1 = m, θ2 = 1/v, A(θ1, θ2) = −1
2
(θ2

1θ2 +log(2π/θ2)). A similar relation can be established
for a multivariate Gaussian density.

The suitability of exponential family for EP inference follows from the fact that the min-
imization of KL-divergence can be achieved by exploiting the following property

θ∗ = arg minθ KL
(

q̃(x)
∣
∣
∣

∣
∣
∣ exp(θ>g(x) − A(θ))

)

iff µ(θ∗) = 〈g(x)〉q̃ .

Thus, given any belief q̃ we find the closest belief q(x|θ) from the assumed exponential
family by first computing the expectations of the sufficient statistics 〈g(x)〉q̃. Next we
solve a system of equations (sometimes called link function) µ(θ) = 〈g(x)〉q̃ to find pa-
rameters θ. For many densities in the exponential family this system of equation can be
solved exactly (e.g., Normal). For some other densities (e.g., Wishart) we have to find
an approximate solution. Interestingly, the minimization of KL-divergence ensures that
the expectations of sufficient statistics are the same under beliefs q̃ and q. (Therefore one
also refers to the above procedure as “moment matching”.)

Another advantage of using exponential family to represent messages and beliefs is that
multiplication (or division) of potentials within this family corresponds to summation
(or subtraction) of their canonical parameters. Moreover, within the family one can
easily define an uniform (and unnormalized) potential by setting θi = 0 and assuming
A(θ) = 0. Therefore, the exponential family facilitates convenient implementation of
message-passing algorithms.

In this thesis we present two problems that have been solved by applying the EP algo-
rithm together with approximating distributions from exponential family. In Chapter 4
we the use the assumed-filtering algorithm (ADF), which can be considered as a simple
EP variant designed for online inference in time-series models. Chapter 5 presents an
image segmentation algorithm obtained by executing EP inference in a suitable proba-
bilistic model.

2.3 INFERENCE METHODS 25

Variational formulation

We have presented the loopy-belief propagation and the expectation-propagation al-
gorithms as a series of seemingly heuristic modifications to the exact sum-product al-
gorithm. However, these algorithms can also be derived in a much more principled
way, as instances of so called Bethe variational problem. Below we briefly summarize this
formulation to show that the message-passing algorithms are a well-motivated class of
approximate inference techniques.

Inference can be considered as a problem of approximating the joint posterior distri-
bution p(xH |xE) with a factorial distribution q(xH) =

∏

v∈H q(xv). In the variational
framework we find the distribution q(xH) by minimizing the variational free energy (also
known as Gibbs free energy)

F(q) =
∑

xH

q(xH) log
q(xH)

∏

f∈F ψf (xn(f))
,

where ψf are factor functions defined by the model (see (2.8)). One can show that F(q)
is minimized when q(xv) = p(xv|xE) for all v ∈ H .

The message-passing algorithms relax the minimization problem in two ways. First,
the minimized energy is approximated by a simpler quantity, so called Bethe free energy.
The Bethe free energy is a function of single-node beliefs q(xv) and region beliefs q(xn(f)),
i.e., joint beliefs defined on variables adjacent to a factor f . Second, the minimization
algorithm takes into account only two types of constraints: (i) beliefs q(xv) have to be
normalized, and (ii) beliefs q(xv) have to be locally consistent with region beliefs, that is
q(xv) =

∑

∼{xv}
q(xn(f)) for any node v adjacent to a factor f . (Note that, unless a factor

graph is cycle-free, local consistency does not guarantee global consistency, that is, the
algorithm might arrive at a set of region beliefs that do not correspond to any valid joint
distribution.)

Variational formulation provides a unifying theoretical foundation for various message-
passing methods. The sum-product or the LBP algorithms turn out to be instances of
the Lagrange-multiplier method applied for solving the above constrained minimiza-
tion problem (Heskes, 2003; Yedidia et al., 2001). In a similar way one can derive the EP
algorithm (Minka, 2001a). (Here, the local consistency constraints require that the mo-
ments of single-node beliefs are equal to the moments of the region beliefs.) Moreover
based on the variational insight one can construct potentially improved methods. An
example are the generalized belief propagation algorithms, based on so called Kikuchi
approximations to the free energy (Yedidia et al., 2005), or more sophisticated algorithms
with convergence guarantees (Heskes, 2003; Welling and Teh, 2001; Yuille, 2002).

26 PROBABILISTIC GRAPHICAL MODELS

2.4 Learning methods

2.4.1 Overview

Probabilistic learning refers to a class of methods that, to a certain extent, allow au-
tomating model design on the basis of “training” data. Within the graphical frame-
work, a model consist of (i) an associated graph and (ii) factor functions defined on
subsets of vertices. Therefore we distinguish between two problems: structural learning
and parameter learning. In the former, the goal is to estimate the topology of the graph
associated with a model. In the second problem we first define appropriate graph and
specify a parametric family that will represent each factor function. Here the goal is to
estimate parameters of these functions from the data.
Structural learning problems naturally arise in multi-object tracking applications. Re-
call, that in multi-object tracking the goal is to infer identities of objects given measure-
ments from cameras. Typically the measurements corresponding to different objects (i.e.
identities) are independent (or at least conditionally independent given some global en-
vironment properties). Therefore, multi-object tracking can be viewed as a search for
a set of independence relations among measurements. In the graphical formalism, this
task maps to the search for a set of disconnected graphs, each representing a model for
measurements of a distinct person. Such an approach and the related structure learning
algorithms are discussed in Chapter 3.
In this section we focus on methods for parameter learning, since it is a common task in
many applications, including the tracking problems presented in the thesis. We begin
with examples of parametric models, and subsequently discuss two major approaches
for parameter learning: the frequentist and the Bayesian learning. Through the section we
denote parametric models as p(xV |θ), where θ is a collection of parameters for all factor
functions. Through the section we let y1:N denote the set of N training data, where each
yi is an instance of the observed variables xE . We assume that the training data does not
include instances of the hidden variables.

Example A simple example of a parametric model is the multinomial distribution.
Suppose that we define p(xa|xb), where xa, xb ∈ {1, . . . , K} are multinomial variables.
The distribution is parametrized as p(xa = i|xb = j, θ) = A(i, j), where the parameters
θ = {Ai,j|i, j = 1, . . . , K} satisfy Ai,j > 0 and

∑K
i=1Ai,j = 1 for all j. Another example

are LDS models, where the parameters are θ = {µ0, V0, A, C,Q,R} (see Section 2.2.2.)

2.4.2 Frequentist learning

Frequentist learning methods estimate a single parameter configuration θ∗ that opti-
mally fits the training data. The key role in this approach plays a fitness function that is

2.4 LEARNING METHODS 27

used as a criterion to evaluate parameters. The maximum-likelihood and the maximum
a-posteriori methods are two popular instances of this approach.

The maximum-likelihood (ML) methods find θ∗ by maximizing the likelihood of the
training data p(y1:N |θ). Since maximization is often easier in the log-domain, the ML
methods maximize log-likelihood, that is,

θ∗ML = arg maxθ L(θ) L(θ) = log p(y1:N |θ).

The likelihood usually follows from an assumption that all data yn in the training set
are independent and identically distributed samples from the model. Therefore

L(θ) =
N∑

n=1

log p(yn|θ) =
N∑

n=1

log
∑

xH

p(xH , xE = yn|θ),

where we integrate all hidden random variables from the model.

The maximum-a-posteriori (MAP) methods find θ∗ by maximizing the posterior proba-
bility distribution p(θ|y1:N). In this approach the parameters are considered as random
variables with a prior distribution p(θ). Given the prior and the likelihood p(y1:N |θ) we
can express the posterior distribution as p(θ|y1:N) ∝ p(θ)p(y1:N |θ) by using the Bayes’
rule. Therefore the MAP parameters follow from

θ∗MAP = arg maxθ log p(θ|y1:N) = arg maxθ

(
log p(θ) + L(θ)

)
,

where we see that the only difference between MAP and ML fitness functions is the ad-
ditive prior log p(θ). We can consider the prior as a “regularization” term that penalizes
degenerate parameters (e.g. due to singularities in the likelihood function).

Generally, finding a closed-form solution to the above maximization problems proves
difficult because the likelihood function is either complicated or non-analytical (due to
the integration of hidden variables from the model). Therefore one usually has to settle
with local maximization techniques, like gradient ascent methods. Another approach,
which we discuss below, is iterative maximization of the lower-bound of the likelihood.

Expectation-Maximization

Expectation-maximization (EM) is a classical method to solve maximization problems
arising in probabilistic parameter estimation problems (Bilmes, 1997; Dempster et al.,
1977; Neal and Hinton, 1998). EM exploits Jensen’s inequality to obtain a lower bound
on the log-likelihood

L(θ) = log
∑

xH

p(y1:N , xH |θ) ≥
∑

xH

q(xH) log
p(y1:N , xH |θ)

q(xH)
= LB(q, θ)

28 PROBABILISTIC GRAPHICAL MODELS

where q(xH) is an arbitrary probability distribution. The key insight here is that the
Jensen’s inequality allows us to “push” logarithm into the integral. As a result, the
bound LB(q, θ) often becomes a relatively simple function that can be analytically max-
imized w.r.t parameters θ.

EM can be viewed (Neal and Hinton, 1998) as an iterative gradient ascent in the space
of parameters θ and distributions q. The algorithm starts with some initial parameter
estimates θ(0) and in every iteration re-estimates the parameters in two steps:

q(i)(xH) = arg maxq LB(q, θ(i)) = p(xH |θ(i), y1:N)

θ(i+1) = arg maxθ LB(q(i), θ) = arg maxθ

∑

xH

q(i)(xH) log p(y1:N , xH |θ)

The first step, so called E step, maximizes the lower bound w.r.t distribution q. The
best, i.e. tight bound L(θ) = LB(θ, q), can be achieved when q equals the posterior of
hidden variables given the data and current parameters estimates. The second step,
so called M step, finds new estimates by maximizing the current bound w.r.t θ. The
maximizing parameters θ(i+1) will depend on various expectations of hidden variables
computed from q(xH). Thus, in fact the E-step is a regular inference problem, where EM
implementations compute only the necessary expectations of the hidden variables.

An important feature of the EM procedure is that the estimates θ(0), θ(1), . . ., always con-
verge to a maximum of the likelihood function. However, the estimated parameters
might correspond to various local maxima, depending on the initial parameters θ(0).
Further, the algorithm itself does not rely on extra parameters which need fine-tuning
(there is no “step-size” as in gradient methods that directly optimize likelihood). Fi-
nally, we note that the basic EM can be extended in various ways (Murphy, 2002; Neal
and Hinton, 1998), e.g. by approximating the E step or the M step, deterministic anneal-
ing of the lower-bound, etc.

2.4.3 Bayesian learning

Bayesian learning offers an alternative approach for dealing with unknown model pa-
rameters. Intuitively, this approach does not find point-estimates of parameters, but
considers parameters as regular hidden random variables. If the parameters are of in-
terest themselves, Bayesian methods compute their posterior distribution by regular
inference. If the parameters are not explicitly required, Bayesian methods perform stan-
dard inference on the remaining hidden variables, thereby integrating the parameters
from the model.

More formally, given a parametric model p(xH , xE|θ) we assume prior probability dis-
tribution for parameters p(θ) and construct an augmented model

p(xH , xE, θ) = p(θ)p(xH , xE|θ). (2.17)

2.5 SUMMARY 29

Suppose now that we have a training set y1:N of N realizations of the observed vari-
ables xE and want to compute posterior distribution p(θ|y1:N). We can compute this
distribution by solving a series of inference problems

p(θ|y1) ∝ p(θ)
∑

xH

p(xH , xE = y1|θ),

p(θ|y1:n) ∝ p(θ|y1:n−1)
∑

xH

p(xH , xE = yn|θ),

where n = 2, . . . , N and each posterior p(θ|y1:n) distribution becomes prior for the next
data point yn+1. The above algorithm follows from the assumption that all data y1:N

are independent samples from the model. In some (rare) cases, exact inference in such
augmented models will be possible. Therefore it is convenient to use a so called con-
jugate prior, which guarantees the distributions p(θ), p(θ|y1:n) are represented with the
same parametric family (Gelman et al., 1995). However, in most problems inference
in the augmented models is intractable. Here it is convenient to use an expectation-
propagation method, where all models p(θ), p(θ|y1:n) are approximated with the same
parametric family.
Once the learning is complete, we have a posterior distribution p(θ|y1:N). This distribu-
tion can be plugged in the augmented model (2.17) in place of the prior p(θ). In this way
all subsequent inference on hidden variables xv, v ∈ H will be implicitly conditioned on
parameters acquired from the training data.
Interestingly, Bayesian formulation unifies learning and inference. For example, we can
use the model even without training data. Given a single piece of evidence xE we can
just rely on the prior distribution p(θ) in (2.17) and estimate at the same time posterior
distributions p(xv|xE), v ∈ H and p(θ|xE).
Finally we note that, in practice Bayesian methods are often difficult to use because
the inference in augmented models turns out very challenging. Factor functions that
involve parameters treated as random variables become hard to integrate. However,
there exist parametric models suitable for Bayesian parameter learning. In Chapter 4 of
the thesis we consider a time-series model were most of the parameters are estimated
within the Bayesian framework without much additional computational cost.

2.5 Summary

Probabilistic graphical models provide a convenient methodology for studying large-
scale multivariate probability distributions. In the graphical framework — by introduc-
ing suitable assumptions — a probability distribution is expressed as a product and con-
verted to a graph. Due to correspondence between many algebraic and graph-theoretic
concepts, the underlying graph becomes a basis for solving various computational tasks
related to probabilistic methods. In particular, probabilistic inference, that is the task of

30 PROBABILISTIC GRAPHICAL MODELS

computing appropriate marginal distributions can be solved by recursive procedures
that propagate “messages” along the edges in the graph. Similarly, probabilistic learn-
ing, that is, the task of finding (parameters of) a probability distribution given training
data can be solved by finding (parameters of) a suitable graph.

The described methodology forms common underpinnings of the visual surveillance
techniques considered in the thesis. These techniques are presented as inference algo-
rithms applied to specific graphical models. In fact, the inference algorithms applied in
the thesis are instances of the general message-passing scheme. The scheme does not
only offer a unified framework for the following chapters, but also immediately sug-
gests ways to construct potentially improved tracking techniques (by applying poten-
tially more accurate inference methods). Importantly, probability computations in the
message-passing framework are local, in the sense, that they involve a limited subsets
of variables (a subset of a graph). Therefore these methods often scale very well with
the size of the model and potentially offer efficient, although sometimes approximate,
solution to inference in complex problems.

CHAPTER 3

SEQUENTIAL DATA ASSOCIATION FOR MULTI-OBJECT
TRACKING WITH SPARSE CAMERAS

This chapter focuses on data association problems that arise in tracking multi-object
with sparsely distributed cameras.1 Sparse camera locations introduce gaps between
the areas monitored by the cameras. Multi-object tracking is such a setup requires rei-
dentification of an object when it leaves one field of view, and later appears at some
other. Essentially, the presented solution defines a dynamic Bayes network (DBN) as
a probabilistic model for the observations of a single object. The edges of the network
define the correspondences between observations of the same object. Accordingly, we
derive an approximate EM-like method for selecting the most likely structure of DBN
and learning model parameters.

3.1 Introduction

Visual tracking in wide areas, such as airports or motorways, relies on a network of
closed-circuit TV (CCTV) cameras. Typically, exhaustive coverage of the entire area of
interest is impossible due to the prohibitively large size of the monitored terrain. There-
fore, the surveillance cameras are sparsely distributed, that is, the field-of-view of one
camera covers only a relatively small scene that does not overlap with scenes observed
by the other cameras. In this chapter we address the problem of reconstructing trajec-
tories of multiple objects (people, cars) observed at such sparsely distributed camera
systems. We refer to this problem as wide-area tracking.

The key problem in any multi-object tracking application is data association, i.e., esti-
mating the number of trajectories and association of observations with the trajectories.
In wide-area tracking this task corresponds to reidentification of an object when it dis-
appears, and later appears in any the of fields of view. Typical sensors, such as cameras,

1The material of this chapter has appeared in International Journal of Pattern Analysis and Applications
as (Zajdel and Kröse, 2005). Parts have been published in (Zajdel and Kröse, 2002).

32 SEQUENTIAL DATA ASSOCIATION

cannot directly observe the identity of an object. Instead, cameras provide various loca-
tion and appearance-related measurements about an object. Since these measurements
do not uniquely identify an object, one often employs probabilistic models to encode
ambiguous relation between the measurement and the identity of an object. Due to the
inherent ambiguity, the number of possible trajectories and associations grows rapidly
with the number of observations. Therefore, exact calculation of the most likely asso-
ciation is intractable (Bar-Shalom and Li, 1993) and one has to resort to approximate
techniques.

A popular approximate approach is multiple hypothesis tracking (MHT) (Cox and Hin-
gorani, 1994). In the context of wide-area tracking, MHT was applied for campus mon-
itoring (Collins et al., 2001). MHT maintains a list of high probability associations (hy-
potheses) which are updated online. It is usually a fast and easy to implement method.
On the other hand, MHT is a greedy-search heuristic that requires careful choice of
thresholds for pruning low-probability associations. Importantly, most of the stan-
dard MHT applications assume probabilistic models which are predefined rather than
learned from the data.

Alternatively, data association for multi-object tracking can be solved using stochas-
tic approximations: sequential Monte Carlo (“particle filters”) (Doucet et al., 2001; Hue
and Cadre, 2002) or Markov Chain Monte Carlo (MCMC) (Gilks et al., 1996), e.g. motor-
way surveillance (Pasula et al., 1999). Stochastic methods have the attractive theoretical
property that with increased computational resources, on average, they are guaranteed
to give better solutions. In practice, the promised accuracy requires very high compu-
tational cost.

Another approach for wide-area tracking is to simplify data association by modeling a
trajectory with an observable, first-order Markov chain (Huang and Russell, 1998; Javed
et al., 2003; Kettnaker and Zabih, 1999). In this case, the assignment of a new observa-
tion depends only on the latest observation in each trajectory, rather than all possible
past assignments. Unfortunately, when the sensor noise increases, the performance of
such models deteriorates significantly faster than the performance of latent-state mod-
els (Pasula et al., 1999).

Wide-area surveillance can also be approached by splitting the entire area of interest
into tightly aligned regions, such that each region is only partially covered by a sen-
sor. A possible choice of sensors are cameras, but photocells (movement detectors) are
also applicable (Nicholson and Brady, 1994). In this approach rather than finding corre-
spondences between measurements from detectors, one computes posterior probability
distributions on the regions where the objects interest might be present. On the practical
side, the starting positions and the number of objects have to be known a-priori.

Multi-object tracking is also an active research subject for problems, where objects are
tracked within a single field of view (Cai and Aggarwal, 1999; Dockstader and Tekalp,
2001; Hager and Belhumeur, 1998; Isard and Blake, 1998; Jang et al., 1997; Koller et al.,
1994; Wren et al., 1997). In single-scene scenarios tracking takes place within a contin-

3.2 OVERVIEW 33

uous area, where smooth motion provides essential cues for resolving association am-
biguities. Smooth position changes allow to apply continuous-motion models, such as
Kalman filters (Bar-Shalom and Fortmann, 1988; Cox, 1993) for predicting object future
positions from past observations. Smooth motion cues are also exploited by systems
with multiple cameras observing the same scene (Gavrila and Davis, 1996; Li et al.,
2002; Pedersini et al., 2001; Ruiz-Alzola et al., 2000). Various related approaches involve
reducing the overlap area to a minimum guaranteeing smooth camera-to-camera tran-
sitions (Cai and Aggarwal, 1999) or pan-tilt active cameras that select the best overlap
section (Ukita and Matsuyama, 2002).

Importantly, methods developed for single-scene tracking (using either a single camera
or multiple cameras) are not immediately applicable to the sparse multi-camera prob-
lem (Huang and Russell, 1998). Any single-scene data association technique exploits
the overlap in the viewing field and smooth motion for data association. Such cues
are not available for tracking between discontinuous scenes, where objects are observed
asynchronously within potentially long time intervals.

In this chapter we describe a probabilistic method for on-line association of observations
and simultaneous learning of environment parameters (e.g. travel times). We assume a
generative model for data in the form of a Dynamic Bayes Network with hidden states
that represent appearance-related properties of objects. Our inference algorithm couples
iterative reconstruction of trajectories with the Expectation Maximization approach for
learning model parameters. In this way, we combine the learning ability of MCMC-
based trackers and the ability to recover individual trajectories of the MHT approach.

3.2 Overview

We consider the problem of camera-to-camera tracking multiple persons observed with
sparsely distributed cameras in an office-like environment. We do not assume or con-
strain the number of tracked objects. Although our goal resembles the motorway sce-
nario (Pasula et al., 1999), there are two key differences. Firstly, we relax the assumption
of unidirectional, constant-velocity vehicle movements. In a building people walk in all
directions, possibly making long stops between camera locations. Secondly, we seek
individual trajectories rather than average traffic parameters.

Since our method focuses on camera-to-camera trajectories we do not analyze the ma-
neuvers of an object within a field of view of a single camera. We derive a “virtual”
observation yi from the sequence of frames that describe the complete pass of an object
through the camera viewing field (as in Fig. 3.1). Further, the duration of object’s pres-
ence in a viewing field is assumed to be significantly shorter than travel times between
cameras. Therefore we will represent the interval within a camera field as a single times-
tamp. Chapter 4 describes an approach, where the timestamps of entering and leaving
the field of view are explicitly taken into account.

34 SEQUENTIAL DATA ASSOCIATION

elevator
camera/scene B

camera/scene A

A: #010

A: #015

A: #025

B: #325

B: #330

B: #335

Figure 3.1: Camera-to-camera association of observations. The left and right columns are ex-
amples of frames taken from two passes through a camera viewing field. Each complete pass is
considered as a single observation of a person.

Formally, an observation yi = {ai, ti, li, ei, di} includes: the time of observation ti — rep-
resented as a single moment, the summarized object’s appearance (e.g. color statistics)
ai, the frame border of entering (ei) and leaving (di) the field of view (this can be: right,
left, top, down), and a discrete indicator li of the camera which observed the object.
Note, that li indicates the area uniquely associated with the camera, therefore we can
consider li as a location data about the object. The time ti is computed as the average
from the times of entering and leaving the field of view. We process observations from
all cameras centrally, and treat i as a central index. We also assume that the observations
are time ordered, i.e., ti < tj iff i < j.

Given the set of N observations Y = {yi; i = 1, . . . , N} we want to identify which ob-
servations belong to the same object. We are looking for a partition ω of observations
from Y into several trajectories Yk ⊂ Y (subsets of Y) such that each trajectory collects
observations believed to come from a single person. A valid partition expresses the set
of all observations as an exhaustive union of trajectories: Y = Y1 ∪ . . . ∪ YKω

, where Kω

is the number of objects proposed by a partition ω. The trajectories must be mutually
exclusive: Yl ∩ Yk = ∅, when l 6= k. We note, that a partition corresponds to a hypoth-
esis about trajectories of objects (this term is typically encountered in the nomenclature
related to multiple-hypothesis trackers).

We consider a partition as a discrete-valued, random variable ω ∈ Ω, where Ω is the
space of valid partitions. Conditioned on the data Y we find the posterior probability
distribution of partitions, and select the most likely a-posteriori (MAP) ω. In Section 3.3
we define a probabilistic model p(Y |ω), which becomes a basis for computing partition
posterior distribution. The model includes (initially unknown) parameters that describe

3.3 PROBABILISTIC GENERATIVE MODEL 35

our environment, like the average travel times between camera locations. Accordingly,
selecting the best partition has to be coupled with learning the parameters. Both tasks
are difficult to solve exactly, due to an intractable number of possible partitions. Our
approximate method (Section 3.4) is based on an EM (Dempster et al., 1977) algorithm. It
starts with an initial guess on parameters and a tractable partition space obtained using
a few initial observations. Each iteration refines the parameters and updates the limited
partition space with new observations, essentially using an MHT-like greedy search.
Therefore the algorithm can be summarized as a “learn-able” MHT, or alternatively,
as an EM learning procedure where the E-step is approximated with an MHT-based
inference. The performance of the method on a real data set is evaluated in Section 3.5

3.3 Probabilistic generative model

A generative model p(Y |ω) provides the basic probabilistic relation that ties the avail-
able data Y and the sought partition ω. It gives the likelihood of data Y under the
assumption that Y was generated according to the partition ω. Given the data and
the model, the partition posterior probability follows from the Bayes’ rule: p(ω|Y) =
αp(ω)p(Y |ω), where α is a scale factor. By assumption, all partitions are equally likely
before the observations arrive, so we take an uniform prior p(ω).

Let ω defineKω trajectories Y = Y1∪. . .∪YKω
. A common assumption is that the tracked

objects move independently (Cox, 1993; Pasula et al., 1999), therefore the generative
model factorizes into a product of models for individual trajectories:

p(ω|Y) = αp(Y |ω) = α

Kω∏

k=1

p(Yk|ω), (3.1)

where p(Yk|ω) is the model for the kth trajectory. The trajectory model defines the joint
probability of the selected observations under the assumption that they describe the
same person p(Yk|ω) = p(y

(k)
1 , . . . , y

(k)
Nk

|ω), where the selection Yk = {y(k)
1 , . . . , y

(k)
Nk

} is
determined by the partition ω, and Nk is the trajectory length. Since trajectories differ
in length, and each observation has several components, we will express the trajectory
model as a dynamic Bayes network. In the rest of this section we discuss a model for
only one person and omit the superscript (k).

As discussed in Chapter 2, Bayesian networks (BNs) offer a convenient way to ex-
press complex probability density functions (pdfs) as a product of simpler conditional
pdfs (Jensen, 2001; Pearl, 1988). A BN is a directed acyclic graph denoting variables as
vertices and probabilistic dependencies as edges (Fig. 3.2). Dynamic Bayesian networks
(DBNs) represent models for discrete-time series of variables with a series of intercon-
nected subgraphs. DBNs generalize other probabilistic models that describe time series,
like hidden Markov models or Kalman filter models (Ghahramani, 2001).

36 SEQUENTIAL DATA ASSOCIATION

The graph of Fig. 3.2 identifies a set of dependencies between the variables in the se-
quence {y1, . . . , yNk

}. Each column of transparent nodes (subgraph) represents a single
observation yi. The gray node denotes a hidden variable f that describes the time-
invariant, intrinsic properties related to object’s appearance. When an object enters a
viewing field we get noisy observations of this variable. Thus, the appearance ai given
f is independent of all past and future appearances aj of this person. In this way we
have saved the effort of constructing an explicit joint model p(a1:Nk

). To complete the
definition of our DBN, we provide a pdf for every vertex conditioned on its parents,
and a prior pdf for vertices that do not have parents:

• p(ai|f, li); Distribution on appearance ai of an object observed at camera li. The
appearance features ai depend on intrinsics f and various object- and camera-
specific factors that affect the measurement process. The former introduce distor-
tions related to changes in body pose or viewing angle. The latter include camera-
specific illumination conditions, jitter, etc. To minimize the distortions due the
object-specific pose we use appearance features that are invariant to body-part
configuration. The camera-specific distortions are considered as a stochastic noise,
therefore we denote the distribution as p(ai|f, θ(li)), where θ(li) are noise param-
eters of the camera at location li. Our heuristic choice for this model is a linear
Gaussian distribution: N (ai|f + b(li), S(li)). In the experiments with real-world
data we verify the ability of such a simple distribution to capture the observation
noise. The parameters θ(li) = {b(li), S(li)} will be learned from the data.

• p(li, ei|li−1, di−1); Probability of arriving at location li via border ei when depart-
ing from location li−1 via border di−1. We specify this discrete distribution using
prior knowledge of the building’s layout. In contrast to (Bui et al., 2001) we do not
define a separate motion model for each object. The distribution p(li, ei|li−1, di−1)
is a property of the environment, rather than an object. This is a fairy simple
and generic approach, suitable for problems with an unknown number of objects.
(Note, that object-specific motion models require more elaborate analysis, which
typically involves learning higher-order Markovian dynamics individually for ev-
ery object (Bui et al., 2001).)

• p(ti|li−1, li, ti−1); This pdf models the time of appearing at location li knowing that
an object left li−1 at time ti−1. We use a truncated Normal distribution:

p(ti|li−1, li, ti−1) =

{
0 iff ti < ti−1

αN (ti|δ(li, li−1) + ti−1, R(li, li−1)) otherwise,

where δ(li, li−1) and R(li, li−1) are the expected travel time between the two lo-
cations and the variance of this distribution, and α denotes a normalization term.
These parameters will be learned. Truncating the density function at zero prevents
camera-to-camera transition with negative travel times. The Normal distributions
facilities simple learning of the travel parameters, and have been successfully ap-
plied in (Huang and Russell, 1998; Pasula et al., 1999). (Alternatively, one might
consider the gamma distribution, which does not require truncating).

3.3 PROBABILISTIC GENERATIVE MODEL 37

.

hidden properties f

appearance a1
. . . at−1 at .

time t1 . . . tt−1 tt

location l1 . . . lt−1 lt

departure d1
. . . dt−1 dt

entry e1
. . . et−1 et

.

Figure 3.2: An object as a hidden process. The graph presents an intermediate snapshot of the
DBN for a single object. The gray node (variable f) describes an object’s hidden, time-invariant
appearance. The arcs show dependencies between the variables. When a new observation is
associated, the network is extended with a new column of nodes.

• p(f); Prior distribution of the intrinsic properties of any object. We use a normal
density: p(f) = N (f |µ,R). The parameters µ and R will be learned.

• p(l1), p(e1|l1); Distributions on locations and entry sides where a trajectory may
start in the building. This distributions are given by the user since they follow
from the layout of cameras in the building.

• p(di); Prior probability of observing a particular departure side. We take it the
same for every value of di, so the term p(di) becomes a scaling factor.

• p(t1|l1); Prior probability distribution on the time of object’s first visit to some
camera location. We assume that within the considered period a trajectory may
start at any time. Thus, p(t1|l1) is a scale term.

The joint probability of the variables in the graph is the product of pdfs associated with
every vertex (Jensen, 2001). In the case of Fig. 3.2:

p(f, y1, . . . , yNk
) =

p(l1)p(e1|l1)p(t1|l1)
Nk∏

i=1

p(di)

Nk∏

i=2

[p(li, ei|li−1, di−1)p(ti|ti−1, li, li−1)] p(f)

Nk∏

i=1

p(ai|f, li).

The variable f is unknown, thus we integrate it in the final expression. The scaling
terms p(t1|l1), p(di) are omitted:

p(Yk|ω,Θ) = p(y1, . . . , yNk
|ω) ∝ p(l1)p(e1|l1)

×
{

Nk∏

i=2

p(li, ei|li−1, di−1)p(ti|ti−1, li, li−1)

}
∫

f

p(f)

Nk∏

i=1

p(ai|f, li) df. (3.2)

38 SEQUENTIAL DATA ASSOCIATION

.

data y1 y2 y3 y4 y5 y6

partition ω1 f1 f2

y1 y2 y3 y4 y5 y6 .

partition ω2 f1 f2 f3

y1 y2 y3 y4 y5 y6

.

Figure 3.3: Selection of a Bayes network structure as a data association problem. The six obser-
vations could be generated from many different models (structures). Two hypothetical struc-
tures ω1 and ω2 are shown. A single network (e.g. {f1, y1, y2}) is a compressed version of the
corresponding full network as in Fig. 3.2.

The product of Gaussian appearance models p(ai|f, li) is another Gaussian function,
therefore the integral in (3.2) has an analytical solution. See Section 3.7 for a discussion
on how to compute this term.
Conditioning on Θ in (3.2) follows from the dependency of a trajectory likelihood on
the unknown parameters: Θ = {µ,R, δ(q, r), R(q, r), b(q), S(q)}, where q and r are cam-
era locations. Consequently, this dependency reappears in the posterior probability
(see (3.1)), and we have to learn Θ before or during selection of the best ω.

3.4 Associating observations

In the previous section we described a trajectory of a single person with a dynamic
Bayes network. Accordingly, to describe multiple persons, we construct several dis-
connected DBNs as in Fig. 3.3. In this way, every partition ω translates to a structure
of a larger network that comprises multiple disconnected subgraphs, each for every
proposed object. In this section we present a deterministic approximate method for
estimating the sought partition by recovering the structure that explains the data best.
Typical structure selection procedures for BNs compare candidate structures on the ba-
sis of a criterion (such as BIC/MDL) that tries to balance the complexity of a structure
against its fit to the data (data likelihood) (Murphy, 2001). Such criteria prevent favoring
very complex structures that naturally fit the data better. In our case every candidate ω
uses the same parameters Θ, but may propose a different number of hidden variables
f . These variables increase the expressive power of the candidate model. However,

3.4 ASSOCIATING OBSERVATIONS 39

we treat f in a Bayesian manner, i.e., we set a prior on every f and integrate it from
p(ω|Y,Θ). Such an approach is shown (MacKay, 1992) to sufficiently penalize over-
complex models, therefore the posterior p(ω|Y,Θ) is a valid criterion.
Another issues are the exponential number of possible structures (i.e., partitions) that
can be defined for a dataset (Jerrum and Sinclair, 1996), and the fact that the parame-
ters Θ need to be learned. Most of the approximate methods for these problems apply
the EM algorithm (Murphy, 1998). For a tractable structure space, one could apply the
“Structural EM” method that assumes that the structure is another parameter and ex-
haustively searches for the optimal value (Friedman, 1998). When the structure space is
intractable, EM considers the structure as a hidden random variable. However, EM re-
lies on expected values over the hidden variables. These expectations become difficult
to compute for large structure spaces. In such cases the expected values are approxi-
mated with Markov chain Monte Carlo (MCMC) sampling methods.
In practice, applications using MCMC may suffer from slow convergence (so called mix-
ing times), e.g. (Giudci and Castelo, 2001), where 105 MCMC iterations are used to find a
distribution over the space of 3 ·106 structures with only 6 nodes. The success of MCMC
for motorway surveillance partially follows from constraining the partition space by a
natural assumption that on a motorway vehicles travel in one direction (thus, the next
locations of the objects are roughly known) (Pasula et al., 1999). Apart from the fact
that our domain is less constrained, we not only have to find expected values over this
space, but also need the most likely partition. MCMC is useful only for approximating
the expected value. Therefore, we are looking for a different approximate execution of
the EM, such that it would also estimate the most likely structure in the space of all
possible structures.

3.4.1 EM for a tractable structure space

Below we discuss a theoretical application of EM for learning of parameters Θ, based
on the assumption that the structure space is tractable. The parameter estimates will be
only locally optimal due to the approximate nature of EM. From this method, we will
later derive an approximate learn-search algorithm for intractable spaces.
EM takes an initial value of Θ at random and improves it iteratively executing two steps
per iteration. In the E step it finds the posterior pdf on all hidden variables given the
current parameter estimates Θ(n). In our application there is a hidden discrete-valued
variable ω and as many hidden continuous-domain variables f as objects proposed by
a particular ω. We denote the variables f1, . . . , fKω

as f1:Kω
. The interesting posterior is:

q(ω, f1:Kω
) = p(ω|Y,Θ(n))

Kω∏

k=1

p(fk|Yk, ω,Θ
(n)), (3.3)

where p(fk|Yk, ω,Θ
(n)) is the posterior distribution on the hidden properties of the kth

object proposed by the partition ω. The above factorization followed from conditional

40 SEQUENTIAL DATA ASSOCIATION

independence of trajectories given ω. In the M step, EM finds improved parameters
Θ(n+1) by maximizing the expected log-likelihood of the observations under q(ω, f1:Kω

)

Θ(n+1) = arg maxΘ

∑

ω∈Ω

∫

f1:Kω

log p(ω, f1:Kω
, Y |Θ)q(ω, f1:Kω

) (3.4)

Section 3.7 provides the details of solving the above maximization problem. The EM
procedure is guaranteed to find Θ that locally maximize the data likelihood. Given
these parameters we can use p(ω|Y,Θ) to find the MAP partition.

3.4.2 Approximate EM for an intractable structure space

In practice, the space of partitions Ω is intractable, and one cannot maximize (3.1) or
execute the summation in (3.4) for every possible partition ω. Our method exploits the
time order of observations to approximate the posterior distribution p(ω|Y), ω ∈ Ω over
the full space Ω with a tractable subspace ΩT of the H most likely partitions:

p∗(ω|Y) =

{
γp(ω|Y) iff ω ∈ ΩT

0 otherwise , (3.5)

where γ is a normalization constant. We construct the subspace ΩT iteratively as a part
of the EM procedure.
Figure 3.4 presents an iterative scheme to process the observations sequentially. First
we process an initial subset Y (0) of N0 observations, and construct a tractable partition
space Ω(0). Since the parameters Θ were randomly initialized we need to execute sev-
eral EM iterations. When EM stops we a have posterior distribution on partitions of
observations from Y (0). At this point we build a subset Ω

(0)
T by selecting H partitions

ω ∈ Ω(0) that are the most likely and remove the remaining partitions from Ω(0). The
subsequent observations will be used for refining the parameters and for updating the
retained partitions. Each of the preserved partitions ω ∈ Ω

(0)
T defines some Kω trajecto-

ries. By extending every trajectory with a single observation or creating new trajectory,
a single partition gives rise to (Kω + 1) new partitions. Accordingly, after extending ev-
ery preserved ω there is a new space of partitions Ω(1). The new space is tractable, since
we created it from a tractable Ω

(0)
T . It is further extended with the subsequent observa-

tions until we process a batch of R observations. (R is a parameter.) The new tractable
space Ω(1) becomes a basis for updating the parameters with EM and searching for a
new subset of the most likely partitions.
The described procedure combines the iterative EM algorithm with a greedy search
algorithm for the best partition. By updating Θ after processing each batch of R ob-
servations we enforce that Θ follows changes in the noise environment. However, our
scheme is not exact, because we discard unlikely partitions from Ω without considering
all observations from Y . One should also note, that we estimate maximum-likelihood

3.4 ASSOCIATING OBSERVATIONS 41

Y (0) := y1:N0

build Ω(0) space of partitions of obs. in Y (0)

use EM to find parameters Θ(0),
build Ω

(0)
T by taking H ω ∈ Ω(0) with the highest p(ω|y1:N0 ,Θ

(0))

n = N0 + 1; s = 1
while n < N

Y (s) := yn:n+R

build Ω(s) by extending every trajectory of ω ∈ Ω
(s−1)
T with y ∈ Y (s)

Θ(s) := updated Θ(s−1) with EM (single iteration)
build Ω

(s)
T by taking H ω ∈ Ω(s) with the highest p(ω|y1:n+R,Θ

(s))
n := n+R; s := s+ 1

Figure 3.4: Pseudo code for the learn-search procedure. Symbol yn:m denotes a set {yn, . . . , ym}.

parameters from an incomplete data sequence (partial dataset). In order to avoid over-
fitting, it is recommended to run only a single EM iteration after each batch of R data.

Another important property of our procedure is that does not require a separate train-
ing data to fit the parameters of the models (indicated in Fig. 3.2). The parameters for
color measurement models and travel-time models are estimated online from the actual
test data, simultaneously with the tracking algorithm. A limited number of location-
to-location distributions (denoted in Fig. 3.2 as p(li, ei|li−1, di−1)) is fixed by the user
beforehand on the basis of the layout of camera network.

Computational cost The computational cost of evaluating the likelihood of a single
partition ω is O(D3Kω), where D is the dimensionality of appearance features, and Kω

denotes the number of persons postulated by ω. After k observations we can have at
most k persons, thus Kω < k. Since the algorithm maintains at most H partitions, the
likelihood evaluation at the kth step costs O(HD3k) in the worst case. Note that is is
very unlikely that any partition will propose k persons from k observations; in most
cases the number of persons will grow rather slowly with the number of observations.
Additionally, the algorithm updates model parameters. If we have N cameras, there
are N covariance matrices, each of D2 elements, that model the noise in appearance
features. Next, there are N 2 means and variances models for camera-to-camera travel
times. A single update step for these parameters costs O(N 2 + ND2) per partition.
Assuming a single parameter update per observation, the total cost is O(H(D3k+N2 +
ND2)), that is linear is the number of preserved partitions.

42 SEQUENTIAL DATA ASSOCIATION

3.4.3 Relation to other methods

The key problem faced by any data association method stems from the intractability of
the partition space. An alternative solution to this problem applies MCMC sampling
algorithms (mostly used Metropolis-Hastings) (Pasula et al., 1999) to obtain a limited,
sample-based representation of the partition space. The strength of MCMC methods
follows from the fact the one can easily sample from the posterior p(ω|Y) that incorpo-
rates the complete dataset. However, when the partition space is unconstrained, the slow
mixing time becomes a disadvantage. Our algorithm evaluates trajectories using partial
datasets. In this way we keep the partition space tractable, but reject certain solutions
on the basis of partial data.

Our method resembles a Multiple Hypothesis Tracker (MHT), because one may in-
terpret a partition ω as a hypothesis about underlying trajectories. MHT evaluates
p({y∗, Yk}|ω) in order to decide which of the trajectories Yk proposed by some ω should
be extended with a new observation y∗. We first consider all options by building a full
new partition space derived from the current ω, learn the parameters and then prune
unlikely partitions. In most of the standard MHT applications parameters are prede-
fined rather than learned.

Similarly as MHT methods, the procedure of Fig. 3.4 might also be considered a simple
form of a (Rao-Blackwellized) particle filter (PF) (Arulampalam et al., 2002). In visual
tracking PFs are used for approximating intractable filtering densities, typically, on ob-
ject’s position (Isard and Blake, 1998). PF represents the density of interest with a set
of samples (particles), which are resampled when new observations become available.
In our case the hidden variable is the partition ω with a discrete, finite state space. We
represent the posterior distribution with a few most likely elements (particles), because
the whole state space is too large for exact representation. These particles are not how-
ever a result of resampling, but greedy search. In most of the PF applications for visual
tracking the observation model is assumed to be known. In our method we assume a
parametric observation model and we learn the model parameters.

3.5 Experiments

In a series of experiments we measure the performance of our method. First, we study
the performance as a function of the observation model. In Section 3.3 this model was
set to a linear Gaussian distribution with bias: pB(ai|f, li) = N (a|f + b(li), R(li)). The
camera dependent bias b(li) accounts for local illumination and pose of objects relative
to the camera. Since the choice of this model is arbitrary we also try its simpler version,
without the bias pU(ai|f, li) = N (a|f,R(li)). The next experiment studies the effect of the
parameter H which determines the size of the approximate partition space ΩT . Finally,
we compare our method with an MCMC-based algorithm.

3.5 EXPERIMENTS 43

camera 7

camera 5

first floor plane

camera 6camera 1
camera 2

camera 3

camera 4

ground floor plane

entrance

Figure 3.5: Building plan were the observations were taken. The seven gray areas indicate
viewing fields of the seven cameras.

Setup We test our method on real-world human observations that were collected at
seven disjoint locations at the ground and first floor of an office building as in Fig. 3.5.
In total we gathered 70 observations of 5 persons, with an equal number of observations
per person. For this set we manually resolved the data association to obtain the “ground
truth” partition. Because the layout of the building is known, we can set the probability
p(li, ei|li−1, di−1) of arriving at location li at the side ei when an object departs from posi-
tion li−1 through side di−1. This distribution is sketched in Fig. 3.6. In the building, we
also manually set the models p(l1) and p(e1|l1) that describe starting location and entry
side of a trajectory.

As already indicated, an observation yi summarizes object appearances captured by a
sequence of frames during object’s presence in a camera field of view. Given such a
sequence, we have computed the appearance features ai by first manually selecting a
single frame where the object was clearly visible, and then manually segmenting pixels
in the frame into object and non-object classes. In this way we constructed a data set
that is independent from various inaccuracies introduced by automated segmentation.
The appearance features ai were set to a 9D vector containing 3D color means (RGB)
computed over three regions selected in the object’s image. The regions (see Fig. 3.7 for
details) are a heuristic choice based on the assumption that we observe people. These
features provide a simple way to summarize color while preserving partial informa-
tion about geometrical layout. The resulting features are to certain a extent invariant
to variations in person’s pose. To suppress the effect of the illumination color on the
object’s observed color, we transformed the original RGB representation to a channel-
normalized space (Drew et al., 1998).

Evaluation criteria In order to quantitatively compare various methods, one can view
multi-object tracking as an unsupervised classification problem, where observations of

44 SEQUENTIAL DATA ASSOCIATION

entrance

1

2

3 4

5 6

7

Figure 3.6: An illustration of camera-to-camera movements in the considered environment. The
numerical labels correspond to cameras from Fig. 3.5, the arrows indicate possible transitions as
defined by distribution p(li, ei|li−1, di−1). In the drawing we omitted the entry/departure side
indication.

the same person have to be clustered together (i.e., a cluster represents a trajectory), and
the number of clusters is unknown. For the available dataset we construct a “ground-
truth” partition that indicates the actual partitioning (or clustering) of the observations.
Analogously as in the classification problems, our evaluation criteria reflect two aspects
of the proper partition. It is desirable that: (i) observations within a single reconstructed
trajectory correspond to a single person, and (ii) all observations of a single person are
clustered in a single reconstructed trajectory.

The first criterion is the partition accuracy, denoted as qω,

qω =
1

Kω

Kω∑

k=1

qk,ω qk,ω =
maxi | Ȳi ∩ Yk |

|Yk|
· 100%, (3.6)

where Kω is the number of trajectories defined by ω, and |.| is the number of obser-
vations in a set. The term qk,ω indicates how many observations of a proposed subset
Yk are present in a single subset Ȳi of the true partition. Let the “true” partition be
ω̄ = Ȳ1 ∪ . . .∪ ȲN . Note that the considered tracking problem is unsupervised, therefore
the trajectories in the true and proposed partitions are arbitrarily ordered. To deal with
this ambiguity, we find a true trajectory Ȳi that best matches a proposed trajectory Yk,
and define qk,ω as the accuracy of the best match.

The second criterion is the partition recall, denoted as ρω,

ρω =
1

Kω̄

Kω̄∑

i=1

ρi,ω ρi,ω =
maxk | Ȳi ∩ Yk |

|Ȳi|
· 100%, (3.7)

where Kω̄ is the number of trajectories defined by the true partition ω̄. The term ρi,ω

indicates how many observations of a true subset Ȳi are present in a single subset Yk of

3.5 EXPERIMENTS 45

λ

λ

λ

λ1

2

3

4

= 0.375h

= 0.625h

= 0.875h

= 0.125h

h R2

R1

R3

total height
skip

skip

R1

R2

R3

Figure 3.7: (Left) Computation of appearance features. For every pixel we denote the RGB triple
as I(m,n), wherem and n are, respectively, the vertical and horizontal coordinates. We let r(m,n) ∈
{0, 1} denote a binary label that indicates whether the pixel represents an object (r(m,n) = 1). The
image is split into three horizontal stripes (regions), defined asRi = {I(m,n)|r(m,n) = 1, λi < m <
λi+1}, i = 1, 2, 3, where the thresholds λ are indicated in the figure. Within every region, we
compute a 3-dimensional (RGB) average color; in total obtaining a 9-dimensional feature vector.
The “skip areas” correspond to image regions that usually provide little information. (Right)
The resulting regions.

the proposed partition (that is how completely the true trajectory has been recovered).
Analogously to the previous criterion, given a true trajectory Ȳi we select the proposed
trajectory Yk that best matches Ȳi.
Importantly, the above criteria have to be considered jointly, particularly in case of de-
generate partitions. For example, proposing one trajectory Yk = {yk} per observation
would always give a 100% accuracy. Similarly, clustering all observations into a single
trajectory yields a 100% recall. To provide a more intuitive assessment of a partition in
such degenerate cases, we also report the number of reconstructed trajectories. Comparing
this number with the actual number of trajectories provides additional insight to the
properties of various tracking methods.

Results A sample run of our method with the bias-enabled linear Gaussian model
pB(ai|f, li) = N (a|f + b(li), R(li)) is shown in the top panel of Fig. 3.8. The parame-
ters were H = 10, N0 = 6, R = 2. Each dot represents a partition from the estimated
subspace ΩT . The line in the figure connects the partitions that maximize the poste-
rior probability. After an initial period of correct associations, the performance levels at
around 60%, meaning that only 6 out of 10 observations assigned to a single trajectory
really describe the same person. The average accuracy of MAP ω indicated in the figure
is the average of qω for MAP partitions after processing each batch of R observations.
The bottom panel of Fig. 3.8 presents the corresponding run of our method with the
bias-free Gaussian noise model pU(ai|f, li) = N (a|f,R(li)). All parameters were kept
the same as in the previous run. In the case of the simpler model the method provided
nearly perfect assignments for approximately the first 36 observations, whereas in the

46 SEQUENTIAL DATA ASSOCIATION

Table 3.1: Tracking accuracy of the described method, averaged from 10 runs. Parameters N0 =
6, R = 2. The actual number of objects was 5. Computation times correspond to a MATLAB
implementation and an 1 GHz desktop PC.

parameter bias-free noise model bias-enabled noise model
H accuracy recall objects time accuracy recall objects time

[%] [%] [s] [%] [%] [s]
1 48 55 5 54 44 50 5 102
5 77 70 5 258 57 66 5 471
10 78 79 5 515 54 66 5 943
20 76 79 5 1036 46 63 5 1892

case of the general model – for only 16. For the subsequent observations (starting at
around observation 54) we observe that the MAP partition coincides with the highest-
accuracy partition. Figure 3.9 presents selected trajectories as defined by the estimated
MAP partition after processing 70 observations.

The evaluation of our method with different noise models and varying setting of pa-
rameter H is given in Tab. 3.1. The results are averages from 10 runs. We observe that
keeping only a single (H = 1) partition was not enough to obtain an accurate solution.
When the number of preserved ω’s was slightly higher (H = 5, 10) the performance im-
proved. However increasing H further did not improve the results, or even the perfor-
mance deteriorated in case of the general observation model. Note, that the experiments
confirm the linear dependency of computational cost on the parameter H .

There are two main reasons why the bias-free noise model performs better on the con-
sidered dataset. First, the EM method for parameter estimation is prone to finding only
the locally optimal estimates. The more parameters assumed by the model, the more
local maxima exist in the data likelihood function. In our application this could be es-
pecially the case since we always run EM on a partial dataset. The bias estimates found
from the initial observations may not fit well to the subsequent data. The second reason
follows from our image pre-processing step. The camera-specific bias parameter might
be unnecessary because we suppress camera-dependent noise artifacts by using pose-
invariant features and a channel-normalized color space. Finally, we note that the above
results comply with the recent findings that the modern CCD cameras do not introduce
bias into color measurements (Withagen et al., 2005).

Finally, we note that the appearance features are computed from multiple frames, where
an object was visible during his/her pass through the field of view. For individual
frames, the appearance features might be strongly affected by various noise artifacts
(e.g. due to a bad segmentation or occlusions). Nevertheless, given a complete pass,
such artifacts can be easily eliminated as “outliers”.

3.5 EXPERIMENTS 47

0 10 20 30 40 50 60 70
40

50

60

70

80

90

100

q ω
 [%

]

After processing observation

Tracking with T=10, R=2, N0=6

Average accuracy of MAP ω: 73%
Accuracy of MAP ω after last obs: 61%

dots: preserved ω
line: MAP ω

0 10 20 30 40 50 60 70
40

50

60

70

80

90

100

q ω
 [%

]

After processing observation

Tracking with T=10, R=2, N0=6

dots: preserved ω
line: MAP ω

Average accuracy of MAP ω: 91%
Accuracy of MAP ω after last obs. 84%

Figure 3.8: Results of tracking with normal prior distribution on features f . The parameters of
the distribution were randomly initialized and learned from data. (Top) Observation model is
linear Gaussian with bias parameter estimated by EM. (Bottom) Observation model is a bias-free
Gaussian (with linear bias parameter fixed to zero).

MCMC-based algorithm Another series of experiments evaluate the MCMC-based
approximations to the partition space. We implemented the Metropolis-Hastings sam-
pling algorithm (Pasula et al., 1999). In essence, the partitions ωi, i = 1 . . . N are sampled
as follows: a new ωi+1 is obtained from ωi by random selection of two observations as-
signed to different trajectories and swapping their assignment. Then we accept ωi+1

at random with probability proportional to p(ωi+1|Y)/p(ωi|Y). In the motorway sce-
nario (Pasula et al., 1999), construction of the initial sample exploits the natural motor-
way constraint that objects (vehicles) move in a single direction. In our office scenario,
the objects (people) move without constraints. Therefore, we consider two different
ways to initialize sampling. First, we build the initial sample in a purely random way.
Second, we obtain the initial sample as a result of a greedy search, using a simple MHT
tracker with only one hypothesis.
We use the bias-free observation model pU(ai|f, li) = N (a|f,R(li)), and prior models
the same as in our algorithm. Since we cannot average over the sampled partitions, as
the final solution we took the sample that maximized the data likelihood p(Y |Θ, ωi). Ta-
ble 3.2 shows the evaluation results of the partitions found by MCMC runs with varying
number of samples N and different methods for sample initialization.

48 SEQUENTIAL DATA ASSOCIATION

Table 3.2: Tracking accuracy of the MCMC based-algorithms. The results are averages over 5
runs. The actual number of objects was 5.

random initialization
samples accuracy [%] recall [%] objects time [s]

102 57 ± 9.8 31 ± 9.4 18.8± 8.0 89± 4
103 66 ± 5.3 33 ± 2.8 13.8± 2.1 789± 16
104 78 ± 2.1 53 ± 3.8 9.6± 0.8 7689± 53
105 86 ± 3.4 79 ± 6.0 7.0± 0.7 76631± 50

MHT initialization
samples accuracy [%] recall [%] objects time [s]

102 62 ± 7.7 49 ± 8.4 7.4± 1.0 97± 0
103 73 ± 4.9 60 ± 3.9 7.2± 0.4 759± 3
104 87 ± 1.4 77 ± 3.2 6.6± 0.5 7401± 19
105 88 ± 1.2 81 ± 1.9 6.0± 0.0 73992± 17

In comparison with the Tab. 3.1 it turns out that the MCMC approximation is less suited
for finding a single reliable partition ω in an office-like tracking scenario. In particular, it
is difficult to estimate the correct number of objects. The original application of MCMC
for tracking largely exploited the specific motorway traffic properties for disambiguat-
ing the number of distinct objects (Pasula et al., 1999). In that case a vehicle enters a
motorway in one of the known locations, exits it only in specific off-ramps, and never
(implicit assumption) visits the same location twice. We also note that the MCMC runs
tend to be computationally more intensive, and their results highly depend on the initial
sample.

3.6 Conclusions

We proposed a data association algorithm for tracking people observed with sparsely
distributed cameras in an office environment. In particular, we have focused on re-
identification of a person when he/she leaves the viewing field of one camera and later
appears at some other camera. The algorithm assumes a probabilistic relation between
the available object observations and the sought association. Given the data, our ap-
proximate inference procedure iteratively reconstructs a limited space of a-posteriori
plausible associations. The proposed scheme is derived from the EM algorithm in order
to combine learning model parameters with the search through the association space.
The described EM-based algorithm for learning model parameters resembles the recent
approaches used by the MCMC-based trackers. However, in contrast to the methods
employing MCMC sampling, our method is able to recover a single reliable partition

3.6 CONCLUSIONS 49

A
1

Reconstructed trajectory #1

true label:
camera:
travel time[min]:

A
2

0.6

A
2

0.2

A
5

0.1

A
6

0.6

A
6

0.1

A
5

0.2

A
3

0.5

A
4

0.3

A
7

0.5

A
7

0.5

A
4

1.3

A
3

0.6

A
1

0.2

B
1

Reconstructed trajectory #2

true label:
camera:
travel time[min]:

B
5
0.7

B
6
0.2

B
7
0.1

B
4
0.5

B
4
0.1

B
7
0.8

B
6
0.8

B
5
0.1

B
3
0.5

B
3
0.4

B
2
1.5

B
2
0.2

B
1
0.8

C
1

Reconstructed trajectory #3

true label:
camera:
travel time[min]:

C
3

0.3

C
4

0.6

D
4

1.8

D
4

0.7

D
7

0.7

D
6

0.1

D
5

0.8

D
3

0.2

D
3

0.7

D
2

0.5

D
2

0.1

D
1

0.2

D
1

Reconstructed trajectory #4

true label:
camera:
travel time[min]:

D
5

0.2

D
6

0.4

D
7

0.1

C
7

0.1

C
6

0.5

C
6

0.2

C
7

0.8

C
4

1.1

C
3

0.8

C
5

1.1

C
5

1.7

C
2

0.5

C
2

0.3

C
1

1.2

E
1

Reconstructed trajectory #5

true label:
camera:
travel time[min]:

E
2

0.8

E
2

0.4

E
5

0.4

E
6

0.2

E
6

0.9

E
5

0.5

E
3

0.5

E
4

0.2

E
7

0.8

E
7

0.1

E
4

0.8

E
3

0.3

E
1

0.9

Figure 3.9: Trajectories defined by a partition ω estimated by our algorithm. Every image repre-
sents a frame from a person’s pass through the filed of view of some camera. The “true labels”
indicate the ground-truth association. The numerical camera indicators correspond to Fig. 3.5.
From the true labels, we see that the trajectories #1, #2, #5 were reconstructed correctly, the tra-
jectories #3 and #4 are mixed.

50 SEQUENTIAL DATA ASSOCIATION

(association) of the observation sequence into individual trajectories. The method could
be also viewed as an extension to Multiple Hypothesis Tracking with on-line learning
of model parameters. Therefore, it is particularly suited for on-line applications.
The presented greedy search for the optimal association offers an alternative to the
methods employing stochastic approximations of the association space. This space is
particularly difficult to approximate in the indoor tracking domain, which lacks strong
traffic constraints. The presented experiments suggest that for this domain, sequential
search for trajectories from an incomplete dataset provides better results than sampling
associations from the complete dataset.

3.7 Appendix

EM for Bayes network parameters Below we provide implementation details for find-
ing maximum-likelihood model parameters Θ with EM. In the E step we find posterior
distribution on all hidden variables:

q(ω, f1:Kω
) = p(ω, f1:Kω

|Y,Θ(n)) =

= p(ω|Y,Θ(n))p(f1:Kω
|Y, ω,Θ(n)) = p(ω|Y,Θ(n))

Kω∏

k=1

p(fk|Yk, ω,Θ
(n)), (3.8)

where p(fk|Yk, ω,Θ
(n)) is the posterior distribution on the hidden properties of the kth

object proposed by a partition ω. The factorization in (3.8) followed from trajectory
conditional independence given ω (the subgraphs of Fig. 3.3 are disconnected). The
term q(ω) = p(ω|Y,Θ(n)) is given by (3.1). To find the function q(fk|ω) = p(fk|Yk, ω,Θ

(n))
we exploit the independencies implied by the trajectory model, as in Fig. 3.2

q(fk|ω) = p(fk|Yk, ω,Θ
(n)) ∝ p(fk)

Nk∏

i=1

p(a
(k)
i |fk, l

(k)
i), (3.9)

where Nk is the number of observations assigned to the kth object, a(k)
1:Nk

and l
(k)
1:Nk

are
sequences of appearance features and locations of the kth object as proposed by ω. Since
all models in (3.9) are linear and Gaussian, the posterior pdf will be a Normal density,
what makes (3.9) a special case of the Kalman filter.
In the M step we solve the following maximization problem:

Θ(n+1) = arg maxΘ

∑

ω∈Ω

∫

f1:Kω

log p(ω, f1:Kω
, Y |Θ)q(ω, f1:Kω

).

We express the joint p(ω, f1:Kω
, Y |Θ) as a product of p(f1:Kω

, Y |ω,Θ) and p(ω|Θ). The
latter is fixed uniform, so it is omitted. We solve

Θ(n+1) = arg maxΘ

∑

ω∈Ω

∫

f1:Kω

log p(f1:Kω
, Y |Θ, ω)q(ω, f1:Kω

).

3.7 APPENDIX 51

The joint pdf p(f1:Kω
, Y |Θ, ω) factorizes into a product of trajectory models (see Fig. 3.3).

As a result the maximized term becomes:

Θ(n+1) = arg maxΘ

∑

ω∈Ω

∫

f1:Kω

Kω∑

k=1

log p(fk, Yk|Θ, ω)q(ω, f1:Kω
).

Solving the integral for every component of the sum yields:

Θ(n+1) = arg maxΘ

∑

ω∈Ω

Kω∑

k=1

∫

fk

log p(fk, Yk|Θ, ω)q(ω, fk).

The above expression is our starting point for finding Θ(n+1).
As an example we show how to update the prior distribution of object hidden proper-
ties. The distribution was assumed normal p(f) = N (f |µ,R). Thus we find parameters
µ and R. Since log p(fk, Yk|Θ, ω) = log p(fk) + log p(Yk|fkΘ, ω) and p(Yk|fkΘ, ω) does not
depend on the sought µ and R; we maximize:

∑

ω∈Ω

Kω∑

k=1

∫

fk

log p(fk)q(ω, fk) =
∑

ω∈Ω

Kω∑

k=1

∫

fk

logN (fk|µ,R)q(ω, fk). (3.10)

In order to maximize (3.10) w.r.t µ we take the derivative w.r.t µ, set it to zero and solve
for µ:

µ(n+1) =

∑

ω∈Ω

∑Kω

k=1

∫

fk
fkq(ω, fk)

∑

ω∈ΩKωq(ω)
=

∑

ω∈Ω

∑Kω

k=1 µkq(ω)
∑

ω∈ΩKωq(ω)
,

where the joint pdf q(ω, fk) was expressed as a product: q(fk|ω)q(ω) (see the E step).
The posterior q(fk|ω) is a Normal pdf, with mean µk and covariance Rk. The integral
∫

fk
fkq(fk|ω) = µk is the expected value of this distribution (we have it from the E step).

Similarly one can find the R that maximizes (3.10):

R(n+1) =

∑

ω∈Ω

∑Kω

k=1

(

Rk + µkµ
>
k − µkµ

(n)> − µ(n)µ>
k + µ(n)µ(n)>

)

q(ω)
∑

ω∈ΩKωq(ω)
,

where µ(n) is the past estimate of parameter µ, Rk is the posterior covariance of q(fk|ω)
and µ> indicates transposition. Note, that the summation over ω is tractable because
our approximation replaces the full partition space Ω with a tractable subspace ΩT as
in (3.5). In a similar way we find the observation model parameters (per camera).
Finding updated parameters of a model for travel times (per camera pair) is slightly
more complicated since the assumed model is a truncated Gaussian distribution (there-
fore is non-Gaussian). We find the updated parameters (mean, covariance) as if the
model was Gaussian and next truncate the updated model. Although, not formally
exact, such an approach works well in practice (see also Pasula et al. (1999)).

52 SEQUENTIAL DATA ASSOCIATION

CHAPTER 4

A HYBRID GRAPHICAL MODEL FOR ONLINE
MULTICAMERA TRACKING

This chapter presents another approach for multi-object tracking with sparsely dis-
tributed cameras.1 In contrast to the previous chapter, we define a single graphical
model for all objects. For each object, the model embeds a hidden continuous state vari-
able and a hidden discrete label that uniquely identifies the object. The model provides
a joint probability distribution for observations, states and labels of all objects. Given
the model and the observations, we apply the assumed-density filtering algorithm to
compute marginal posterior distributions on labels, which resolve association ambigui-
ties. The presented approach facilitates a principled estimation of the number of objects
and various model parameters by Bayesian inference.

4.1 Introduction

As we have discussed in the previous chapter, visual surveillance in wide areas relies
on a network of sparsely distributed cameras. In this setup we are interested in tracking
various objects (like people) on the basis of their observations provided by the cameras.
Similarly as in the previous chapter, we focus on reidentification of an object when it
disappears, and later appears in the field of view of any camera.
Most of the existing approaches for this task, including the algorithm described in Chap-
ter 3, view reidentifiaction as a problem of partitioning a set of observations of objects
into subsets, such that each subset includes all observations of one object. This ap-
proach requires searching for an optimal partition in the space of possible partitions of
a given dataset. Most important algorithms from this family include: a method based
on MCMC sampling (Pasula et al., 1999), various exhaustive search methods (Huang
and Russell, 1998; Javed et al., 2003; Kettnaker and Zabih, 1999) or MHT-based meth-
ods (Collins et al., 2001; Zajdel and Kröse, 2005) (Zajdel and Kröse, 2003a) (see Chapter 3

1The material of this chapter has been submitted to Pattern Recognition Journal (Zajdel et al., Submit-
ted, 2005a). Parts have been published in (Zajdel et al., 2004) and (Zajdel et al., 2005b).

54 A MODEL FOR ONLINE MULTICAMERA TRACKING

for an overview). On one hand, all these methods are relatively simple to implement
since every candidate partition is explicitly evaluated according to some criterion (typ-
ically, by computing partition likelihood according to a probabilistic model). On the
other hand, except from some limited cases, finding good candidates in the space of
possible partitions is computationally intractable.
Intuitively, the method discussed in this chapter is an attempt to avoid explicit search
for the optimal partition. We assume that every object can be identified with a unique,
imaginary label. Since a camera cannot directly observe the label, it is considered as a
hidden random variable. We infer the labels from observations by computing approxi-
mate label probabilities and selecting the most likely label for every observation. In this
way we approximately identify objects without constructing partitions.
From a more formal viewpoint, the presented method is an instance of an approximate,
deterministic inference algorithm applied to a specific hybrid probabilistic model. The
model explicitly identifies objects with hidden discrete labels and treats observations as
noisy measurements of objects’ continuous hidden states. More specifically, we model
multiple objects by considering a mixture density, where each mixture component is
parametrized by the state of a different object. Since the number of objects is unknown,
the model allows new components with new observations, analogously to the “infinite”
mixture models (Rasmussen, 2000).
The above formulation allows us to associate observations with trajectories by Bayesian
inference. We compute posterior probability densities of labels and states given the
observations and find the most likely label for each observation. These densities, how-
ever, cannot be computed exactly and we approximate them using an assumed-density
filtering (ADF) algorithm. ADF replaces complicated probability densities with simpler
functions, while preserving the moments of the original density. Such an approach is
motivated by successful applications of ADF to many other hybrid probabilistic mod-
els (Murphy, 2002).
In the next section we present assumptions about our tracking environment and define
the probabilistic model. In Section 4.3 we describe an inference algorithm applied to the
model. In Section 4.4 the resulting tracking algorithm is demonstrated and quantita-
tively compared with the MCMC and MHT methods using real-world data. Sections 4.5
and 4.6 conclude the chapter.

4.2 Probabilistic Generative Model

As already mentioned, we focus on tracking objects as they move between sparsely
distributed cameras. In this chapter we are not interested in the problem of monitoring
an object within a single field of view. This step is considered as a “measurement”
that yields an observation of an object whenever the object passes the field of view of a
camera.

4.2 PROBABILISTIC GENERATIVE MODEL 55

Our tracking approach follows from an idea to describe objects with unique labels and
“guess” from observations of objects. We define a probabilistic relation between the
(unknown) label and the observation by introducing an intermediate unknown term,
called a hidden state of an object. For example, the actual color histogram of a person
could be considered as the hidden state, and the measured color histogram as an obser-
vation. The relation between labels, observations and states takes the form of a joint
probability distribution, which can be informally denoted as p(Obs, States,Labels) =
p(Obs|States,Labels)p(States,Labels), where the last expression is an assumed prior dis-
tribution for unknown states and labels. We define this distribution using the formalism
of Bayesian networks (generative models). Given the model, we compute posterior dis-
tribution

p(Labels|Obs) ∝
∫

States
p(Obs|States,Labels)p(States,Labels), (4.1)

and find the most likely labels. In this way associate observations with objects. In
the rest of this section we first define a model for a single observation, then the prior
density, and finally a model for a sequence of observations. The integration problem
is an instance of Bayesian inference task. In Section 4.3 we will apply an established
inference technique — the assumed-density filtering algorithm (ADF) — to compute
the posterior densities of interest.

4.2.1 Model for a single observation

We denote an observation (a measurement vector) as yk = {ok, dk}, where ok denotes an
r-dimensional appearance vector and dk are spatio-temporal features. The appearance
vector ok is a collection of color features computed from various body parts of a person
(see Section 4.4). The spatio-temporal features are dk = {`k, tek, tqk, bek, bqk}, where `k is a
discrete camera location indicator, tek, bek (tqk, b

q
k) are the time stamp and frame border of

entering (or leaving) the scene. We process observations from all cameras centrally, and
treat k = 1, 2, . . . as a central index that preserves time-order of observations.

Appearance features Our model assumes that the observed, r-dimensional vector ok

is a noisy measurement of a hidden random variable xk. We call the variable xk a hidden
state of a person (or just a state). The state can be interpreted as a numerical represen-
tation of some constant, intrinsic property of an object. The noise typically arises from
factors like camera jitter or variations in object’s pose relative to the camera. For the
simplicity of modeling, we assume that the noise is Normal distributed. The state xk

is considered as the parameter vector xk = {mk,Vk} of the Normal probability density
that generated yk. Thus, the state xk = {mk,Vk} is a (r + r2)-dimensional random vec-
tor that is composed of two parts: mk (r-dimensional mean vector) and Vk (which is
constrained to represent a positive-definite r × r matrix). The hidden state xk and the

56 A MODEL FOR ONLINE MULTICAMERA TRACKING

camera/scene C
camera/scene A

camera/scene B

10:15am
camera A

10:26am
camera A

10:25am
camera B

10:42am
camera B

10:43am
camera C

10:42am
camera C

Figure 4.1: An example of the considered tracking problem, with three cameras: ‘A’, ‘B’ and ‘C’
that observe non-overlapping scenes. Every image depicts a complete pass of a person through a
camera viewing field. The goal of wide-area tracking is to reconstruct global trajectories between
the cameras/scenes.

observed vector ok are related as

ok|xk ∼ N (mk,Vk),

where mk and Vk are, respectively, the expected value and the covariance matrix of the
Normal probability density function (pdf).
The above definition of state x admits a natural interpretation. The mean vector m

describes the person-specific appearance features. The covariance V corresponds to
person-specific noise amplitude. For instance, the appearance of somebody dressed
uniformly is relatively independent of pose, so his/her noise level is low. In contrast, the
appearance of a person wearing non-uniform colors, is very sensitive to pose changes,
therefore the noise level will be higher. (Generally, the noise amplitude corresponds to
the sum of eigenvalues of V.)

Spatio-temporal features Another component of the observation yk are the spatio-
temporal features dk. In our, and many other approaches (Huang and Russell, 1998;
Javed et al., 2003; Kettnaker and Zabih, 1999; Pasula et al., 1999), these features are
assumed noise-free. A sequence of such features defines a path of a person between the
scenes. It is convenient to assume that each path feature d depends only the directly
preceding feature. To define a probabilistic model that generates dk we express this
dependency as a distribution

dk ∼ pδ(d|dprec(k)), (4.2)

where prec(k) is the index of the last observation assigned to the same person as obser-
vation k. If dk starts a new path, then it is generated by an initial distribution pδ0(d). In
fact, this model describes a path of any person as a first-order Markov chain.

4.2 PROBABILISTIC GENERATIVE MODEL 57

Intuitively, the distribution pδ reflects constraints on motion between scenes. For ex-
ample, consider Fig. 4.1 and assume that spatio-temporal features include only scene
indicators ` ∈ {‘A’, ‘B’, ‘C’}. In this case, pδ(`b|`a) gives probabilities of direct transition
from scene `a to scene `b. One might set pδ(‘A’|‘A’) = pδ(‘B’|‘A’) � pδ(‘C’|‘A’) because
it is unlikely to move from ‘A’ to ‘C’ without being observed at camera ’B’. In practice,
the model also reflects temporal constraints, like minimum travel time (see Section 4.4).

4.2.2 Prior density for states

The Bayesian approach requires a prior probability density π(x) for the hidden states. To
select a suitable density we recall that a state x represents the parameters (i.e., mean m

and covariance V) a Normal pdf. We follow the standard approach for Bayesian estima-
tion of these parameters and apply “Normal-Inverse Wishart” density as the prior (Gel-
man et al., 1995). The density, denoted as

φ(x|θ) = N (m|a, κV)IW(V|η,C) (4.3)

represents mean m using a Normal pdf, (where V is interpreted as a parameter), and
covariance V using an “Inverse Wishart” IW pdf. The Inverse Wishart is a multivariate
generalization of the standard Inverse Gamma density. The term θ = {a, κ, η,C} de-
notes all parameters of this family. If we fix matrix V, then the vector a is the expected
value of m, and κV is the covariance of m. Matrix C and scalar η define moments of the
Inverse Wishart density Press (1972), e.g., the expected value of V is C

η−r−1
. We denote

the prior as π(x) = φ(x|θ0), and in Section 4.4 define appropriate parameters θ0.

4.2.3 Model for a sequence of observations

Below we define a probabilistic model that embeds observations of all objects provided
by all cameras. The model is constructed by using the previously defined models — the
model for a single observation and the state prior — as basic building components. Our
approach for designing the model follows from the fact that in the considered scenario
objects are observed asynchronously, that is, observations from cameras typically arrive
one at a time. (Of course, it might happen that two or more observations will arrive at
the same time; in this case we can order the observations arbitrarily, keeping in mind
that the wall-clock timestamps are preserved anyway.)

Given the above intuition, we organize the model as a discrete-time series, where a
single “time” step corresponds to a single observation yk, and k = 0, 1, . . . is a time index,
augmented with a zeroth state. For every time step k, the model assumes variables
{yk, xk, hk}, where yk is the observation, xk is the state of the object represented by yk

and hk collectively denotes various variables for “bookkeeping” in the model. Since
we consider a single model for all objects, the bookkeeping variables are necessary for

58 A MODEL FOR ONLINE MULTICAMERA TRACKING

maintaining information about which observations and states correspond to the same
object. Naturally, these variables will include a label that indicates of the identity of the
object represented by yk. Figure 4.2 indicates the basic structure of the model. In the rest
of this chapter, we will refer to the variables {yk, xk, hk} at a single time step as a slice.
Importantly, the bookkeeping variables and the state variables are hidden (i.e., we do
not know object identities and states).

Bookkeeping variables The bookkeeping variables hk include the following terms
hk ≡ {sk, ck, z

(1)
k , . . . , z

(k)
k }. For every slice, we maintain a discrete label sk that denotes

the person represented by yk. The label takes values in a set sk ∈ {1, . . . , k}, because
within the first k observations there may be at most k different people. (Recall, that
a single slice k corresponds to an observation of a single person.) Additionally, the
model maintains a set of auxiliary variables: a counter ck, and pointers z(1)

k , . . . , z
(k)
k . The

counter, ck ∈ {1, . . . , k}, indicates the number of persons encountered up to slice k. The
pointer z(n)

k denotes the slice when the nth person was last observed before slice k, so
z

(n)
k ∈ {0, . . . , k − 1}, where “0” indicates that person has not yet been observed.

It is useful to realize that the auxiliary variables deterministically follow from the la-
bels, ck = max0<n≤k{sn}, z(i)

k = arg max0<n<k{sn|sn = i}. The role of these variables
is twofold. First, the auxiliary variables provide an instant reference to the informa-
tion that is encoded by a the complete sequence s1:k, and required by the conditional
model (4.2). Second, as we show below, the sequence h1:k can be described with a first-
order Markov model (in contrast to a sequence s1:k).

Model definition The model definition naturally follows from an analysis of an imag-
inary process that generates the observations. We assume that the observations are gen-
erated one-by-one, with the counter initialized as c0 = 0. Generating yk starts by setting
the label sk. We choose uniformly at random between one of the known ck−1 persons or
a new person who will receive the next available label;

sk ∼ Uniform(1, . . . , ck−1, ck−1 + 1). (4.4)

Given the label we deterministically update the counter and pointers,

ck = ck−1 + [sk > ck−1] (4.5)
z

(k)
k = 0 (4.6)
z

(n)
k = z

(n)
k−1[sk−1 6= n] + (k − 1)[sk−1 = n], (4.7)

where n = 1, . . . , k − 1 and [f] is an indicator function; [f] ≡ 1(0) iff the binary proposi-
tion f is true (false). If the label indicates a new person, sk = ck−1 + 1, then the counter
increases, as in (4.5). The kth person cannot be observed before slice k, so the pointer to

4.3 ONLINE TRACKING 59

his/her last observation z
(k)
k is set to zero. If the nth person was observed at previous

slice, then z(n)
k points to this slice, otherwise z(n)

k does not change, as in (4.7).
Next, we generate the state xk of the person indicated by sk. Recall that the state
xk = {mk,Vk} represents intrinsic object properties, which by our assumption does
not change. Therefore, we set xk = xj , where j = z

(sk)
k points to the slice when the per-

son was previously observed. If the person has not been yet observed, then we sample
the state from prior. Let j = z

(sk)
k ;

xk = xj[j > 0] + xnew[j = 0], (4.8)
xnew ∼ π(x). (4.9)

Given the state xk = {mk,Vk} (i.e. the parameters of a Normal density) and the pointer
to the last instance of the current object j = z

(sk)
k ; the model generates the current obser-

vation yk = {ok, dk};

ok ∼ N (mk,Vk) dk ∼ pδ(dk|dj), (4.10)

where the notation was slightly abused pδ(dk|d0) ≡ pδ0(dk).
In summary, equations (4.4)–(4.10) define a probabilistic time-series model that binds
a sequence of observed variables y1:k with hidden variables. The variables include a
sequence of states x1:k, a sequence of labels and auxiliary variables h1:k. We finalize
the description of the model by providing model’s graphical representation, which is a
basis of further developments.

4.2.4 Graphical representation

Dynamic Bayesian Networks (DBNs) provide a convenient framework for graphical
representation of probabilistic time-series models. A DBN represents a model as a di-
rected graph, where the variables become nodes, and conditional probability distri-
butions correspond to directed edges (Murphy, 2002) (see also Chapter 2). Figure 4.2
shows the graph representing our model as a series of slices, where each slice is a
column of nodes. The variables {hk, xk, yk} at slice k depend on previous slices. The
edges incoming to hk correspond to a conditional density p(hk|hk−1), which is defined by
equations (4.4)–(4.7). The edges incoming to xk correspond to a density p(xk|x1:k−1, hk)
which is defined by (4.8)–(4.9). Finally, the edges incoming to yk correspond to a density
p(yk|y1:k−1, xk, hk), which follows from (4.10).

4.3 Online tracking

In our probabilistic formulation solving the data association problem corresponds to
Bayesian inference on objects’ labels. As the Bayes rule (eq. (4.1)) informally indicates

60 A MODEL FOR ONLINE MULTICAMERA TRACKING

.

h1 . . . hk−1 hk .

x1 . . . xk−1 xk

y1 . . . yk−1 yk

.

Figure 4.2: A graphical representation of the generative model. The continuous variables are
shown as ovals, the discrete – as rectangles.

we are interested in computing posterior density on labels given observations. Depend-
ing on the tracking setup, this generic rule can be specialized in a number of ways. In
this chapter we consider densities of the form p(sk|y1:k), which correspond to online
tracking, where we find the label sk of the observation yk on the basis of the current data
y1:k. Alternatively, one might compute densities of the form p(sk|y1:k+τ) or p(sk|y1:T).
These choices correspond to variants of offline tracking, where the association of yk is
delayed until τ future observations arrive, or where one first collects a sequence of ob-
servations y1:T and later finds individual labels inferred from the complete sequence.

4.3.1 Probabilistic filtering

The sought density p(sk|y1:k) can be expressed as a marginal of the joint posterior den-
sity p(x1:k, h1:k|y1:k) on all hidden variables conditioned on the observations. Therefore,
we first apply the Bayes rule to find joint p(h1:k, x1:k|y1:k) ∝ p(y1:k|x1:k, h1:k)p(x1:k, h1:k)
(notice the correspondence with the informal rule (4.1)). Next, we integrate every hid-
den variable except for the label

p(sk|y1:k) ∝
∫

{x1:k}

∑

{h1:k}\sk

p(y1:k|x1:k, h1:k)p(h1:k, x1:k), (4.11)

Due to a large number of integrated variables, efficient integration in (4.11) requires a
special approach. We apply so called probabilistic filtering procedure, which recursively
computes marginal probability distribution in time-series models (Boyen and Koller,
1998; Lerner and Parr, 2001). The procedure is also interpreted as a dynamic program-
ming approach for exact solving large-scale integration problems (Murphy, 2002).
At the kth slice the filtering procedure maintains a so called filtering density. In the
case of our model the filtering density takes the form p(x1:k, hk|y1:k). Given the filtering

4.3 ONLINE TRACKING 61

density at the preceding slice k − 1, the filtering density at slice k is estimated in two
steps. First, we compute predictive density

pr(x1:k, hk|y1:k−1) = p(xk|x1:k−1, hk)
∑

hk−1

p(hk|hk−1)p(x1:k−1, hk−1|y1:k−1), (4.12)

which represents our knowledge about hidden variables that could be inferred from the
data y1:k−1. Here, the integration in (4.12) involves hidden variables hk−1 from just one
slice. Second, the new filtering density is computed by applying Bayes rule

p(x1:k, hk|y1:k) =
1

Lk

p(yk|xk, hk, y1:k−1)pr(x1:k, hk|y1:k−1) (4.13)

where Lk is a normalization constant. By integrating x1:k and summing over hk (except
for label sk) we can find the sought posterior density on labels.
Unfortunately, the exact computation of the filtering density is intractable. One can
show that by repeating the summation in (4.12) for consecutive slices k, the resulting
predictive density will become a weighted sum of O(k!) functions. In this way the
inevitable complexity of data association shows up in our Bayesian formulation.

4.3.2 Approximate filtering

The intractability of filtering is typical for models with hidden discrete and continu-
ous variables (Lerner and Parr, 2001) and there exist a number of approximation tech-
niques (Murphy, 2002). We follow the assumed-density filtering (ADF) approach for
it is suited for online implementations. ADF (Boyen and Koller, 1998; Minka, 2001b)
executes the standard filtering steps (4.12)-(4.13) and approximates the filtering density
with a simpler function from some assumed parametric family. At every step, the ap-
proximating function is chosen by minimizing a “distance” to the filtering density (4.13),
expressed as the Kullback-Leibler (KL) divergence.

4.3.3 Algorithm

We approximate the filtering density with a factorial family

p(x1:k, hk|y1:k) ≈ qk(sk, ck)
k∏

i=1

φ(xi|θi,k)qk(z
(i)
k), (4.14)

where qk denotes a probability table for appropriate discrete variable; and φ(xi|θi,k) rep-
resent densities on states with the same family as the prior (4.3).
We initialize the filtering density at slice k = 0 by setting q0(s0 = 0, c0 = 0) = 1. The
general algorithm for recomputing the filtering density is as follows. At slice k − 1 we

62 A MODEL FOR ONLINE MULTICAMERA TRACKING

maintain an approximation to the filtering density in the factorial family (4.14). After
executing (4.12)-(4.13), the expression (4.13) has to be approximated with the closest
function that can be expressed as a product. It is a standard result (Cover and Thomas,
1991), that for a given density p(a, b), the factorial density q(a, b) that minimizes the
KL-divergence KL(q||p) is a product q(a, b) =

∑

b p(a, b)
∑

a p(a, b) of marginal densities.
Therefore we find the individual terms in (4.14) by computing appropriate marginal
densities from (4.13).

The marginal filtering density on the counter and label evaluates to

qk(sk, ck) =
1

Lk

k−1∑

j=0

λjpr(sk, ck, z
(sk)
k = j) (4.15)

λj = pδ(dk|dj)

∫

x

p(ok|xk = x)φ(xj = x|θj,k−1), (4.16)

where θ0,k−1 ≡ θ0. Section 4.7 provides the detailed equations. For j ≥ 1, the term λj is
the likelihood of assigning yk to a trajectory that ends with yj ; and λ0 is the likelihood
of introducing a new person. Integrating the prior density φ(x|θ0) yields an almost
uniform, but low likelihood λ0 for a wide range of ok. Integrating the density φ(x|θj,k−1)
yields likelihood λj that is peaked around oj . Thus, despite that the model proposes a
new trajectory (state), the filtering density penalizes introduction of a new label unless
the appearance does not “match” with any of the past appearances.

The marginal filtering density on the ith auxiliary pointer is given by

qk(z
(i)
k) =

1

Lk

k∑

sk=1

k∑

ck=1

k−1∑

j=0

λjpr(sk, ck, z
(i)
k , z

(sk)
k = j). (4.17)

In Section 4.7 we provide an efficient way to compute the above summations.

The marginal filtering density on the current state xk evaluates to a weighted sum (i.e.,
a mixture) of Normal-InverseWishart functions φ(xk|θj)

p(xk|y1:k) =
k−1∑

j=0

wjφ(xk|θj) (4.18)

wj =
1

Lk

λj

k∑

sk=1

k∑

ck=1

pr(sk, ck, z
(sk)
k = j),

where the parameters θj = {κj, ηj, aj,Cj} are obtained from the parameters θj,k−1 of the

4.3 ONLINE TRACKING 63

filtering density at previous slice

κj = 1/(1 + 1/κj,k−1)

aj = (ok +
1

κj,k−1

aj,k−1)

ηj = 1 + ηj,k−1

Cj = Cj,k−1 +
1

1 + κj,k−1

(ok − aj,k−1)(ok − aj,k−1)
>.

The mixing weights wj can be efficiently computed together with (4.15). Note, that our
assumed family represents density on state xk as a single function φ(xk|θk,k). We find
the parameters θk,k by minimizing the KL-divergence to the mixture

θk,k = arg minθ KL
(

φ(xk|θ)
∣
∣
∣

∣
∣
∣

k−1∑

j=0

wjφ(xk|θj)
)

.

The minimizing θ is derived in Section 4.7.3, where the derivation hinges on the fact
that Normal-InverseWishart density belongs to so called exponential family.

The marginal filtering density p(xj|y1:k), j = 1, . . . , k − 1, evaluates to a mixture of two
Normal-InverseWishart functions. We replace this mixture with the closest function in
the assumed family φ(xj|θj,k) (see Section 4.7.3)

θj,k = arg minθ KL
(

φ(xj|θ)
∣
∣
∣

∣
∣
∣wjφ(xj|θj) + (1 − wj)φ(xj|θj,k−1)

)

.

The function φ(xj|θj) is the same as the jth function in (4.18), the term φ(xj|θj,k−1) is just
the previous marginal filtering density on the state xj .

4.3.4 Limiting memory and computational costs

Memory cost Potential limitations of the filtering procedure follow from memory re-
quirements. The assumed filtering family requires O(k2) parameters to store marginal
density qk(ck, sk), O(k2) parameters to represent k marginal densities on pointers qk(z

(i)
k),

and O(k) parameters θ1:k,k. Moreover, to evaluate (4.16) we need to preserve O(k)
spatio-temporal features d1:k.

We partially overcome the memory-size problems by setting a limit K on the number
of tracked persons. Appropriately chosen K will not seriously affect the tracker, since
typically the number of persons is much lower than the number of observations. In
this way, the density qk(ck, sk) requires only O(K2) parameters, and there are only K

marginal densities qk(z
(i)
k).

64 A MODEL FOR ONLINE MULTICAMERA TRACKING

To further restrict the memory demand we set a limit M on the number of parameters θ
and features d preserved in memory. After processing observation k, we store {dk, θk,k},
and if k > M we prune {dν , θν,k}, where

ν = arg min1≤j<k

K∑

ck=1

K∑

sk=1

pr(sk, ck, z
(sk)
k = j). (4.19)

Intuitively, this criterion selects a slice ν that is the least likely to be an end-point of
any trajectory. More formally, the sum (4.19) measures the total weight attributed to
the term λν in (4.15) where the marginal filtering density on labels is computed. After
pruning {dν , θν,k} we cannot compute λν , thus λν has to be weighted by zero during
future filtering steps. For this purpose, we set qk(z

(n)
k = ν) = 0 and re-normalize, for all

n = 1, . . . , K. In this way, there are at most M non-zero entries in the table of qk(z
(n)
k)

and representing these densities for n = 1, . . . , K requires a constant O(KM) memory.

Computational cost The computational cost of the filtering procedure is the sum of
costs necessary to update each factor in the assumed filtering density. Updating the
term q(xk) costs O(Mr3), where r is the dimensionality of appearance features. At slice
k, there are at most M densities q(xi), i < k which cost O(Mr3) to update. (The r3

component arises during inversion of r × r matrices in the “moment matching” for
Normal-Inverse Wishart densities; see Appendix 4.7.) Updating the term q(sk, ck) and
all p(z(i)

k) costs O(K3). Therefore the total cost is O(Mr3 + K3), that is linear in the
“memory size” parameter M , and cubic in the maximal number of tracked persons.

4.4 Experiments

In this section a series of experiments demonstrates the algorithm applied to tracking
people in an office building. The first experiment compares the tracking quality our
approach with methods based on MCMC and MHT approximations. The second test
involves tracking in difficult environments, where either appearance or spatio-temporal
measurements are very weak. These experiments are based on semi-manual data pre-
processing, analogously to the previous chapter. The final experiment demonstrates a
fully automated tracking system.

Data set Our data set includes 70 observations representing 5 persons who were ob-
served in an office building with 7 disjoint scenes. Figure 4.3(a) shows a map of camera
locations and their fields of view. Observations in this set are extracted from video
streams manually in order to construct a basis for comparison that is free from artifacts
introduced by automated video preprocessing. From a video fragment with a pass of
a person we selected a single frame. Next, color values of pixels within the person’s

4.4 EXPERIMENTS 65

camera
7camera

5

first floor plane

camera
6

camera
1

camera
2

camera
3

camera
4

ground floor plane

entrance

entrance

1

2

3 4

5 6

7

a) b)

Figure 4.3: (a) Building plan were the observations were taken. The gray areas show camera
viewing fields (scenes). (b) A graph showing movement constraints assumed by distributions
pδ and pδ0 . The numbered nodes indicate scenes, the edges indicate allowed scene-to-scene
transitions.

silhouette were transformed into a channel-normalized space to suppress the effects
introduced by the color of the illuminating light (Drew et al., 1998). The appearance
features oi have been defined as a 9-dimensional vector of color statistics, analogously
as described in Chapter 3 (see Fig. 3.7 for details). Unlike histograms, such appearance
vectors provide a compact summary of color content and its geometrical layout.

The parameters θ0 = {a0, κ0, η0,C0} of the prior (4.3) density were: a0 = 09×1 (9-
dimensional zero vector); κ0 = 100; the degrees of freedom η0 = 9 (data vector size),
C0 = 10−3I9×9, where I9×9 is a 9 × 9 identity matrix. Parameter C0 defines prior prefer-
ring covariances V with relatively small eigenvalues. To assure that the prior does not
significantly prefer any mean m we set κ0 to a large value.

As already mentioned, the densities pδ, pδ0 for spatio-temporal features reflect motion
constraints. We set pδ(dk|di) = p(`k, b

e
k|`i, bqi)p(tek|tqi , `k, `i), where the first factor gives

the probability of entering scene `k via border bek after quitting `i via border bqi . Given
the prior knowledge about the building, we set the allowed transitions as indicated in
Fig. 4.3(b). The second factor gives the probability of travel time between two scenes.
We used a simple density that only prevents zero or negative travel times. The density
pδ0(dk) = p(`k, b

e
k) gives the likelihood of first appearance in at scene `k and border bek. It

was only possible via left border of scene “1”.

Experiment 1: Quantitative evaluation In order to quantitatively compare various
methods we apply the evaluation criteria defined in the previous chapter. These cri-
teria follow from the view of multi-object tracking as an unsupervised classification
problem, where observations of the same object have to be assigned to a single clus-
ter (i.e., a trajectory). The estimated trajectories are evaluated against the ground-truth
trajectories. The first criterion (accuracy) indicates the percentage of observations in a

66 A MODEL FOR ONLINE MULTICAMERA TRACKING

reconstructed trajectory that indeed correspond to a single person. The second criterion
(recall) indicates the percentage of observations of a single person recovered in a single
reconstructed trajectory. See equations (3.6)–(3.7) of Chapter 3 for formal definitions.
Additionally, we report the number of reconstructed trajectories.
We compare the presented ADF-based tracker with three alternative methods for multi-
object tracking. The first compared tracker (Pasula et al., 1999) defines a probabilistic
model of trajectories and relies on similar assumptions as our model (Gaussian noise,
first-order Markov motion). The method estimates the association of observations with
trajectories using an MCMC sampling algorithm, where a single sample defines trajec-
tories for all objects. Originally, this method does not find the most likely association,
but some averaged traffic parameters. In order to compare with our method, we used
the trajectories defined by the most likely sample. The second compared method is an
MHT association algorithm applied to our probabilistic model. In this setup, a hypoth-
esis defines a sequence of labels. Computing the hypothesis likelihood is a tractable
problem since, given the labels, the models for trajectories are independent. The third
compared method is the algorithm presented in Chapter 3, indicated as MHT-EM. Note,
that the comparison with this algorithm is not fully fair, since the methods of chapter 3
tries to learn expected travel-time parameters (with EM procedure). The other methods
assume known and fixed minimum travel times.
Table 4.1 summarizes the evaluation results of the compared algorithms. The experi-
ment evaluated tracking quality as a function of: (i) memory depth M for our model
and the ADF approximation, (ii) hypotheses buffer size H for the MHT and (iii) sam-
ple size S for the MCMC. The evaluation scores for the MCMC are indicated as means
and standard deviations obtained from ten runs. The reported run-times correspond to
Matlab implementations executed on a 1 GHz PC. Figure 4.4 demonstrates a sample run
of the ADF-based tracker where M = 10 and K = 10. Columns presents subsequent
distributions on label qk(sk) (top) and counter qk(ck) (bottom), with probability given in
gray scale. An example of an estimated trajectory is shown in Fig. 4.5.
We observe that for sufficient memory depth M , our model together with ADF algo-
rithm found the correct number of persons and returned nearly exact trajectories. The
accuracy and recall of MCMC and MHT algorithms is much lower, although, these
methods improve with the increasing memory and time resources. Importantly, MCMC
sampling always indicated 6 or 7, and MHT 8 distinct persons. On the other hand,
clearly MHT is the fastest algorithm. The method of Chapter 3 (indicated as MHT-EM)
cannot compete with the other algorithms (neither in terms of speed nor in terms of
accuracy). This property follows from the fact that the MHT-EM algorithm does not
assume known travel-times parameters and tries to estimate these from the data. Alter-
native algorithms assume known minimum travel times.

Experiment 2: Difficult environments This series of experiments evaluates various
tracking methods in difficult environments where either appearance features or spatio-
temporal features provide weak cues for data association. We consider two scenarios.

4.4 EXPERIMENTS 67

10 20 30 40 50 60 70

2
4
6
8

10
Marginal Filtering Density on Labels qk(sk)

observations index k

pr
ob

ab
ilit

y
of

 la
be

l

10 20 30 40 50 60 70

2
4
6
8

10
Marginal Filtering Density on Counters qk(ck)

observations index k

pr
ob

ab
ilit

y
of

 c
ou

nt
er

Figure 4.4: Filtering densities during tracking with our model, with K = 10,M = 10. Columns
correspond to filtering steps; k = 1, ...70. (Top) Each column shows the filtering distribution on
label; qk(sk). The true labels are indicated as dots. (Bottom) Each column shows the filtering
distribution on counter; qk(ck).

travel time [s]:
2 5 6 6 5 3 4 7 7 4 3 1

0 42 8 39 20 59 8 75 15 84 23 113 17 57
21scene:

Figure 4.5: An example of a recovered trajectory. The images represent appearances at the in-
dicated scenes. The travel times correspond to differences between times of visiting subsequent
scenes. The trajectory includes such observations yi that have the estimated labels si = 5 (see
the top panel of Fig. 4.4).

68 A MODEL FOR ONLINE MULTICAMERA TRACKING

Table 4.1: Performance summary for the compared of methods. MHT-EM denotes the method
of Chapter 3.

parameter ADF
M accuracy recall objects time

[%] [%] [s]
05 65.5 84.3 5 07
10 95.6 94.3 5 13
20 95.6 94.3 5 22
30 95.6 94.3 5 30
40 95.6 94.3 5 37

parameter MHT
H accuracy recall objects time

[%] [%] [s]
05 74.4 55.7 8 02
10 69.7 52.9 8 04
20 77.3 58.6 8 08
30 86.1 70.0 8 11
40 85.1 70.0 8 15

parameter MHT-EM (chapter 3)
H accuracy recall objects time

[%] [%] [s]
1 48 55 5 54
5 77 70 5 258
10 78 79 5 515
20 76 79 5 1036

MCMC
S accuracy [%] recall [%] objects time [s]

102 74.4± 7.8 68.7± 7.8 6.6± 0.7 26± 0.1
103 79.0± 10.2 79.0± 5.6 6.4± 0.7 209± 1.2
104 89.7± 4.5 84.7± 6.1 6.8± 0.8 2045± 13.2

In the first scenario we simulate weak or unknown motion constraints, which under-
mine the discriminative power of the spatio-temporal features. Recall, that the camera-
to-camera motion is represented by spatio-temporal features dn, and the motion con-
straints are embedded in the probabilistic model for a sequence of such features at-
tributed to some person. The model takes the form of a first-order Markov chain, and
includes a prior distribution p0(d1) and a set of conditional distributions pδ(dn|dn−1),
where dn and dn−1 are two subsequent features associated with the same person. Appro-

4.4 EXPERIMENTS 69

Table 4.2: Tracking in environments with varying difficulty level (indicted by the entropy value,
see text for explanation). The parameters were set as follows: M = 10 (for ADF), H = 20 (for
MHT), S = 104 (for MCMC).

accuracy [%] recall [%] objects
entropy ADF MHT MCMC ADF MHT MCMC ADF MHT MCMC

1.17a 96 77 90 94 59 85 5 8 7
1.21a 65 81 90 83 33 84 4 18 7
1.43a 72 83 91 83 30 78 5 21 8
2.23a 66 79 90 79 24 60 4 21 13
2.77b 61 71 77 60 20 46 5 24 13
1.17c 59 71 70 63 68 70 5 5 6

a Tracking based on spatio-temporal and appearance features.
b Tracking based exclusively on appearance features. The entropy value corresponds to uniform
distributions pδ and p0.
c Tracking based exclusively on spatio-temporal features.

priate low-entropy (or “peaked”) distributions will decrease the likelihood of camera-
to-camera paths that violate motion constraints specific to some environment. High-
entropy (or “flat”) distributions effectively remove motion constraints since neither hy-
pothetical path will be penalized significantly. In the limit, uniform distributions simu-
late tracking based exclusively on appearance features. As a consequence, various mo-
tion constraints can be simulated by various distributions p0 and pδ, and the “strength”
of the constraints can be measured in terms of average entropy of these distributions.

In the second scenario we consider tracking based exclusively on spatio-temporal fea-
tures without using the appearance features. This case simulates environments with
strong or multimodal appearance noise (e.g. due to inaccurate video preprocessing).

Table 4.2 summarizes qualitative results of the experiment. Figure 4.6 presents the den-
sity on labels obtained when filtering used only: (top) the appearance features, and
(bottom) the spatio-temporal features. We observe (three rightmost columns of Tab. 4.2)
that the ADF-based tracker is much better at estimating the correct number of objects
than the alternative approaches. This property is reflected by high recall scores. The
other approaches achieve higher accuracy scores at the cost of introducing superfluous
trajectories.

Experiment 3: Kernel parameters Below we compare the Gaussian kernels inferred
from the appearance features in two cases; (i) when the association was based exclu-
sively on appearance features, and (ii) when the association was based on appearance
and spatio-temporal features.

After processing 70 observations our algorithm maintains M = 10 Gaussian kernels
representing the latent color features (M is the assumed practical limit; in principle we

70 A MODEL FOR ONLINE MULTICAMERA TRACKING

10 20 30 40 50 60 70

2
4
6
8

10
Results of tracking with only appearance features - Marginal Filtering Density on Labels q k(sk)

observations index k

pr
ob

ab
ilit

y
of

 la
be

l

10 20 30 40 50 60 70

2
4
6
8

10
Results of tracking with only dynamical features - Marginal Filtering Density on Labels q k(sk)

observations index k

pr
ob

ab
ilit

y
of

 la
be

l

Figure 4.6: (Top) Tracking based only on the appearance features. (Bottom) Tracking based only
on the spatio-temporal features. In both cases, columns show the density qk(sk), for k = 1, ...70
obtained by probabilistic filtering in our model. The true labels are indicated as dots.

should have 70 kernels). Every kernel xj , j = 1, . . . ,M , is represented by a posterior
distribution φ(xj|θj,70) conditioned on all 70 observations, because filtering updates dis-
tributions on all kernels in memory. Given the parameters θj,70 we find the expected
mean E [mj] and the expected covariance E [Vj] of the jth kernel; E [mj] = aj,70 and
E [Vj] = Cj,70/(ηj,70−d−1). The kernels and the appearance features have d = 9 dimen-
sions. For visualization, we find a 2-dimensional PCA projection of the original data
and apply it to the expected kernels. Figure 4.7 presents the projections of the observed
appearance features (as points) and the expected kernels (as ellipses). Note, that both
plots present 10 kernels; some kernels overlap in the figure.

Figure 4.7 shows that the appearance features alone do not distinguish between the
persons. In the right panel of the figure, we observe that the ten kernels inferred using
only appearance similarities form only two clusters. This corresponds to the top plot in
Fig. 4.6, where the estimated labels of observations 45–70 fall into two groups. In the
left panel of Fig. 4.7 we see that when the spatio-temporal and appearance features sup-
ported tracking, then the estimated kernels closely match to distributions of appearance
features for each of the tracked persons.

Experiment 4: Automated tracking demonstration Below we present a wide-area
tracking experiment with automated detection of objects and feature extraction. Our
object detection relies on static background scene at each camera (Zivkovic, 2004). To

4.5 DISCUSSION 71

0 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PCA dimension 1

PC
A

di
m

en
sio

n
2

person 1
person 2
person 3
person 4
person 5

0 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PCA dimension 1

PC
A

di
m

en
sio

n
2

person 1
person 2
person 3
person 4
person 5

Figure 4.7: The expected kernels (expected mean and expected covariance) shown as a 2D PCA
projection of the original 9D feature space. (Left) The kernels obtained when tracking was based
on spatio-temporal and appearance features. (Right) The kernels obtained when tracking was
based only on appearance features.

eliminate false detections (e.g. resulting from shadows) we limit the object’s minimal
valid bounding box to 30 × 30 pixels (in 240 × 320 frames). We also eliminate spurious
appearances that are shorter than 0.5 s (at 30 fps).

In the experiment we track five persons observed at three disjoint scenes. An obser-
vation is reported after a person has been visible for 2 s in a scene. The appearance
vectors and the prior state density are the same as previously. The model of motion
constrains allows a trajectory to start at any scene; and allows direct movements be-
tween all scenes. The only constraint is that a person cannot be observed at different
scenes at the same time.

Figure 4.8 shows selected frames from the three simultaneous video streams. Bounding
boxes indicate detected objects, and numerical labels — estimated identities. Through
the sequence, the person indicated as “1” is clearly distinguished from the others, prob-
ably due to distinctive appearance. The persons “2” and “4” are difficult to separate
from each other, and their identities were confused. The overall accuracy was 91%, re-
call 80%, and the number of persons was correctly estimated, despite relatively weak
motion constraints.

4.5 Discussion

The developed approach for wide-area tracking bears relationship with other multi-
object tracking methods and many machine learning techniques. In this section we dis-
cuss these relationships, present ideas to improve our tracker and point other tracking
scenarios where the technique is potentially applicable.

72 A MODEL FOR ONLINE MULTICAMERA TRACKING

Figure 4.8: Frames selected from simultaneous video streams of three cameras involved in the
experiment. The length of each stream was 2000 frames (at 30 fps). Detected object are shown
with bounding boxes. The numerical labels indicate estimated associations.

4.5 DISCUSSION 73

Our multi-object tracking technique resembles joint probabilistic data association filters
(JPDAFs) (Bar-Shalom and Li, 1993). For example, JPDAFs are applied for multiple air-
craft tracking based on radar readings, which are considered as noisy measurements of a
hidden aircraft position. Similarly to our algorithm, JPDAFs deal with association ambi-
guity by approximating densities of states with an assumed parametric family (usually
Gaussian). Typically, JPDAFs rely on smooth motion and dense measurements of the
tracked objects. In contrast to our method, JPDAFs estimate the number of trajectories
using application-specific heuristics (e.g., by detecting motion discontinuities).

One explanation to the success of JPDAF and ADF algorithms for multi-object tracking
follows from a theoretical error-bound property. Approximating the filtering density
with a product of simpler marginal densities introduces an error at every time step.
In time-series models with exclusively discrete variables this error is bounded (Boyen
and Koller, 1998). Although such a result is not available for models with continuous
variables, in our experiments ADF outperforms the heuristic MHT algorithm.

To a certain extent, our model resembles a Dirichlet process (DP) mixture model (Anto-
niak, 1974). In machine learning applications, DP models are applied for estimation of
mixture distributions with an unknown number of components. For every data vector,
a DP model introduces a new mixture component that is either sampled from a prior or
equal to one of the other components. Our model, for every observation introduces a
new state that is either sampled from the prior π(x) or equal to some past state.

The relationship with Dirichlet processes becomes important when we realize that a
difficult aspect of wide-area tracking is estimation of the number objects. In machine
learning, this task resembles problems, where one has to select the number of model
parameters necessary to explain the data. Recently, Dirichlet processes have been ap-
plied for estimation of infinite models (Beal et al., 2002; Rasmussen, 2000), i.e., models
that do not constrain the number of parameters. Overfitting in such models is avoided
due to Bayesian treatment of parameters (in our case: states), which are considered as
random variables and integrated.

Analogously to many tracking or machine learning problems, we assumed Gaussian
noise in the measured quantities. We considered mean and noise covariance jointly as a
hidden state, represented with a Normal-InverseWishart density. In many applications
the covariance is not a part of the state, but rather a parameter. Consequently, one needs
training data to estimate this parameter, e.g., according to the maximum-likelihood cri-
terion with EM algorithm as in (Pasula et al., 1999; Zajdel and Kröse, 2003b). Incorpo-
rating the covariance as a part of the state allows us to estimate it by Bayesian inference
and avoids “training” of the model.

A potential extension of our algorithm is to delay estimation the label of the current
observation until a limited number of future observations become available. This ex-
tension fits well to our probabilistic framework since ADF is an instance of a more
general inference scheme – Expectation Propagation(EP) (Minka, 2001b). EP iteratively
improves approximation of filtering densities by incorporating, so called, smoothing

74 A MODEL FOR ONLINE MULTICAMERA TRACKING

densities. EP has been already shown successful for fixed-lag smoothing in time-series
models (Qi and Minka, 2003) and infinite mixture models (Minka and Ghahramani,
2003). Finally, the developed technique can be also applied to different problems in-
volving data association, like tracking multiple persons from a mobile robot equipped
with a single camera (Zajdel et al., 2005b).

4.6 Conclusions

We developed a technique for tracking multiple objects with sparsely distributed cam-
eras, where the primary problem is the association of observations with trajectories
when objects enter and leave disjoint fields of view. Our technique relies on a prob-
abilistic model that assumes an unique, but hidden label for every tracked object. The
model defines a probabilistic relation between the observations of objects an their la-
bels. Given such a model and a sequence of observations, we approximate the posterior
probability densities of labels, and find the most likely label for each observed object.

Our algorithm applies a principled and unified framework – Bayesian inference – for
approximating solution to several intractable problems arising in multi-object tracking.
First, the Bayesian assumed-density filtering (ADF) algorithm solves data association
by approximating probability density on hidden object labels. Second, the algorithm
estimates the appropriate number of trajectories by combining ideas inspired by ma-
chine learning models (Dirichlet processes) with Bayesian inference. Finally, we have
shown how the parameters – mean and covariance – of popular Gaussian noise models
can be estimated by Bayesian inference under data association ambiguity.

We have presented real-world experiments, where the deterministic ADF approxima-
tion performed superior to the multiple-hypothesis tracker (MHT) and a tracker based
on stochastic inference (MCMC). The developed technique offers a practical trade-off
between the speed of MHT-based methods and the potential accuracy of trackers em-
ploying stochastic approximations.

4.7 Appendix

This section provides derivations of the marginal filtering densities from the joint filter-
ing density (4.13). We use the following abbreviations: z(1:k)

k ≡ {z(1)
k , . . . , z

(k)
k }; z(¬i)

k ≡
z

(1:k)
k \ z(i)

k ; and pr(x1:k, hk) ≡ p(x1:k, hk|y1:k−1).

4.7 APPENDIX 75

4.7.1 Computing marginals of the filtering density

We begin with the marginal on label and counter qk(sk, ck). From (4.13):

qk(sk, ck) =
1

Lk

∑

z
(1:k)
k

∫

x1:k

p(yk|hk, xk, y1:k−1)pr(x1:k, hk)

The likelihood simplifies as p(yk|hk, xk, y1:k−1) = pδ(dk|dj)p(ok|xk) after (4.10), where j =

z
(sk)
k . Therefore, the multiple integration reduces immediately to

qk(sk, ck) =
1

Lk

k−1∑

j=0

pδ(dk|dj)

∫

xk

p(yk|xk)pr(xk, sk, ck, z
(sk)
k = j).

Using (4.8)–(4.9) we can simplify the predictive density

pr(xk, sk, ck, z
(sk)
k = j) = φ(xk|θj,k−1)pr(sk, ck, z

(sk)
k = j),

where θ0,k−1 ≡ θ0. When j = 0 then the state is sampled from π(xk) = φ(xk|θ0), other-
wise xk = xj , where xj is a past state distributed as qk−1(xj) = φ(xj|θj,k−1). With these
simplifications, we have

qk(sk, ck) =
1

Lk

k−1∑

j=0

λjpr(sk, ck, z
(sk)
k = j)

λj = pδ(dk|dj)

∫

xk

p(ok|xk)φ(xk|θj,k−1)

The Normal pdf p(ok|xk) = N (ok|mk,Vk) is conjugate to the Normal-Inverse Wishart
φ(xk|θj,k−1), and the above integral evaluates to a standard result (Gelman et al., 1995):

λj = pδ(dk|dj)T (ok|aj,k−1, (1 + κj,k−1)Cj,k−1, 1 + ηj,k−1),

where T denotes a multivariate T-distribution. Finally, we recover Lk by finding an un-
normalized distribution and then applying the normalization constraint. The predictive
density pr(sk, ck, z

(sk)
k) is discussed in Section 4.7.2.

Below we find marginals on auxiliary pointers qk(z
(i)
k), only for i = 1, . . . , k− 1, because

the pointer z(k)
k is deterministic (see (4.6)). Begin with (4.13)

qk(z
(i)
k) =

1

Lk

∑

sk,ck

∑

z
(¬i)
k

∫

x1:k

p(yk|hk, xk)pr(x1:k, hk).

As in the previous case, all pointers other than z
(i)
k and z

(sk)
k marginalize to unity. For

a fixed z
(sk)
k = j, the integral over xk evaluates to λj , and all other states integrate to

76 A MODEL FOR ONLINE MULTICAMERA TRACKING

one. We split the summation over sk into two cases: (1) sk = i; (2) sk 6= i. The term n,
0 ≤ n ≤ k − 1, enumerates the domain of z(i)

k .

qk(z
(i)
k = n) =

1

Lk

λn

∑

ck

pr(sk = i, ck, z
(sk)
k = n) + βi(n),

where βi(n) denotes the sum over sk 6= i:

βi(n) =
1

Lk

∑

sk 6=i,ck

k−1∑

j=0

λjpr(sk, ck, z
(i)
k = n, z

(sk)
k = j).

We first calculate a special case βi(k − 1):

βi(k − 1) =
1

Lk

∑

sk 6=i,ck

k−1∑

j=0

λjpr(sk, ck, z
(i)
k = k − 1, z

(sk)
k = j),

where the predictive density is very simple (see 4.7.2). Since the normalization term Lk

is already available from the previous marginal, we exploit the normalization constraint
to efficiently find βi(n), 0 ≤ n ≤ k − 2. We obtain the following relation

βi(n) = qk−1(z
(i)
k−1 = n)

(

1 −
∑

ck

qk(sk = i, ck) − βi(k − 1)
)

,

The second factor does not depend on n, hence we compute it only once.

4.7.2 Predictive density

We have shown, that our filtering algorithm requires only two marginals from the pre-
dictive density: pr(sk, ck, z

(sk)
k) and pr(sk, ck, z

(i)
k = k − 1, z

(sk)
k). These quantities are

straightforward to compute because the discrete variables evolve as a Hidden Markov
Model (see (4.4)–(4.7)). Moreover, the computation is efficient since z(i)

k , ck are determin-
istic given sk and the previous-slice variables.

4.7.3 Moment matching in Normal Inverse-Wishart family

The Normal-Inverse Wishart density is a member of exponential family of densities.
Therefore we can conveniently minimize KL

(

φ(x|θ)
∣
∣
∣

∣
∣
∣
∑N

i=1wiφ(x|θi)
)

w.r.t θ by setting
the moments of φ(x|θ) equal to those of the mixture (Cover and Thomas, 1991) and

4.7 APPENDIX 77

solving for θ = {κ, η, a,C} (Gelman et al., 1995)

a =

(
N∑

i=1

wiηiaiC
−1
i

)(
N∑

i=1

wiηiC
−1
i

)−1

,

κ =
N∑

i=1

wiκi,

C = η
N∑

i=1

wiηiC
−1
i .

The analytical solution for η is difficult, therefore we use η from the most likely mixture
component: η ≈ ηn, where n = argmaxiwi.

78 A MODEL FOR ONLINE MULTICAMERA TRACKING

CHAPTER 5

A MODEL OF SPATIAL PIXEL CORRELATIONS FOR
BACKGROUND SEGMENTATION

This chapter is focused on the problem of assigning to every pixel of an image a binary
label that indicates whether the pixel represents a static background or a foreground
object in motion.1 Popular approaches for this problem consider the labels as random
variables with an appropriate prior distribution, which ensures that the labeled pixels
form spatially coherent regions. Typically, the prior takes the form of a Markov Random
Field (MRF) model that, due to difficulties with learning, assumes only generic short-
range coupling of pixel labels. This chapter presents an alternative model that takes
spatial correlations into account in a more flexible way. The model can be easily learned
from exemplary data to incorporate correlations characteristic for foreground objects
in a given scene (e.g. human silhouettes). For inference in the model we derive an
approximate, but computationally efficient Expectation-Propagation algorithm.

5.1 Introduction

Detecting moving objects in static visual scenes has emerged as an important prepro-
cessing step for a variety of computer-vision applications, like tracking (Javed et al.,
2003; Toyama and Blake, 2001; Zajdel et al., 2004), surveillance (Haritaoglu et al., 2000;
Zhao and Nevita, 2004) or vision-based control (Wren et al., 1997). In this problem,
known as background segmentation, one aims to assign pixels of video frames either to
a background segment that represents the static scene or to a foreground segment that
represents the objects in motion relative to the scene.
Background segmentation relies on two types of cues: temporal cues following from the
assumption of a static background scene and spatial cues following from an additional
assumption that in typical scenes the pixels assigned to the foreground segment form
spatially coherent groups.

1The material of this chapter has been submitted for publication in IEEE Transactions on Pattern Analysis
and Machine Intelligence (Zajdel et al., Submitted, 2005b).

80 A MODEL FOR BACKGROUND SEGMENTATION

Intuitively, the assumption of a static background scene allows to detect individual fore-
ground pixels as short-term deviations from a long-term stationary image that repre-
sents the scene. More formally, probabilistic approaches (Friedman and Russell, 1997;
Kato et al., 2002; Stauffer and Grimson, 1999) attempt to estimate a probability den-
sity for the background color of every pixel and detect foreground pixels as outliers
from this density. In practice (see Fig. 5.1) segmentation based on temporal cues only is
prone to errors due to factors like: variations in the background scene (e.g. motion of
trees due to wind), illumination changes, camera jitter or cases when the appearance of
a foreground object coincides with the background.

A common approach for introducing spatial cues is by “postprocessing” the pixels de-
tected earlier as outliers from the background density. The postprocessing can either
enforce only local pixel connectivity (e.g., morphological operators (Stauffer and Grim-
son, 1999)) or/and apply specialized models depending on the objects of interest (e.g.,
humans). The models take the form of elliptical blobs (Wren et al., 1997; Zhao and
Nevita, 2004), splines (Blake et al., 1995) templates (Gavrila and Giebel, 2001; Lim and
Kriegman, 2004).

Alternatively, one can consider the spatial and temporal cues jointly. Here, probabilistic
formulations assume a prior distribution for class of each pixel and define such priors
that prefer segmentations with correlated pixels. A natural choice is a Markov Random
Field (MRF), where a positive coupling is assumed between pixels within an explicitly
defined neighborhood (Freeman et al., 2000; Rittscher et al., 2000; Wang et al., 2002).
Other models found in the literature include epitomes (Jojic et al., 2003) or fixed-basis
transform (Sullivan et al., 2001).

An important limitation of the existing approaches for spatial correlations is the inabil-
ity to automatically learn mid- and long-range correlations typical for a given scene
and a camera angle. On one hand, approaches that construct custom 2D object models
(e.g., spatially arranged collections of blobs or ribbons) are not immediately applicable
to arbitrary class of objects. On the other hand, typical applications of MRFs (and mor-
phological operators) consider only generic short-range coupling within a pixel neigh-
borhood. In case of long-range coupling, inference and especially learning in MRFs tend
to be difficult (Geman and Geman, 1984).

In this chapter we describe a probabilistic model that facilitates easy learning of spatial
correlations between pixels at an arbitrary range. The learning procedure relies ex-
clusively on a set of exemplary images that exhibit correlations characteristic for some
scene, e.g. corresponding to human silhouettes. In this way the model collects infor-
mation about typical object shapes. Such specific information allows handling difficult
segmentation problems, such as cases where the appearance of a foreground object par-
tially coincides with the background scene. (See Fig. 5.1 for an example scene, where
the person’s torso coincides with the brick pattern of the background wall.)

The idea underlying our approach is to assume a set of fictitious continuous variables
which can be easily correlated by imposing a Gaussian distribution. By quantizing the

5.1 MODELING PIXEL CORRELATIONS 81

Figure 5.1: (Left) A frame from video sequence that presents a static scene and a person in
motion. (Right) Results of segmentation based only on temporal cues for individual pixels. Note
incorrect segmentation of image regions (torso) where the color of the background coincides
with the object.

correlated continuous variables we obtain a set of correlated binary foreground/back-
ground pixel labels. Similar models have been proposed for unsupervised learning of
static patterns (Lee and Sompolinsky, 1998), visualization (Tipping, 1998), and for clas-
sification (Williams and Barber, 1998). Such an approach allows us to easily learn corre-
lations of the continuous variables by estimating a Gaussian distribution for these vari-
ables, e.g. with the EM algorithm (Neal and Hinton, 1998). For inference we derive an
expectation-propagation (Minka, 2001b) algorithm that considers the continuous vari-
ables as hidden random variables. The algorithm works in linear time in the number of
pixels, regardless of the correlation structure between pixels.

The chapter is structured as follows. In Section 5.2 we briefly review the probabilistic
framework for modeling pixel correlations. In Section 5.3 we define our model, and
describe the learning and inference algorithms. In Section 5.4 we experimentally vali-
date the proposed model and compare it with MRF models. The experiments demon-
strate learning, segmentation and a simple tracking application based on the model.
Section 5.5 concludes the chapter.

5.2 Probabilistic modeling of pixel correlations

In this section we review the idea of probabilistic models for reasoning about pixel cor-
relations in segmentation problems. The concept is illustrated with an MRF model.

For every pixel we define a binary indicator rk ∈ {−1, 1}, where k = (i, j) with i and
j corresponding to vertical and horizontal spatial indices. The pixels with rk = 1 will
belong to the foreground, and the pixels with rk = −1 will belong to the background.
To simplify the notation we treat k as a linear index and let k = 1 . . . K where K is the
number of pixels in an image. We use a term mask r = r1:K to denote a collection of
indicators.

82 A MODEL FOR BACKGROUND SEGMENTATION

5.2.1 Probabilistic framework

In a probabilistic formulation we consider the sought segmentation of an image (i.e. a
sought mask) as a hidden random vector r. Our aim is to estimate this mask given an
observed image y. The estimation is based on a joint probability distribution p(r,y) =
p(r)p(y|r), where the prior model p(r) assigns high probabilities to such masks r that
exhibit desired spatial correlations between pixels, and observation model p(y|r) defines
a probabilistic dependency between the measured and the hidden vectors.

The process of estimating the hidden mask corresponds to probabilistic inference. Given
an image y we compute the posterior probability distribution of the hidden mask

p(r|y) = p(y)−1p(y, r) (5.1)
p(y) =

∑

r

p(y, r) (5.2)

and select appropriate mask according to p(r|y). One possibility is to select the MAP
(maximum a-posteriori) mask r = arg maxr̄ p(r = r̄|y). An alternative option is to select
so called max-marginal mask, where the individual indicators rk are obtained as rk =
arg maxr̄k

p(rk = r̄k|y), where p(rk|y) denotes a marginal posterior distribution.

Typically, the models p(r) and p(y|r) depend on a set of (unknown) parameters. Prob-
abilistic learning is the process of finding the parameters on the basis of training data.
Learning algorithms (Neal and Hinton, 1998) adjust these models by maximizing the
evidence term p(y) as given by (5.2). For many types of models the exact maximiza-
tion is intractable and one typically resorts to the Expectation Maximization (EM) algo-
rithm (Neal and Hinton, 1998).

In this chapter our focus lies in the prior model p(r), which can be used with various
types of observed images y and observation models p(y|r). Specifically, one can con-
sider the following cases.

• The vector y can be a binary image (see Fig. 5.1) where individual foreground pix-
els are detected as outliers from the static background image. This is the primary
type of observed images considered in this chapter. This choice simplifies the
derivation of the learning procedure. Moreover, the resulting algorithm is already
practical since there exist many fast techniques for segmentation of individual pix-
els (e.g. (Stauffer and Grimson, 1999; Zivkovic, 2004)).

• Sometimes we have access to an empirical distribution q(y) =
∏K

k=1 q(yk), where
q(yk = 1) ∈ 〈0, 1〉 indicates the probability that the kth pixel is assigned to the
foreground. Such distributions arise mainly as posteriors in probabilistic models
for segmentation of individual pixels (Friedman and Russell, 1997). Rather than
thresholding q(y) to obtain a “crisp” input y, it is better to preserve the uncertainty
in the labels, and consider q(y) as the input. As we show in Section 5.6.3, the EP
framework handles this case with little extra implementation effort.

5.2 MODELING PIXEL CORRELATIONS 83

MRF 4 Neighbours MRF 8 Neighbours

MRF 16 Neighbours

Figure 5.2: Three MRF implementations tested in the chapter. In the graphs, a circular node
represents binary mask of a single pixel, and edges indicate neighbor pixels. The graphs show
different correlation structures, where a pixel is related to its 4, 8, or 16 neighboring pixels. Note,
that in general MRFs express correlations in terms of maximal cliques (see Chapter 2). Therefore
the above graphs correspond to slightly constrained MRFs.

• The vector y can also be a color image, where every pixel is represented as a point
in a suitable color space. In Section 5.3 we briefly mention the corresponding
observation model. A detailed approach for this type of observed images is dis-
cussed in (Cemgil et al., 2005).

5.2.2 Markov Random Fields

Markov random field models (e.g. (Freeman et al., 2000; Geman and Geman, 1984))
provide a particular way to define the probability distributions p(r) and p(y|r), which
take the form

p(y|r) =
1

Zy

K∏

k=1

ψk(rk, yk) p(r) =
1

Zr

K∏

k=1

∏

n∈V (k)

φkn(rk, rn),

where V (k) is a set of neighbors of the kth pixel, and Zy, Zr are normalization constants
(in practice for inference these do not have to be known). The functions φkn determine
the strength of coupling between the adjacent pixels, and ψk specifies the noise in the
observed pixels. One can control the mask correlations by choosing appropriate neigh-
borhood structures and terms φkn.
Figure 5.2 presents three MRF models with different neighborhood sets that include 4,
8 or 16 neighbors per pixel. An example choice of the functions ψk, φkn is

ψk(rk = yk) = α φkn(rk = rn) = β (5.3)
ψk(rk 6= yk) = 1 − α φkn(rk 6= rn) = 1 − β, (5.4)

where α, β ∈ (0, 1) are parameters. Increasing α reduces the chance that the hidden and
observed labels will differ. Increasing β makes the pixels in the mask r more correlated.
Later in the chapter we demonstrate mask reconstruction based on these models.

84 A MODEL FOR BACKGROUND SEGMENTATION

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(a) (b) (c) (d)

Figure 5.3: (a,b) Each plate represents a vector x drawn from a Gaussian N (0,S), where the
vector elements have been arranged on a 16×16 grid. (c,d) Binary masks y obtained by clipping
the corresponding vectors x. We have parametrized S = (sk1,k2) as sk1,k2 = θ2 exp(− |k1−k2|2

θ2
1

) +

θ3δ(k1 − k2) where the coupling between pixels (k1, k2) depends on their weighted Euclidean
distance, and δ() denotes the Dirac-delta function. The weights were θ2 = 5, θ3 = 0.01, (a)
θ1 = 2, and (c) θ1 = 0.5.

Despite the apparent simplicity, in the MRF framework exact inference of the hidden
mask r is usually intractable (Geman and Geman, 1984). However, in many cases pos-
terior distributions p(rk|y) can be approximated using the Loopy-Belief Propagation
(LBP) algorithm — a popular message-passing method for inference in intractable prob-
abilistic models (Yedidia et al., 2001). More importantly, learning of the prior model p(r)
is difficult since it entails estimating an optimal neighbor set V (k) for every pixel k (i.e.,
learning corresponds to optimization over the space of graph topologies, see Fig. 5.2).
Additionally, learning requires estimation of the normalization terms, in order to avoid
degenerate solutions. Therefore usually MRFs assume a generic, predefined neighbor-
hood structures, which involve only short-range couplings of pixels.

5.3 Clipped factor analysis model

In this section we present a Clipped Factor Analysis (CFA) model as an alternative way
to express the prior density p(r) and provide two examples of observation models p(y|r)
that can be conveniently used with the prior.

Our approach follows from an observation that signs of correlated Gaussian variables
are also correlated. Therefore we introduce a randomK-dimensional real-valued vector
x that is a-priori Gaussian distributed, and obtain binary masks y by taking the sign of
the corresponding entries in x; yk = sgn(xk). Accordingly, correlations of the continuous
variables introduce couplings between binary indicators. We can control these correla-
tions by choosing an appropriate covariance matrix for the Gaussian distribution. The
idea is illustrated in Fig. 5.3, which presents two masks obtained by clipping vectors x

that have been drawn from a Gaussian N (0,S) with different covariances S. We note
however, that this is only a toy example since an explicit definition of covariance (see
caption of Fig. 5.3) requires O(K2) parameters.

5.3 CLIPPED FACTOR ANALYSIS MODEL 85

A more suitable way to induce a Gaussian density is by a factor analysis (FA) model.
The FA model (Roweis and Ghahramani, 1999) assumes that the K-dimensional vector
x is obtained as a noisy, linear projection of a latent d-dimensional vector z (d � K),
which is a-priori Gaussian distributed with unit covariance. We express the model as:

z ∼ N (0, I) (5.5)
x|z ∼ N (Wz + a,R) (5.6)
y|x = sgn(x), (5.7)

where a is a K × 1 mean vector, W is a K × d linear projection matrix, and R is a
diagonal K ×K matrix. By integration over z, it is easy to see that this model induces
on x a Gaussian distribution N (a,WW> + R) with a constrained (but in general full)
covariance defined by O(dK) parameters. We refer to this model as Clipped Factor
Analysis (CFA) model.
The CFA model does not explicitly define the distributions p(r) and p(y|r). However,
by relating the mask r to the random vector z, one can obtain an implicit prior p(r). We
assume the sought mask can be approximated as a “noiseless” projection of the hidden
vector z

r|z = sgn(Wz + a).

Such a formulation allows us to estimate hidden mask r by probabilistic inference on
vector z from y without explicit definition of p(r). The directed graphical model in
Fig. 5.4 illustrates the relation between vectors r,z,x and y.
Note that alternative observation models can be defined by relating an observed image
y to the vector x, which is a “noisy” projection of z. For example, if y represented a
color image, we could consider the following observation model

yk|xk ∼
{

pf (yk) if sgn(xk)≥0
pb(yk) if sgn(xk)<0 for k = 1 . . . K,

where pf(yk) and pb(yk) model the color of, respectively, foreground and background
pixels. This model is further presented in (Cemgil et al., 2005).
Analogously to the standard FA models, we can interpret columns of W as vectors that
span a subspace of masks, and z as a latent mask coordinate in this subspace. For in-
stance consider Fig. 5.5, where d = 2, z = [z1, z2]

> and the columns of W have been
chosen to produce circular shapes. In the bottom panel we demonstrate the effect of
noise on the masks generated by or model. Since the noise covariance matrix R is diag-
onal, the distortions of individual pixels are uncorrelated, and do not affect the general
structure of the masks.
In summary, our model includes vectors z, x y with a joint distribution p(z,x,y) =
p(z)p(x|z)p(y|x), where the individual densities p(z), p(x|z) and p(y|x) are defined by,
respectively, (5.5)–(5.7). In the remainder of this section we discuss the inference and
learning for the model. The former tries to estimate an underlying mask from an ob-
served image y. The later finds the optimal subspace (matrix W) and noise variance R

from a set of training images.

86 A MODEL FOR BACKGROUND SEGMENTATION

z

r x

y

Figure 5.4: A directed graph (a Bayes network) representing the CFA model. Discrete variables
are indicated as rectangles, real-valued— as ovals.

-1
0

1

-1
0

1
0

1

2

li
lj -1

0
1

-1
0

1
0

1

2

li
lj

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

3

z1

z 2

σ2=0.00

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

3

z1

z 2

σ2=0.20

Figure 5.5: Two dimensional subspace. (Left) Two columns of matrix W = [W (1),W (2)], where
each column contains 400 entries, arranged on a 20×20 grid. We setW (1)

i,j = 1, andW (2)
i,j = l2i +l2j ,

where li and lj are 20 uniformly spaced numbers from (−1, 1). (Right, Top) Every rectangular
box represents a 20×20 mask r = sgn(Wz+a), where z = [z1, z2]

> are the subspace coordinates
corresponding to the box center, and a = 0. (Right, Bottom) The corresponding noisy masks
y = sgn(x), x ∼ N (Wz + a, 0.2I).

5.3.1 Inference

Our model assumes that the hidden mask r can be computed deterministically from
the mask coefficients z. Thus, our inference algorithm estimates the mask by finding
coefficients z on the basis of posterior density p(z|y)

p(z|y) = p(y)−1

∫

p(z,x,y) dx

p(y) =

∫∫

p(z,x,y) dx dz,

where we integrate x since it is a hidden random variable.
Unlike in the case of linear Gaussian models, neither of the interesting quantities can
be computed exactly. The non-linear clipping mechanism renders inference in our
model intractable. For instance, when computing p(y) we could integrate z; p(y,x) =
N (x|a,WW> + R)p(y|x). However, the subsequent integration over x requires com-
puting a Gaussian integral in one of the 2K orthants specified by binary image y, and
this cannot be done in closed-form.
A straightforward approximation would be to sample from z and then analytically in-
tegrate over x. In practice, unless z is low-dimensional, Rao-Blackwellized Gibbs sam-

5.3 CLIPPED FACTOR ANALYSIS MODEL 87

pling will be computationally expensive. Alternatively, we could use mean-field ap-
proximation. However, due to the hard clipping mechanism, the mean-field with factor-
ized Gaussians as the approximating family would break down (since Kullback-Leibler
divergence between any Gaussian and a clipped Gaussian becomes ∞), and one has to
relax clipping with sigmoidal threshold or use a more exotic approximating family.

Expectation Propagation

The posterior distributions in our model can be conveniently approximated with the
expectation-propagation (EP) algorithm (Minka, 2001b). The algorithm approximates
intractable posterior distributions of individual hidden variables with simple paramet-
ric functions — called beliefs. From the beliefs we find various posterior statistics that
are necessary for inference and learning.
As discussed in Chapter 2, EP can be viewed as a message-passing algorithm on a factor
graph that represents the joint probability distribution of the model. Recall, that a factor
graph (Kschischang et al., 2001) comprises (i) factor nodes that represent individual
functions in the joint, and (ii) variable nodes that denote random variables. Figure 5.6
shows a factor graph of our model, where the nodes A, B, C correspond to functions
p(z), p(x|z) and p(y|x). The function represented by factor f will be denoted as φf (Vf),
where Vf is a set of variables adjacent to factor f , thus φA(z) = p(z); φB(z,x) = p(x|z),
and φC(y,x) = p(y|x). The belief associated with variable v will be denoted as q(v), thus
we introduce beliefs q(z) and q(x). In the primary setup the vector y is observed. In the
case when information about y is given by a distribution q(y) we will consider q(y) as
a fixed belief.
The algorithm iteratively estimates beliefs together with intermediate terms, known as
messages. We use a variant that can be summarized as a fixed-point iteration between
beliefs and messages from factor to adjacent variables, mf→v(v). The algorithm is pre-
sented in detail in Chapter 2; below we provide the general update rule for reference

mnew
f→v(v) =

Zqnew(v)

q(v)
mf→v(v) (5.8)

qnew(v) = arg minq KL(q̃||q) (5.9)

q̃(v) =
1

Z

∫

Vf\v

φf (Vf)
∏

v′∈Vf

q(v′)

mf→v′(v′)
, (5.10)

where Z denotes normalization constant for q̃. We refer to the above equations as a
“message-sending” operation from f to v. Intuitively, the algorithm can be viewed as
a generalization of the Belief Propagation method with an extra step (5.9). For a con-
tinuous variable v the integral q̃(v) might be a complicated function, whereas a belief
q(v) typically is a simple function from the exponential family. In this case, minimizing
KL-divergence corresponds to finding such belief qnew(v) whose moments match the
moments of q̃(v) (Cover and Thomas, 1991).

88 A MODEL FOR BACKGROUND SEGMENTATION

φA q(z) φB q(x) φC

z x y

m0(z) m3(z) m1(x) m2(x)

Figure 5.6: A factor graph for our model, where the filled nodes denote factors and empty ovals
(or squares) represent continuous (or discrete) variables. The vector r is not shown, as it does
not contribute to the inference.

EP inference algorithm:
1. Initialize
q(z) = p(z), q(x) = 1,
m1(x) = m2(z) = m3(x) = 1

2. Iterate
send message m1(x) from φB(x, z) = p(x|z) to x

send message m2(x) from φC(y,x) = p(y|x) to x

send message m3(z) from φB(x, z) = p(x|z) to z

Figure 5.7: The schedule of the message passing algorithm for our model.

In our application, we represent beliefs of hidden vectors q(z), q(x) as Gaussian densi-
ties. This is a natural choice since our model builds upon linear Gaussian models. Due
to the large dimensionality of vector x we constrain belief q(x) to be a Gaussian with di-
agonal covariance matrix. The messages in our model are denoted asm1(x) = mB→x(x),
m2(x) = mC→x(x) and m3(z) = mB→z(z). We parametrize these messages as Gaussian
potentials. The message m0(z) = mA→z(z) does not require updating because factor A
is adjacent only to a single variable (see Fig. 5.6).

We send the messages in the order indicated in Fig. 5.7, where every EP iteration con-
sists of three steps. First, we “predict” x by sending message m1(x), then “update”
x by sending message m2(x), and finally “update” z by sending message m3(z). This
schedule seems the most natural for our model, given the fact that the generic EP for-
mulations do not advocate any particular order. We provide a detailed implementation
of (5.8)–(5.10) for sending messages in our model in the Appendix 5.6.1.

Computational cost The computational cost of a single iteration of the EP procedure
is the sum of computational costs of sending the three types of messages. The exact
message-update equations are provided in the Appendix 5.6.1. Here we summarize the
respective computational costs. The message m3(z) requires inversion of a d× d matrix
with the associated cost O(d3). Sending message m1(x) requires inversion of a K × K
matrix G. (Recall that K is the number of pixels, and d is the subspace dimension.)
Fortunately, this matrix can be decomposed as G = A − CΛC>, where A is a K × K
diagonal matrix, Λ is a d×d matrix, and C is a K×d matrix. Using the matrix inversion
lemma, G can be inverted in O(d3+K) time. When computing the messagem1(x) every

5.3 CLIPPED FACTOR ANALYSIS MODEL 89

pixel is treated independently, there the cost of the message is O(K). Accordingly, with
n iterations the EP inference costs O(nd3 + nK), that is linear in the number of pixels
and cubic in the subspace dimensionality.

5.3.2 Learning

Given the probabilistic framework, a natural question arises about selecting model pa-
rameters. Particularly important is the matrix W whose columns span the space of
masks typical for the model. Below, we employ probabilistic learning to estimate the
parameters from exemplary masks. In this way obtain a model that is specialized to a
class of objects characteristic for a given scene.

Suppose one has a set of M training masks denoted as yn, n = 1, . . . , N . We assume that
each of the masks was independently generated from our model, and attempt to find
the model parameters θ∗ = {W∗, a∗,R∗} that maximize the data log-likelihood

θ∗ = arg maxθ

∑

n

log p(yn|θ), (5.11)

with p(yn|θ) denoting the likelihood of mask yn conditioned on some choice of param-
eters θ. Since the exact maximization of log-likelihood is intractable, we resort to the
expectation-maximization (EM) algorithm (Neal and Hinton, 1998) (see Chapter 2 for
details). In every iteration, the algorithm requires posterior statistics on the latent vari-
ables. We approximate these statistics with EP iterations. Although there is no guar-
antee of convergence, such double-loop EP-EM procedures have been shown success-
ful (Minka and Lafferty, 2002). Alternatively, one might try the convergent double-loop
algorithm (Heskes et al., 2004).

Initialization EM finds only locally optimal parameters, therefore it is useful to start
with an “educated guess” parameters. For the moment, we treat each yn as a continu-
ous variable, and find the sample mean ȳ and sample covariance S of y1:N . Next, we
find eigen-decomposition of matrix S: ΛD = SΛ, and initialize parameters as a PCA
subspace: a = ȳ and W = Λ(1:d)D1/2, where D is diagonal and Λ(1:d) are the d eigen-
vectors that correspond to the largest eigenvalues. The diagonal matrix R is randomly
initialized.

EM iterations Given the current parameters θ, in the E-step, we find beliefs of the la-
tent variables qn(z) and qn(x) for every data point yn separately by iterating EP until
convergence (in practice 3 loops). From the beliefs we compute the following posterior
statistics 〈x|yn〉,

〈
xx>|yn

〉
, 〈z|yn〉, and

〈
zz>|yn

〉
, where 〈v〉 =

∫
vq(v) dv. Since we rep-

resent the beliefs as Gaussian densities, the required statistics can be easily found from
the parameters of a Gaussian.

90 A MODEL FOR BACKGROUND SEGMENTATION

In the M step we reestimate θ by maximizing the expected log-likelihood given the be-
liefs from the E-step. The maximizing parameters can be easily found by observing
that θ affect only the linear Gaussian part of our model. Therefore the M-step is analo-
gous to the standard FA models (Roweis and Ghahramani, 1999). It differs only in the
fact that we do not have the access to vectors xn, which are replaced by their statistics
conditioned on yn. For completeness, we provide the M-step equations

W̄ = [W, a] =
(∑

n

〈x|yn〉 〈z̄|yn〉>
)(∑

n

〈
z̄z̄>|yn

〉)−1

R =
1

N
diag

[∑

n

〈
xx>|yn

〉
− W̄

∑

n

〈z̄|yn〉 〈x|yn〉>
]

Here, we update W and a jointly, using an augmented vector z̄> = [z>, 1], whose statis-
tics are straightforward

〈z̄|yn〉 =
[
〈z|yn〉

1

] 〈
z̄z̄>|yn

〉
=
[〈zz>|yn〉 〈z|yn〉

〈z|yn〉
> 1

]

.

Note, that the procedure does not require full matrices
〈
xx>|yn

〉
(which are of size

O(K2)), but only their diagonals (which are of size O(K)). We also observe, that the
EP algorithm provides an estimate of data log-likelihood, which can be used for moni-
toring convergence of the EM iterations.

5.4 Experiments

In this section we experimentally evaluate various aspects of our model. First, we ex-
amine the convergence properties of the EP iterations, since the convergence time de-
termines the practicality of inference with the EP algorithm. Second, we create a dataset
of aligned, real-world images and test learning of model parameters. Next, we compare
segmentation accuracy and computation speed of our and MRF-based models. The ex-
periments involve a simple set of images with ground-truth segmentation and various
real-world video sequence recorded in office-like environments. Finally, the chapter
provides evaluation of the presented model when applied for tracking humans in video
sequences. These tests involve real-world data recored at an office and airport scenarios.

Throughout the section, we compare the presented model with three variants of MRF,
as presented in Fig. 5.2. The models were parametrized according to (5.3)–(5.4) with
α = 0.99 and β = 0.7. Inference in the MRF-based models is performed with the Loopy-
Belief Propagation (LBP) algorithm. In all the experiments we use the pixel-wise back-
ground segmentation algorithm (Zivkovic, 2004) to precompute binary images y from
the video frames, as assumed by the model.

5.4 EXPERIMENTS 91

iteration 1

loglik: -390.78

iteration 1

iteration 1

iteration 2

loglik: -357.61

iteration 2

iteration 2

CFA model, EP iterations
 iteration 3

loglik: -379.43

MRF-8 model, BP iterations
 iteration 3

MRF-16 model, BP iterations
 iteration 3

iteration 4

loglik: -376.21

iteration 4

iteration 4

iteration 5

loglik: -376.10

iteration 5

iteration 5observed

true log-likelihood
-374.46

Figure 5.8: EP convergence test. (Left) A random mask y generated from our model, where the
parameters W and R were the same as in Fig.2, and R = I. (Top) Masks r reconstructed by our
model, after subsequent EP iterations; r = sgn(a + W 〈z|y〉). Below the masks we show the log-
likelihood (ll) estimates log p(y). The true log-likelihood has been computed by sampling 108

samples from p(z) and analytical integration over x. (Middle) Masks reconstructed by a MRF-16
model. (Bottom) Masks reconstructed by a MRF-8 model. For both MRF models parameters
were (α = 0.99, β = 0.7).

EP convergence A key aspect of the presented model is the convergence of the EP
message-passing iterations. The EP inference algorithm in our model (as well as the
LBP algorithm in MRF models) lacks a formal convergence guarantee, therefore experi-
mental validation of convergence is necessary. We illustrate the convergence properties
in Fig. 5.8. The figure shows a noisy mask y generated from our model (Top), and a se-
ries of reconstructed masks r after several EP iterations. For each iteration we also show
the estimate of log-likelihood log p(y). In the middle and bottom panels we show the
masks reconstructed by MRF-16 and MRF-8 models during subsequent LBP iterations.

In this, and several other experiments, we observe that the EP algorithm converges after
3 − 4 iterations regardless of the number of pixels and the dimensionality of the mask
subspace. This convergence rate is similar to the typical runs of belief propagation for
MRFs. Therefore, in all other experiments with our model (or MRF models) we perform
three EP (or LBP) iterations.

92 A MODEL FOR BACKGROUND SEGMENTATION

Figure 5.9: Selected binary images (masks) from the training sequence. The image size was
50 × 30 pixels. Each mask represents a human silhouette, centered within the image.

a W(:,1) W(:,2) W(:,3) W(:,4) R

Figure 5.10: Parameters of the CFA model (a,W,R) estimated by the EM algorithm from a
training set that included human silhouettes. The vector a, the first four columns of matrix W

and the diagonal of matrix R are shown as 50 × 30 images.

Learning model parameters In this experiment we illustrate learning of model param-
eters using the EM algorithm that has been described in Section 5.3.2. Our training data
includes 100 noisy, binary images of size 50×30 pixels. The images represent silhouettes
of various humans that have been observed walking lateral to the camera plane. The
full frames were cropped in order to center the silhouettes within a 50 × 30 window, as
shown in Fig. 5.9.

Given the training data, we run the EM algorithm with various dimensions of the mask
subspace d. Figure 5.10 presents the estimated parameters after 10 EM iterations for
d = 15. We observe that the parameter a represents the body parts (torso, head) typically
present in every silhouette. The first column of W represents various leg configurations.
When the coefficient z1 is positive the legs are closed, when z1 is negative the angle
between legs increases. Analogously, the second column of W together with the second
coefficient z2 controls the head swing, and overall orientation of the silhouette (left vs
right). Figure 5.11 demonstrates this effect explicitly, where we show masks obtained
by various settings of the coefficients [z1, z2].

The considered setup assumes that people walk lateral to the camera plane and a camera
placed approx. 1.5 meters above the ground. Essentially, in this case there are only
three types of shape variations: leg movements, arm movements, pose orientation (face
directed to left or right). Therefore 100 training images proved enough to capture the
typical variation in the shapes.

5.4 EXPERIMENTS 93

-10 -5 0 5 10
-10

-5

0

5

10

subspace dimension 2

su
bs

pa
ce

 d
im

en
sio

n
1

Figure 5.11: Mask subspace spanned by the first two columns of matrix W. Every binary plot
shows a mask r = sgn(a+[W1,W2][z1, z2]

>), where coefficients [z1, z2] correspond to the location
of the plot on the grid.

Segmentation Accuracy In this experiment we compare the accuracy of segmentation
with the CFA model and the MRF models. Segmentation error is defined as a per-
centage of pixels that are mis-segmented according to “ground truth” segments (which
were obtained by hand). Our test set consists of 60 noisy, binary images. The test data
were obtained in the same setup as the training data, however involved different per-
sons (with differently clothes) from those involved in the training set. The tests involve
CFA models with varying dimensionality of the masks subspace d, and MRF models
with varying number of neighbors per pixel. Aside to the segmentation error we also
measure the execution time for the tested methods.

Figure 5.12 summarizes the results. We observe that learning the prior model of spatial
correlations results in lower segmentation errors in comparison with the generic cor-
relations assumed by the MRF models. However, increasing the dimensionality d of
linear subspace beyond some optimal value leads to overfitting in the case of the CFA
model. In the case of MRFs, we observe that the segmentation error was not affected
by the number of neighbors correlated with each pixel. This effect follows from the
fact that generic correlation structures (like those in Fig. 5.2) cannot describe well pixel
correlations specific to images of a particular type of objects.

Mask selection The previous experiments were based on a dataset where the objects
were aligned in the image. In practical scenarios, we need to automatically find a win-
dow that includes an object of interest within a larger image. For tracking applications,

94 A MODEL FOR BACKGROUND SEGMENTATION

0 10 20 30 40 50
0
2
4
6
8

10

subspace dimension

te
st

 e
rro

r (
%

)

0 10 20 30 40 50
0

10

20

30

40

subspace dimension
fra

m
es

 p
er

 s
ec

on
dCFA CFA

2 4 6 8 10 12 14 16 18
8

8.5

9

9.5

10

neighbors/pixel

te
st

 e
rro

r (
%

)

2 4 6 8 10 12 14 16 18
0

20

40

60

neighbors/pixel

fra
m

es
 p

er
 s

ec
on

dMRF MRF

Figure 5.12: (Left) Segmentation error and computation speed for the CFA model. (Right) Seg-
mentation error and computation speed for various MRF models. All computation times are
expressed as frame per second (fps), where the frame size was 50 × 30 pixels, (MATLAB imple-
mentations, on a 3GHz PC).

input image with unknown shape location

100 200 300

50

100

150

200

100 200 300
50

100
150

200
-1200

-1000

-800

likelihood map for shape locations shape reconstructed at the most likely location

100 200 300

50

100

150

200

Figure 5.13: Finding a mask of a human in an image. (Left) An input binary image, where
we want to find the location of an objects’ mask. (Center) A log-likelihood map, where the
value at each pixel indicates the log-likelihood of an object present at this location. (Right) The
reconstructed mask, positioned at the most likely location.

location and scale of this box correspond to the translation and scaling of the mask. Be-
low, we illustrate a window selection mechanism based on the likelihood computation
in our model.

Figure 5.13 shows an experiment illustrating the ability to detect the most likely location
of the mask within a video frame. The left panel shows a 240 × 320 binary image. From
this image we construct binary masks r(i,j) of size 130 × 70, each centered at a pixel
(i, j) in the image (the masks are padded with zeros when necessary). The center panel
shows a “likelihood map”, where the value at pixel (i, j) gives the log-likelihood of the
mask log p(r(i,j)). We select the mask corresponding to the global maximum of this map,
and plot the reconstructed mask in the right panel of Fig. 5.13.

The experiment shows that one can find the actual object location by finding the max-
imum of the likelihood map. We notice that although the map exhibits a clear global
maximum, typically there will be also several local maxima. In many applications, find-
ing global maximum by exhaustive search might turn out intractable. We have to resort
to local maximization techniques, which need an “educated guess” initialization in or-
der to avoid finding a local maximum.

5.4 EXPERIMENTS 95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

0

0.5

1

frames

z 1

#05 #13 #21 #29 #38 #46 #54

Figure 5.14: Evolutions of mask coefficients during a walking cycle. (Top) Estimated values
of coefficient z1. (Bottom) The corresponding body-part configurations at selected frames. The
maxima (or minima) in z1 correspond to the maximum (or minimal) angle between the legs of
the person.

Segmenting video sequences As the final experiment, we consider the problem seg-
menting video sequence with multiple foreground objects. First, we show how the evo-
lutions of an observed mask correspond to the evolutions of the latent mask coefficients
through a sequence of frames. Second, the experiment allows comparing segmentation
techniques on a larger dataset without the ground truth segmentation.

In order to segment video sequences we construct a simple tracking algorithm that finds
foreground objects in a current frame given their location in a preceding frame. Our
tracker finds locations of mask representing foreground objects using the “likelihood
maps”. First, the tracker predicts the current object location on the basis of previous
locations by assuming that objects travel with a constant velocity. Next, the tracker
employs a greedy, gradient-based search for a (local) maximum of the “likelihood map”
starting at the predicted location. Additionally, new persons are detected by finding
areas in the frame, where the number of foreground pixels exceeds a fixed threshold.

Figure 5.14 presents the results of segmenting a sequence that included a single person.
The top panel presents the evolutions of the coefficient z1 in the expected vector z. The
bottom panel includes several input frames at the indicated time steps. Note, a strict
correspondence between the value of z1 and pose of the tracked person — the period-
ical pattern in the top panel represents the periodical leg configurations of the object.
(Analogous correspondence occurs between the persons’ heading direction and the co-
efficient z2 (not shown).) The experiment demonstrates potential applicability of the
model to gesture-recognition tasks (Gavrila, 1999; Rao et al., 2002; Yamato et al., 1992).

Below we compare our model with MRF-based models. The experiment involves seg-
menting video sequences with several people and comparing the quality of the esti-
mated masks. The masks are evaluated against two criteria. The first is the number of
disconnected segments within a mask (the lower — the better). The second criterion
follows from an assumption, that in the considered scenario the appearance of a person
is practically constant during a trajectory. A trajectory, (i.e., a pass through the field of
view), consists of a series of estimated masks, one per person and frame. Given the

96 A MODEL FOR BACKGROUND SEGMENTATION

masks, we compute a corresponding series of person’s appearance features, defined as
the average color of pixels representing the person. When the estimated masks correctly
match with the underlying person, then the estimated features are constant during the
trajectory. Therefore, we indirectly evaluate masks by measuring the variation in the
appearance features estimated from each trajectory (the lower — the better).

The first experiment was performed on sequence (2000 frames) presenting people walk-
ing laterally to the camera plane recorded in an office scenario. Tables 5.1–5.2 summa-
rize the results where we evaluate three approaches: (i) the CFA model with subspace
dimension d = 15, (ii) various MRF models with parameters α = 0.99, β = 0.7 and,
as a reference, (iii) mask smoothing based on mathematical morphology (1 erosion, 2
dilations, 1 erosion). Figure 5.15 presents selected frames and estimated masks by two
MRF models (with 8 and 16 neighbors per pixel) and the CFA model with subspace
dimension d ∈ {5, 10, 15}.

According to Tab. 5.1, the CFA model yielded object masks consisting of significantly
lower number of disjoint segments than the MRF models or morphological smoothing
(in the ideal case, an object would consist of a single segment). Figure 5.15 illustrates
another important property of the CFA model. In certain frames (e.g. 118, 570, 1516)
the appearance of a person partially coincides with the background, and the coinciding
pixels are missing in the observed mask (leftmost column). The CFA model recovered
the missing pixels in the objects mask, therefore allowed us to properly characterize
the appearance of each person during the trajectory. The ability to recover stable and
exact appearance features is particularly important for applications, where one aims to
identify persons on the basis of their appearance. Table 5.2 illustrates the advantage
of our model by comparing the variance of color features for various methods (notice
tracks #1,#7,#9,#10).

The second experiment was performed on a video sequence recorded in an airport en-
vironment, with the camera positioned approx. 7 meters above the ground, pointing
downwards in a such way that the lower arm of the viewing angle pointed straight
down. Here most of the persons are observed from a top-view and their shapes take
to form of circular blobs with limbs stretching out. At the side of an image, the shapes
start to vary and take the form of elongated blobs that were tilted at varying angles. Ad-
ditionally, the silhouettes are distorted by various objects, like bags or luggage trolleys.
In this case, the training set consisted of 170 images. (initially, the training set included
70 images, but this number turned out insufficient). Table 5.3 summarizes the results
of this experiment. We observe that the advantages of the CFA model are less evident
(especially w.r.t to the variation in the appearance features). In specific cases (e.g. tracks
#5 or #6) the table indicates better performance of the CFA model, however from a
visual inspection of the segments we conclude that in these cases all techniques fail.

5.4 EXPERIMENTS 97

Table 5.1: Quantitative comparison of various correlations techniques applied to tracking hu-
mans. Each row shows the average number of disconnected fragments in the foreground seg-
ment that represents a person.

average number of segments/trajectory
track CFA-15 MRF-4 MRF-8 MRF-16 MORPH
01 1.5 2.7 2.5 2.1 4.1
02 1.1 1.8 1.8 1.4 2.4
03 1.1 2.6 2.3 1.9 3.1
04 1.3 3.6 2.7 2.2 4.7
05 1.4 2.6 2.1 1.7 3.2
06 1.3 2.3 2.2 1.7 2.8
07 1.4 3.0 2.3 1.8 3.5
08 1.4 4.1 3.2 2.6 4.9
09 1.6 4.7 3.9 3.0 5.5
10 1.6 6.3 5.0 3.6 7.9
11 1.2 17.3 7.1 4.2 11.3
12 1.2 13.3 7.2 4.7 13.6

average 1.4 5.4 3.5 2.6 5.6

Table 5.2: Quantitative comparison of various segmentation techniques applied to tracking hu-
mans. Each row shows variance in appearance features associated with a single person.

variance in appearance features/trajectory
track CFA-15 MRF-4 MRF-8 MRF-16 MORPH
01 10.4 18.8 18.6 18.7 18.9
02 18.9 18.3 18.5 18.2 16.7
03 7.3 7.0 7.1 7.5 6.5
04 14.9 16.5 16.7 17.6 17.5
05 17.9 15.1 14.9 14.3 14.9
06 14.3 15.0 14.8 14.9 14.3
07 20.4 28.1 27.2 26.8 28.0
08 47.5 34.7 34.6 34.7 33.8
09 22.2 58.2 58.5 61.6 56.1
10 23.2 42.7 42.3 46.2 40.1
11 15.0 13.6 13.3 12.1 11.5
12 40.4 47.9 49.5 48.2 39.0

average 21.0 26.3 26.3 26.7 24.7

98 A MODEL FOR BACKGROUND SEGMENTATION

observed
mask

#0118
MRF-8 MRF-16

reconstructed masks
CFA-5 CFA-10 CFA-15

#0465

#0570

#1007

#1561

#1938

Figure 5.15: Qualitative comparison of various variants of the CFA and MRF models. Every row
presents a single frame from a video sequence and masks recovered by the compared methods.

5.5 Conclusions

We considered a visual scene analysis problem, where pixels of an image have to be
assigned a binary label that indicates whether the pixel represents a (static) background
scene or a (moving) foreground object. An important aspect of this problem is proper
characterization of spatial correlations between pixels assigned either to the background
or to the foreground segment. We have shown that by incorporating prior knowledge
about correlations typical for some scene, segmentation algorithms can handle difficult
problems, such as cases where the background scene is difficult to distinguish from a
foreground object.

This chapter presented a method for flexible representation and learning of prior knowl-
edge about spatial correlations between binary labels. The method assumes that the
labels are random variables with a prior probability distribution, defined as the factor
analysis model with quantized output. The prior distribution is particularly suited for
modeling long-range spatial couplings between the labels. Further, based exclusively

5.5 CONCLUSIONS 99

Table 5.3: Results of the experiment with “airport” video sequence.

average number of segments variance in appearance features
track CFA-15 MRF-16 MORPH CFA-15 MRF-16 MORPH

01 1.9 3.8 6.0 29.0 26.0 22.4
02 2.1 2.9 6.8 32.0 17.5 32.2
03 1.1 4.8 6.2 15.0 36.1 30.1
04 a 2.3 4.0 8.0 38.7 34.8 38.8
05 b 1.9 3.0 4.4 109.6 135.3 130.1
06 2.5 1.3 2.9 26.1 21.2 20.6
07 c 2.4 3.7 9.9 95.3 182.3 170.0
08 1.6 3.6 9.3 42.6 7.2 15.0
09 d 2.5 2.6 4.3 63.4 25.7 25.0
average 2.0 3.3 6.4 50.1 54.0 53.8
a Object carries a backpack
b Object carries a bag
c Object pushes a luggage trolley
d Object pulls a suitcase

on exemplary data, parameters of this distribution can be easily adjusted in order to in-
corporate knowledge about label couplings typical for some class of foreground objects
(e.g. human silhouettes). Such a learned prior offers a significant advantage over alter-
native prior models that assume only generic short-range correlations of pixel labels.

Background segmentation based on the presented model relies on probabilistic infer-
ence of unknown (hidden) pixel labels from an observed image. We have derived a
local message-passing algorithm (Expectation Propagation) that approximates required
posterior probabilities in a computationally tractable way. The inference algorithm han-
dles arbitrary-range couplings of pixel labels in linear time in the number of pixels. The
computation times in the presented model are comparable with the computation times
in the popular MRF models.

In many applications background segmentation is not of interest itself, but is a basis
for higher-level tasks, like object detection, classification or identification. An attrac-
tive feature of the presented model and message-passing algorithm is that they can be
readily extended to more elaborate scenarios, like estimation of appearance features
of the foreground objects (see (Cemgil et al., 2005)). Another potential applications of
the model are gesture recognition problems (Gavrila and Davis, 1996; Rao et al., 2002),
where one can interpret the model latent variables (low-dimensional factors) as ges-
ture indicators. As a result background segmentation need not be viewed as an inde-
pendent pre-processing step, but can be coupled in a consistent way with higher-level
techniques.

100 A MODEL FOR BACKGROUND SEGMENTATION

5.6 Appendix

5.6.1 Implementation

Implementation of the EP algorithm in our model is based on “canonical” Gaussian
potentials, which yield slightly easier formulation than the Gaussians represented in
the usual moment form. The beliefs for hidden vectors z and x are represented as

q(z) = ψ(z|hz,Gz, gz)

q(x) = ψ(x|hx,Gx, gx),
(5.12)

where ψ() denotes a Gaussian potential, and h, G, g are canonical parameters (see Ap-
pendix 5.6.2). To reflect the assumption that Gaussian q(x) has diagonal covariance, we
constrain the canonical parameter Gx to be diagonal.
The factor functions for our model follow from (5.5)–(5.7)

φA(z) = N (z|0, I) = ψ(z|0, I, d/2 log(2π))

φB(z,x) = N (x|Wz + a,R) = ψ([z
x]|hB,GB, gB)

φC(x,y) =
K∏

k=1

[ykxk > 0],

where [“text”] is an indicator function, that evaluates to 1 (or 0) if the binary proposition
“text” is true (or false). The canonical parameters for potential φB are

GB =
[

W>R−1W −W>R−1

−R−1W R−1

]

, hB =
[
−W>R−1a

R−1a

]

gB = −1

2
log |2πR| − 1

2
a>Ra.

and can be easily verified using (5.18)–(5.20) of Appendix 5.6.2.
The messages are represented as canonical Gaussians

mi(·) = ψ(·|hi,Gi, gi), for i = 1, 2, 3.

Importantly, the diagonal parameter Gx of the belief q(x) implies that the matrices G1

and G2, which parameterize messages incoming to x will be diagonal as well. (This can
be seen from the generic update formula in Appendix 5.6.2.)

Initialization We initialize the messages to uniform potentials by setting the canonical
parameters as Gi = 0,hi = 0, gi = 0 for i = 1, 2, 3. Initially, the belief q(x) is uniform.
During initialization, we send the message m0(z) to variable z. As a result we have
q(z) = φA(z). The respective belief parameters are

Gx = 0 hx = 0 gx = 0

Gz = I hz = 0 gz = d/2 log(2π).

5.6 APPENDIX 101

Updates We first consider sending a message from factor B to variable z. According
to (5.10) we have to integrate

ψ([z
x] ,G,h, g) = φB(x, z)

q(x)q(z)

m1(x)m3(z)
(5.13)

over variable x. The integrand turns out to be a Gaussian potential. We find its param-
eters by substituting the parametric beliefs and messages to (5.13), and using the fact
the multiplication (or division) of Gaussian potentials corresponds to summation (or
subtraction) of their canonical parameters

G = GB +
[

0 0
0 Gx−G1

]
+
[

Gz−G3 0
0 0

]

h = hB +
[

0
hx−h1

]
+
[

hz−h3
0

]

g = gB + gx − g1 + gz − g3.

As shown in Appendix 5.6.2, the integral evaluates to a Gaussian potential, denoted as
q̃(z) = 1

Z
ψ(z|h̃, G̃, g̃). (see the Appendix 5.6.2 for the parameters.) We now move to (5.9).

Since the potential q̃(z) is already in the required parametric form we set qnew(z) = q̃(z).
Thus,

Gnew
z = G̃ hnew

z = h̃

gnew
z = ḡ(Gnew

z ,hnew
z) logZ = g̃ − gnew

z ,

where ḡ() is a normalizing term (see Appendix 5.6.2). Finally, we update the canonical
parameters of the message m3(z) = mB→z(z) according to (5.8). This is a fairly simple
operation, as presented in Appendix 5.6.2.
Next, we consider sending message from factor B to variable x, keeping in mind that the
belief q(x) is constrained to have diagonal matrix Gx. By substituting to (5.10) we find
that the integrated expression is identical with (5.13), but now we integrate over variable
z. As shown in Appendix 5.6.2, the integral is a Gaussian potential, denoted as q̃(x) =
1
Z
ψ(x|h̃, G̃, g̃). Importantly, in general the matrix G̃ will not be diagonal. According

to (5.9) we find the closest (in KL-sense) potential to q̃(x) with diagonal parameter Gnew
x .

Such a potential can be easily found using the moment representation of Gaussians. Let
Ṽ = G̃−1, and m̃ = h̃Ṽ be the mean and covariance of q̃(x). It is a standard result (Cover
and Thomas, 1991) that

(m∗,D∗) = arg min(m,D) KL
(

N (x|m̃, Ṽ)||N (x|m,D)
)

,

for diagonal covariances D is attained when D∗ = diag(Ṽ) and m∗ = m̃ (i.e., D∗ is
the diagonal of Ṽ). Thus, we have qnew(x) = N (x|m̃, diag(Ṽ)), or in the canonical
parametrization:

Gnew
x =

(

diag(G̃−1)
)−1

hnew
x = diag(G̃−1)m̃

gnew
x = ḡ(Gnew

x ,hnew
x) logZ = g̃ − gnew

x .

102 A MODEL FOR BACKGROUND SEGMENTATION

Note, that computing Gnew
x and hnew

x should rely on the “matrix inversion lemma” for
efficient computation of quantities dependent on the inverse of G̃. The messagem1(x) =
mB→x(x) is updated as in the Appendix 5.6.2.
Finally, we update the message m2(x) from factor C to variable x. Recall first, that
we assumed diagonal covariances for Gaussian potentials that represent the belief q(x)
and the message m2(x). Therefore, these potentials factorize into functions defined on
individual terms xk,

m2(x) = ψ(x|G2,h2, g2) =
K∏

k=1

ψ(xk|G2,k, h2,k, g2,k)

q(x) = ψ(x|Gx,hx, gx) =
K∏

k=1

ψ(xk|Gxk, hxk, gxk),

where Gxk = Gx(k, k) is the kth element on the diagonal of “inverse covariance” Gx,
hxk = h(k) is the kth element in the vector hx and gxk = gx/K. Analogous parametriza-
tion holds for the message m2(x).
The factorial representation allows us to execute the update equations (5.8)–(5.10) indi-
vidually for every pixel. Since yk is fixed, the integration in (5.10) disappears and we
have

q̃(xk) =
1

Zk

[xkyk > 0]ψ(xk|hk, Gk, gk), (5.14)

where Gk = Gxk − G2k, hk = hxk − h2k, and gk = gx2 − g2k. When yk = 1 then q̃(xk) is a
Gaussian potential truncated to zero for xk ∈ (−∞, 0). When yk = −1, the the potential
in truncated for xk ∈ (0,∞).
We find the updated Gaussian belief, qnew(xk), by minimizing the KL-divergence as in-
dicated by the generic EP rule (5.9). Since Gaussian potentials belong to the exponential
family, we find the minimizing potential by matching the moments of qnew with the
moments of q̃ (see Chapter 2 or (Cover and Thomas, 1991))

〈xk〉qnew = 〈xk〉q̃
〈
x2

k

〉

qnew =
〈
x2

k

〉

q̃
(5.15)

In order to solve the above system of equations we compute first moments of q̃. For
this purpose we replace ψ(xk|hk, Gk, gk) with its counterpart in the usual moment form
αkN (xk|µk, vk), where vk = 1/Gk, µk = hkvk and αk is the normalization term. The
moments follow from evaluating a one-dimensional Gaussian integral over positive (or
negative) half-space. For yk = 1 we compute

〈xk〉q̃ =

∫ ∞

−∞

xkq̃(xk) dx

=
1

Zk

∫ ∞

−∞

xk[xkyk > 0]ψ(xk|hk, Gk, gk) dx

=
αk

Zk

∫ ∞

0

xkN (xk|µk, vk) dxk.

5.6 APPENDIX 103

The terms Zk and 〈x2
k〉q̃ are computed analogously. For yk = −1 we integrate over

(−∞, 0). The Gaussians integrals evaluate to standard results, which we denote com-
pactly as functions of yk

〈xk|yk〉q̃ = µk +
ykη

λ(yk)

〈
x2

k|yk

〉

q̃
= µ2

k + vk +
ykµk

λ(yk)
, (5.16)

where

η = exp(−µ2
k/2vk)

√

vk/2π λ(y) = (1 + r)/2 − y/2 erfc(µk/
√

2vk).

The normalization constant evaluates to Zk(yk) = αkλ(yk). We now express the mo-
ments 〈xk〉qnew , 〈x2

k〉qnew using the canonical parameters of belief qnew(xk)

〈xk〉qnew = hnew
x (k)/Gnew

x (k, k)
〈
x2

k

〉

qnew = (hnew
x (k)/Gnew

x (k, k))2 + 1/Gnew
x (k, k).

(5.17)

Substituting (5.16) and (5.17) to (5.15) yields the sought parameters

Gnew
x (k, k) =

1

〈x2
k|yk〉q̃ − 〈xk|yk〉2q̃

, hnew
x (k) =

〈xk|yk〉q̃
〈x2

k|yk〉q̃ − 〈xk|yk〉2q̃
.

Repeating this steps for all pixels k = 1, . . . , K yields the diagonal matrix Gnew
x and

vector hnew
x . To obtain a normalized belief we set gnew

x = ḡ(Gnew
x ,hnew

x). Given the new
belief qnew(x) we find the updated message m2(x) using the standard equations (Ap-
pendix 5.6.2), where the joint normalization term Z is

logZ =
K∑

k=1

logZk.

Solution After EP converges, we can find the expected mask coordinates by convert-
ing the belief q(z) to the moment form; 〈z|y〉 = G−1

z hz. The mask likelihood corresponds
to the overall normalization constant

log p(y) =
EP iter∑

n

3∑

i=1

logZ(n,i),

where Z(n,i) denotes the normalization constant obtained during the nth EP iteration
when sending message mi(·).

104 A MODEL FOR BACKGROUND SEGMENTATION

5.6.2 Canonical Gaussian potential

Definition A canonical Gaussian potential of a random, d-dimensional vector s is de-
fined as

ψ(s|h,G, g) ≡ exp(sh> − 1

2
sGs> + g), (5.18)

where canonical parameters are: d×1 vector h, d×dmatrix G, and scalar g. The canonical
form becomes equivalent to the moment form αN (s|m,V), when

G = V−1 g = log(α) + ḡ(G,h) (5.19)

h = V−1m ḡ(G,h) =
1

2
log |G

2π
| − 1

2
h>G−1h (5.20)

with m and V denoting respectively, the mean and the covariance. When the potential
is normalized, α = 1, then ḡ(G,h) becomes the normalization constant for the canonical
form. The canonical notation is useful for expressing uniform potentials ψ(s|0,0, 0) = 1
and for multiplication ψ(s|h1,G1, g1)ψ(s|h2,G2, g2) = ψ(s|h1 + h2,G1 + G2, g1 + g2). In
case of division the sums are replaced with subtractions.

Marginalization The following result is useful for deriving the EP updates with linear
Gaussian family. Suppose we want to marginalize a joint Gaussian potential, given in
the canonical form

ψ(z|G̃, h̃, g̃) =

∫

ψ([z
x] |
[

h1
h2

]
,
[

G11 G12
G21 G22

]
, g) dx.

The canonical parameters of the marginal potential are

G̃ = G11 − G12G
−1
22 G21 h̃ = h1 − G12G

−1
22 h2

g̃ = g − 1

2
log |G22

2π
| + 1

2
h>

2 G−1
22 h2.

Analogous result holds for the integration of x.

Message update

Canonical parametrization allows simple implementation of the generic message up-
date formula, given by (5.8). Let q(v) = ψ(v|G,h, g) and mf→v(v) = ψ(v|Gm,hm, gm).
The parameters of the updated message are:

Gnew
m = Gnew − G + Gm hnew

m = hnew − h + hm

gnew
m = logZ + gnew − g + gm.

5.6 APPENDIX 105

5.6.3 Probabilistic foreground images

The message-passing scheme applies quite naturally to problems where the information
about mask y is given by a distribution q(yk) on individual indicators, yk ∈ {1,−1}. In
this case, the EP inference algorithm requires modifications only to the message passing
operation between factor C and the variable x.

We modify the message passing operation form2(x) and updating belief q(x) as follows.
We begin with the equation (5.14), which now takes the form

q̃(xk) =
1

Zk

∑

yk∈{1,−1}

[xkyk > 0]ψ(xk|hk, Gk, gk)q(yk),

where we integrate yk because yk ∈ {1,−1} is now a random variable with a belief
q(yk). The term q̃(xk) is a mixture of two Gaussian potentials truncated, respectively,
in the negative and the positive half-space. We find the updated belief qnew(xk) in the
Gaussian family by matching the moments of qnew(xk) with the moments of q̃(xk). Below
we compute the moments 〈x2

k〉q̃ and 〈x2
k〉q̃. The term q̃(xk) can be expressed as

q̃(xk) =
∑

yk∈{1,−1}

q(yk)q̃(xk|yk),

where q̃(xk|yk) = 1
Z(yk)

[xkyk > 0]ψ(xk|hk, Gk, gk) denotes a normalized truncated Gaus-
sian potential. The moments of interest become

〈xk〉q̃ =
∑

yk∈{1,−1}

q(yk) 〈xk|yk〉q̃
〈
x2

k

〉

q̃
=

∑

yk∈{1,−1}

q(yk)
〈
x2

k|yk

〉

q̃
,

where 〈xk|yk〉q̃ and 〈x2
k|yk〉q̃ are given by (5.16). The normalization term is

Zk =
∑

yk∈{1,−1}

q(yk)Zk(yk) =
∑

yk∈{1,−1}

q(yk)λ(yk)αk,

where λ(yk)αk are the same as in the case when yk is known. Given these moments, the
update equations are identical with the case when yk is known.

106 A MODEL FOR BACKGROUND SEGMENTATION

CHAPTER 6

CONCLUSIONS

The thesis addressed several problems distinctive for visual surveillance in spatially
wide areas. Such areas are characterized by the fact that even multiple cameras cannot
exhaustively cover the entire region under surveillance. Therefore surveillance employs
several cameras that are spatially distributed, i.e., cameras with fields of view covering
disjoint scenes scattered over the global region of interest. The primary problem in-
volved tracking multiple objects (humans) with such distributed camera systems. In
this problem we focused on techniques for maintaining a trajectory of an object when
it temporarily disappeared from the view of a camera, due to the visual gap between
the disjoint scenes. The secondary problem involved characterization of appearance of
objects in the video data provided by the cameras. Here, our emphasis was on proper
estimation of image regions that represent humans.
Both problems have been studied in a single methodological framework of probabilistic
graphical models. In either case, our approach included definition of an appropriate
probabilistic model. The model encodes dependencies between various known and
unknown quantities relevant to a given problem. Given a model, we estimated the
unknown quantities of interest by implementing a suitable probabilistic inference algo-
rithms. The inference algorithms considered in the thesis can all be viewed as instances
of the general class of belief propagation techniques.

6.1 Summary of conclusions

In Chapter 3 we studied the first of the mentioned problems, where the key task is to
partition a set of observations of different people from various cameras into clusters,
where a cluster represented a single person. We constructed an iterative optimization
procedure (the EM algorithm) that embeds greedy search for the most likely partition
(in the E step) with estimation of parameters of a probabilistic model (in the M step).
The experiments showed that in the indoor tracking domain, such greedy search algo-
rithm is much more efficient than the algorithm that employs MCMC sampling to find
the optimal partition. The sampling-based method turned out two-orders of magnitude

108 CONCLUSIONS

slower than the developed method, when finding a solution of similar quality. This
property can be explained by the fact that the compared sampling-based method ex-
ploits strong constraints on the motion of objects (e.g. vehicles, which can follow only
roads). In indoor scenario, human motion typically lacks such strong constraints.

In Chapter 4 we considered the same problem as in Chapter 3. We developed a prob-
abilistic model that allowed replacing explicit search in the intractable space of par-
titions with an approximate inference method — assumed-density filtering (ADF). In
this way we applied a principled Bayesian framework for approximating solution to
the intractable multi-object tracking problem. Moreover, the model combines ideas in-
spired by machine learning (Dirichlet processes) to properly characterize the number
of different persons in the environment. Finally, we have shown how the parameters –
mean and covariance – of popular Gaussian noise models can be estimated by Bayesian
inference under data association ambiguity. The principled approximation techniques
yielded a stable algorithm that avoids degenerate solutions in difficult tracking condi-
tions. For example, when all motion constraints have been discarded from the problem
or when appearance of objects has been neglected, the algorithm still correctly estimated
the number of objects (while alternative algorithms overestimate this number by more
than 100%).

The basic functional difference between the methods of Chapter 3 and 4 are different
assumptions on the tracking application and the tracking environment. In Chapter 3
parameters of the environment (travel times) are assumed constant and unknown. In
Chapter 4 these parameters are assumed known and provided by the user. Accordingly
the algorithm of Chapter 3 learns the parameters from the data. The algorithm is an
instance of unsupervised learning procedure that does not require any prior training
data, since learning takes place at the same time as tracking. In contrast, the algorithm
of Chapter 4 relies on the user who has to supply the minimum travel times. The param-
eters usually will follow from the prior knowledge about the camera setup; however the
parameters might also be estimated with an independent learning method.

A more fundamental difference follows from the approximation technique applied to
deal with the intractability of data association in multi-object tracking problems. In
both formulations, data association boils down to probabilistic inference on hidden con-
tinuous state variables and hidden discrete partitions (assignments of observations to
trajectories). The method of Chapter 3 performs approximate inference on the discrete
partition space, and exact (conditional) inference on continuous states. In the Chapter 4
a partition is represented as a sequence of discrete labels. Here, the tracking methods
performs approximate inference on the continuous states and exact (conditional) in-
ference on the discrete labels. The approximation scheme of Chapter 3 is simpler and
easier to implement. However, the explicit search procedure for the optimal partition
seems hard to improve. The approximation scheme of Chapter 4 opens many more
possibilities for improving the accuracy of approximation by employing more flexible
approximation families or employing potentially better approximation techniques (like
expectation-propagation or variational mean-field).

6.2 FUTURE RESEARCH 109

In Chapter 5 we considered a scene segmentation problem, where pixels of an image
have to be assigned a binary label that indicates whether a pixel represents a (static)
background scene or a (moving) foreground object. We have shown that by incorporat-
ing prior knowledge about correlations of pixel labels typical for some scene, segmen-
tation algorithms can handle difficult problems, such as cases where the background
scene is difficult to distinguish from a foreground object. We viewed the labels as ran-
dom variables and presented a prior probability distribution (a probabilistic model)
that facilitates flexible representation and learning of long-range spatial correlations be-
tween the labels. Based on exemplary data, the prior distribution can be easily adjusted
in order to incorporate knowledge about label couplings typical for some class of fore-
ground objects (e.g. human silhouettes). Such a learned prior results in more accurate
segmentation than alternative prior models, which assume generic short-range corre-
lations of pixel labels. The improved accuracy can be observed according to various
criteria (like the number of disconnected regions that represent a foreground object).

6.2 Future research

As indicated in Chapter 1, typical visual surveillance systems analyze video data at
various levels of abstraction. Often the results of the analysis at lower levels (like back-
ground segmentation) are not of interest themselves but become an input to higher-level
tasks (like object tracking). An interesting future research task is to merge the presented
probabilistic models into a single model that would encapsulate the low and high level
analytical tasks. Such a model would allow to properly characterize uncertainties in
the quantities passed between various levels. On the downside, inference in the unified
model requires dealing with potentially large number of hidden variables. The dis-
cussed message-passing algorithms usually scale well with the size of the model since
computation of a belief is always local, in the sense that it involves a limited subset of
other beliefs (consider dynamic Bayesian networks as an example of large-scale mod-
els, where inference is efficient). Therefore, a promising approach for inference in the
unified model is by representing the model as a factor graph and applying one of the
message-passing algorithms.

Another research direction is to consider non-homogeneous sensors, like cameras and
radars, and develop a probabilistic model that would encapsulate measurements from
all sensors. Such non-homogeneous systems are already subject of intense research,
mainly in the area of video and audio fusion. However, at present processing measure-
ments from different sensors occurs at independent modules, and only the high-level
“events” are fused. Probabilistic generative models allow to view an “event” as a ran-
dom variable that generates various types of measurements in different sensors at the
same time. Inference in such models would immediately merge contributions from dif-
ferent sensors and avoided the need to develop customized merging techniques.

110 CONCLUSIONS

SUMMARY

Visual surveillance systems steadily find they way into our daily lives. Either for se-
curity enforcement, congestion monitoring or daily assistance for elderly, cameras are
common in schools, homes, airports, shopping centers and other public areas. For ex-
ample, in UK alone there are estimated 4.2 million CCTV cameras already installed (Mc-
Cahil and Norris, 2003). According to a study (Norris and Armstrong, 1999) an average
person on a busy day in an urban environment could have its image captured by up to
300 cameras.1

Progress in communication technology and communication infrastructure allows to de-
velop networks of multiple surveillance cameras. Compared to single-camera systems,
such networks provide greater flexibility and wider observation scope. In particular,
one may setup a surveillance system for a wide area (like an airport) by focusing indi-
vidual cameras on distinct, relatively narrow fields of view and merging information
from different cameras. A direct consequence of the technological advances in camera
networks is an increased need for intelligent video analysis techniques. Such techniques
automatically interpret video data from individual cameras and fuse data from multi-
ple cameras in order to provide access to global information about events taking place
in the considered wide area.
This thesis presents various video analysis techniques that allow automated tracking
of multiple persons with spatially distributed cameras. The techniques analyze video
data at various levels of abstraction. At the low level, we considered the problem of
interpreting individual pixels in video frames in order to detect pixels that represent
humans. At a higher-level, we considered the problem of recognizing appearances of
the same person from different, spatially distributed cameras. A key challenge, common
to both tasks, is the uncertainty of video measurements. For example, when detecting
which pixels represent a person one has to deal with the fact that the appearance of the
person is similar to some other objects. When recognizing a person one has to deal with
the fact that the same person observed at different cameras will look slightly different
due to differences in illuminating light, body pose and camera viewing angle.
A characteristic feature of the presented techniques is that they are developed within
a single methodological framework of Bayesian networks. This framework has been

1Estimates for United Kingdom in 1999.

112 SUMMARY

described in Chapter 2. Bayesian networks provide an elegant tool for dealing with
uncertain knowledge, where the input quantities are represented as observed random
variables, and the sought output quantities as hidden random variables. The relation
between the hidden and the observed variables is encoded in a probability distribution
or a so-called probabilistic model. Essentially, in this formalism a given problem is con-
verted to a Bayesian inference problem and solved with Bayesian inference techniques.
An appealing property of this approach is that Bayesian networks allow to solve such
inference problems to a certain extent automatically.

Chapter 3 and 4 are focused on the high level part of the system. The task of the high
level subsystem is to maintain person’s identity when he or she leaves the field of view
of one camera and later on appears at some other camera. Since the cameras in our
system are sparsely distributed, their fields of view are disjoint. Consequently, when a
person leaves the field of view we temporarily lose track of it. When the person appears
at some other we have to re-identify the person. In this way the system maintains global
trajectories of people despite sparse camera locations. The system relies on two types
of cues. First, appearances of the same person at various cameras are expected to be
similar (although not identical). Second, motion of a person from one camera to some
other is constrained by various environment parameters, like minimum travel time.

The thesis presents two probabilistic data association algorithms that gather appear-
ance of the same person from different cameras into a single trajectory. The method
developed in Chapter 3 solves the association problem and at the same time tries to
estimate environment parameters. This approach can be viewed as an extension of the
classical “multiple hypothesis” tracking algorithm. The extension allows to adapt the
algorithm to changing environment parameters (e.g., in the rush hours the travel times
between some cameras might increase). In contrast, the method developed in Chapter 4
assumes known environment parameters. This online algorithm is based on Bayesian
inference in Infinite Gaussian Mixture Models (also known as Dirichlet Process Mixture
Models). The emphasis is on accurate estimation of the number of distinct persons and
correct association in difficult environments (e.g., characterized by very large illumina-
tion variations between cameras).

In Chapter 5 a low level video analysis system is presented. The tasks of the low level
system include segmentation of video frame into background and foreground regions
and detecting humans. The basic assumption here is that the camera and the back-
ground scene remain static. In this case a person passing through the scene can be
detected by finding pixels that deviate from the probabilistic model of the background
scene. The static background is assumption fairly common, and there exist a variety
of methods for object detection and local tracking. However, many of these methods
consider individual pixels independent of each other, and thus often provide incom-
plete or rough object shapes. We have developed a probabilistic model (Clipped Factor
Analysis model) of human silhouettes that incorporates pixel correlations characteristic
for human shapes. It this way our model allows more accurate detection of pixels that
represent a person in a video frame.

SUMMARY 113

The Bayesian approach to video analysis considered in the thesis offers several benefits.
First, experimental results indicate improvements in terms of speed or accuracy over
existing methods. Results show that our methods are much more robust to illumination
conditions, have a better performance in tracking and scale much better with the num-
ber of cameras and the number of humans in the system. Second, the Bayesian approach
constitutes a generic paradigm for constructing more elaborate video analysis systems
that couple the inference at the low and high levels in a principled way. A potential
advantage of such systems lies in clarity of formulations and proper characterization of
uncertainties in the results of analysis at intermediate levels.

114 SUMMARY

SAMENVATTING

Bewakingscamera’s worden steeds meer toegepast in onze samenleving, bijvoorbeeld
voor beveiliging, verkeerstoezicht of als hulpmiddel in de ouderenzorg. Camera’s zijn
op grote schaal te vinden in scholen, huizen, luchthavens, winkelcentra en andere pub-
lieke ruimtes. In het Verenigd Koninkrijk alleen al zijn naar schatting 4.2 miljoen bewak-
ingscamera’s in gebruik (McCahil and Norris, 2003). Volgens onderzoek (Norris and
Armstrong, 1999), zal een gemiddelde persoon door z’n 300 camera’s op een drukke
dag in stedelijke omgeving geobserveerd kunnen worden.2

Innovaties in communicatie technologie en infrastructuur maken het mogelijk om meer-
dere camera’s in een netwerk te bundelen. In vergelijking met een enkele camera bieden
zulke netwerken meer flexibiliteit. Als gevolg hiervan groeit de behoefte aan intelli-
gente video analyse methoden die de beelden van individuele camera’s analyseren, en
de informatie van meerdere camera’s op een slimme manier combineren.

Het proefschrift dat voor u ligt beschrijft een aantal video analyse technieken voor het
volgen van verschillende personen door meerdere camera’s. De beschreven metho-
den analyseren de videobeelden op verschillende abstractieniveaus. Op het laagste
niveau is worden individuele pixels geclassificeerd als persoon of achtergrond. Een
hoger niveau behandelt het probleem van het herkennen van dezelfde persoon in de
beelden van camera’s die zich op verschillende locaties bevinden. Beide taken worden
gekenmerkt door dezelfde uitdaging, het omgaan met de onzekerheid van de camera
waarnemingen. Bijvoorbeeld, methoden om personen te detecteren moeten rekening
houden met het feit dat een persoon er hetzelfde uit kan zien als andere objecten. Verder
hebben technieken om personen opnieuw te herkennen te maken met verschillende
lichtomstandigheden, houdingen en camera standpunten.

Alle gepresenteerde technieken zijn ontwikkeld binnen hetzelfde Bayesiaanse netwer-
ken formalisme, beschreven in hoofdstuk 2. Bayesiaanse netwerken vormen een elegant
hulpmiddel voor het omgaan met onzekere informatie, waarin de invoer gepresenteerd
wordt als zichtbare variabelen, en de gewenste uitvoer als verborgen variabelen. De
relatie tussen beide typen variabelen is probabilistisch, en wordt gerepresenteerd als
een kansverdeling. Binnen dit formalisme wordt een gegeven probleem beschouwd als

2Schatting voor het Verenigd Koninkrijk in 1999.

116 SAMENVATTING

een Bayesiaans inferentie probleem, dat opgelost kan worden met bijbehorende stan-
daardtechnieken. Een aantrekkelijk voordeel is Bayesiaanse netwerken het mogelijk
maken zulke inferentie problemen tot op zekere hoogte automatisch op te lossen.
Hoofdstuk 3 en 4 gaan over het hogere niveau van het systeem: het volgen van meerdere
personen met camera’s op verschillende locaties. Het doel is hier om een persoon die
uit het gezichtsveld van een camera loopt en later bij een andere camera weer verschijnt
te herkennen. Aangezien de camera’s zich op verschillende locaties bevinden zijn hun
gezichtsvelden gescheiden, met als gevolg dat wanneer een persoon het gezichtsveld
verlaat we hem niet meer kunnen volgen. Wanneer de persoon terug in het beeld van
een camera komt moeten we hem of haar opnieuw identificeren. Op deze manier is
het mogelijk globale trajecten te berekenen, ondanks het feit dat de camera’s slechts
op enkele plaatsen staan. Het systeem is gebaseerd op twee typen kenmerken. Ten
eerste, het verwacht dat de beelden van dezelfde persoon bij verschillende camera’s op
elkaar lijken (maar hoeven niet identiek zijn). Ten tweede zijn de mogelijke bewegingen
van een persoon tussen camera locaties beperkt door verscheidene omgevingsfactoren,
zoals bijvoorbeeld de minimale tijd die nodig is om van de ene naar de andere camera
locatie te bewegen.
Dit proefschrift presenteert twee probabilistische algoritmes om globale trajecten te
berekenen. De methode beschreven in hoofdstuk 3 berekent deze trajecten en probeert
tegelijkertijd de relevante omgevingsfactoren te schatten. De techniek kan gezien wor-
den als een uitbreiding van het klassieke “multiple hypothesis tracking” algoritme, die
zich kan aanpassen aan een veranderende omgeving (bijvoorbeeld tijdens de spits kan
de reistijd tussen twee camera’s toenemen). De techniek beschreven in hoofdstuk 4
daarentegen gaat uit van bekende omgevingsfactoren die niet veranderen. Dit online
algoritme is gebaseerd op Bayesiaanse inferentie in Infinite Gaussian Mixture modellen.
De nadruk ligt hier op het nauwkeurige schatten van het aantal verschillende personen
in moeilijke omstandigheden (bijvoorbeeld wanneer er grote verschillen bestaan in de
lichtomstandigheden tussen camera’s.
Hoofdstuk 5 beschrijft een video analyse methode voor het lage niveau van het sys-
teem, waarin een videobeeld gescheiden wordt in voor- en achtergrond en personen
gedetecteerd worden. De belangrijkste aanname hier is dat de camera en de achter-
grond statisch blijven. Een persoon wordt gedetecteerd als de pixels die afwijken van
het probalistische achtergrondmodel. De aanname van een statische achtergrond is re-
delijk gangbaar, en er bestaan vele methoden voor het detecteren en volgen van ob-
jecten. De meeste methoden bekijken echter losse pixels onafhankelijk van elkaar, met
incomplete en grillige vormen als gevolg. Wij hebben een probabilistische model van
menselijke silhouetten ontwikkeld dat rekening houdt met pixel correlaties kenmerk-
end voor menselijke vormen. Op deze manier maakt ons model een nauwkeurigere
detectie mogelijk van pixels die een persoon representeren.
De Bayesiaanse aanpak van video analyse behandeld in dit proefschrift biedt verschei-
dene voordelen. Ten eerste laten experimentele resultaten aanzienlijke verbeteringen
zien qua snelheid en nauwkeurigheid over bestaande methoden. De resultaten tonen

SAMENVATTING 117

ook aan dan onze methoden robuuster zijn met betrekking tot veranderingen in de lich-
tomstandigheden en zijn beter in het volgen van personen. Ten tweede is de Bayesi-
aanse aanpak een erg generiek formalisme voor het bouwen van meer ingewikkelde
video analyse systemen, waarbinnen analyse op lagere en hogere niveaus op een con-
sistente manier gekoppeld kunnen worden.

Translated by Mathijs Spaan.

118 SAMENVATTING

BIBLIOGRAPHY

S. M. Aji and R. J. McEliece (2000). The generalized distributive law. IEEE Transactions
on Information Theory, 46(2):325–343.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan (2003). An introduction to MCMC
for machine learning. Machine Learning, 50(1–2):5–43.

C. E. Antoniak (1974). Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. Annals of Statistics, 2:1152–1174.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp (2002). A tutorial on particle
filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on
Signal Processing, 50(2):174–188.

Y. Bar-Shalom and T. E. Fortmann (1988). Tracking and Data Association. Academic Press.
Y. Bar-Shalom and X.-R. Li (1993). Estimation and Tracking: Principles, Techniques and

Software. Artech House.
M. Beal, Z. Ghahramani, and C. Rasmussen (2002). The infinite hidden Markov model.

In Advances in Neural Information Processing Systems 14.
J. Bilmes (1997). A gentle tutorial on the EM algorithm and its application to parameter

estimation for gaussian mixture and hidden markov models. Icsi-tr-97-021, Univer-
sity of Berkeley.

A. Blake, M. Isard, and D. Reynard (1995). Learning to track the visual motion of con-
tours. Artificial Intelligence, 78(1–2):179–212.

X. Boyen and D. Koller (1998). Tractable inference for complex stochastic processes. In
Uncertainty in Artificial Intelligence, pages 33–42. Morgan Kaufman.

L. Brown (1986). Fundamentals of statistical exponential families. Institute of Mathematical
Statistics, Hayward, USA.

H. H. Bui, S. Venkatesh, and G. West (2001). Tracking and surveillance in wide-area
spatial environments using the abstract hidden Markov model. International Journal
of Pattern Recognition and Artificial Intelligence, 15(1):177–197.

Q. Cai (1997). Tracking Human Motion in Indoor Environments Using Distributed-Camera
System. Ph.D. thesis, University of Texas at Austin.

120 BIBLIOGRAPHY

Q. Cai and J. K. Aggarwal (1999). Tracking human motion in structured environments
using a distributed-camera system. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1241–1247.

A. T. Cemgil, W. Zajdel, and B. J. A. Kröse (2005). A hybrid graphical model for robust
feature extraction from video. In IEEE Computer Vision and Pattern Recognition (CVPR).

D. Chandler (1987). Introduction to modern statistical mechanics. Oxford University Press.
R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade (2001). Algorithms for cooperative

multisensor surveillance. Proceedings of the IEEE, 89(10):1456–1477.
T. M. Cover and J. A. Thomas (1991). Elements of Information Theory. John Wiley & Sons,

New York.
I. J. Cox (1993). A review of statistical data association techniques for motion correspon-

dence. International Journal of Computer Vision, 10(1):53–66.
I. J. Cox and S. L. Hingorani (1994). An efficient implementation and evaluation of

Reid’s multiple hypothesis tracking algorithm for visual tracking. In IEEE Int. Conf.
on Pattern Recognition.

T. Dean and K. Kanazawa (1989). A model for reasoning about persistence and causa-
tion. Computational Intelligence, 5(3):142–150.

A. P. Dempster, N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incom-
plete data via EM algorithm. Journal of the Royal Statistical Society, B 39(1):1–38.

S. Dockstader and A. M. Tekalp (2001). Multiple camera tracking of interacting and
occluded motion. Proceedings of IEEE, 89(10):1441–1455.

A. Doucet, N. de Freitas, and N. Gordon, editors (2001). Sequential Monte Carlo Methods
in Practice. Springer Verlag.

M. Drew, J. Wei, and Z. Li (1998). Illumination-invariant color object recognition via
compressed chromaticity histograms of color-channel-normalized images. In Int.
Conf. on Computer Vision, pages 533–540.

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael (2000). Learning low-level vision.
International Journal of Computer Vision, 40(1):25–47.

B. Frey and N. Jojic (2005). A comparison of algorithms for inference and learning in
probabilistic graphical models. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 27(10):1392–1416.

N. Friedman (1998). The Bayesian structural EM algorithm. In Uncertainty in Artificial
Intelligence.

N. Friedman and S. Russell (1997). Image segmentation in video sequences. A proba-
bilistic approach. In Uncertainty in Artificial Intelligence.

D. Gavrila (1999). The visual analysis of human movement: A survey. Computer Vision
and Image Understanding, 73(1):82–98.

BIBLIOGRAPHY 121

D. Gavrila and L. Davis (1996). 3-d model-based tracking of humans in action: a multi-
view approach. In IEEE Computer Vision and Pattern Recognition, pages 73–80.

D. Gavrila and J. Giebel (2001). Virtual sample generation for template-based shape
matching. In IEEE Computer Vision and Pattern Recognition, pages 676–681.

A. Gelman, J. Carlin, H. Stern, and D. Rubin (1995). Bayesian Data Analysis. Chapman &
Hall.

S. Geman and D. Geman (1984). Stochastic relaxation, gibbs distributions and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 6(6):721–741.

Z. Ghahramani (2001). An introduction to hidden Markov models and Bayesian net-
works. International Journal of Pattern Recognition and Artificial Intelligence, 15(1):9–42.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors (1996). Markov Chain Monte
Carlo in Practice. CRC Press.

P. Giudci and R. Castelo (2001). Improving Markov chain Monte Carlo model search for
data mining. Machine Learning, 50:127–158.

G. D. Hager and P. Belhumeur (1998). Efficient region tracking with parametric mod-
els of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(10):1025–1039.

I. Haritaoglu, D. Harwood, and L. S. Davis (2000). W4: Real-time surveillance of people
and their activities. IEEE Transactions on Paterrn Recognition and Machine Intelligence,
22(8):809–830.

T. Heskes (2003). Stable fixed points of loopy belief propagation are local minima of the
Bethe free energy. In Advances in Neural Information Processing Systems 15.

T. Heskes and O. Zoeter (2002). Expectation propagation for approximate inference in
dynamic Bayesian networks. In Uncertainty in Artificial Intelligence.

T. Heskes, O. Zoeter, and W. Wiegerinck (2004). Approximate expectation maximiza-
tion. In Advances in Neural Information Processing Systems 16.

G. Hinton and T. Sejnowski (1986). Learning and relearning in Boltzmann machines. In
D. Rumelhart and J. McCelland, editors, Parallel distributed processing. MIT Press.

T. Huang and S. Russell (1998). Object identification: A Bayesian analysis with applica-
tion to traffic surveillance. Artificial Intelligence, 103(1–2):1–17.

C. Hue and J.-P. L. Cadre (2002). Sequential Monte Carlo methods for multiple target
tracking and data fusion. IEEE Transactions on Signal Processing, 50(2):309–325.

M. Isard and A. Blake (1998). Condensation – conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1):5–28.

T. S. Jaakkola (2001). Tutorial on variational approximation methods. In M. Opper and
D. Saad, editors, Advanced mean field methods. MIT Press.

122 BIBLIOGRAPHY

D. Jang, G. Kim, and H. Choi (1997). Model-based tracking of moving object. Pattern
Recognition, 30(6):999–1008.

O. Javed, Z. Rasheed, K. Shafique, and M. Shah (2003). Tracking across multiple cameras
with disjoint views. In IEEE Int. Conf. on Computer Vision, pages 952–957.

F. V. Jensen (2001). Bayesian Networks and Decision Graphs. Springer-Verlag, New York.
M. Jerrum and A. Sinclair (1996). The Markov chain Monte Carlo method: an approach

to approximate counting and integration. In D. Hochbaum, editor, Approximation
Algorithms for NP-hard Problems, pages 482–520. PWS Publishing.

N. Jojic, B. Frey, and A. Kannan (2003). Epitomic analysis of appearance and shape. In
IEEE International Conference on Computer Vision.

M. I. Jordan, editor (1998). Learning in graphical models. MIT Press.
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1998). An introduction to

variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical
Models. MIT Press.

J. Kato, S. Joga, J. Rittscher, and A. Blake (2002). An HMM-based segmentation method
for traffic monitoring movies. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(9):1291–1296.

V. Kettnaker and R. Zabih (1999). Bayesian multi-camera surveillance. In IEEE Computer
Vision and Pattern Recognition, pages 2253–2261.

D. Koller, J. W. Weber, and J. Malik (1994). Robust multiple car tracking with occlusion
reasoning. In European Conf. on Computer Vision, pages 186–196.

B. J. A. Kröse, N. Vlassis, and W. Zajdel (2004). Bayesian methods for tracking and
localization. In Philips Symposium On Intelligent Algorithms, pages 27–38.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger (2001). Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519.

S. L. Lauritzen (1996). Graphical Models. Clarendon Press, Oxford.
D. D. Lee and H. Sompolinsky (1998). Learning a continuous hidden variable model for

binary data. In Advances in Neural Information Processing Systems.
U. Lerner and R. Parr (2001). Inference in hybrid networks: Theoretical limits and prac-

tical algorithms. In Uncertainty in Artificial Intelligence, pages 310–318.
Y. Li, A. Hilton, and J. Illingworth (2002). A relaxation algorithm for real-time multiple

view 3d-tracking. Image and Vision Computing, 20(12):841–859.
J. Lim and D. Kriegman (2004). Tracking humans using prior and learned representa-

tions of shape and appearance. In IEEE Conf. on Face and Resture Recognition, pages
869–874.

D. J. MacKay (1992). Bayesian interpolation. Neural Computation, 4(3):415–447.

BIBLIOGRAPHY 123

M. McCahil and C. Norris (2003). Estimating the extent, sophistication and legality of
CCTV in london. In M. Gill, editor, CCTV. Perpetuity Press.

T. Minka (2001a). The EP energy function and its minimization schemes. Technical
report, MIT Media Lab.

T. Minka (2001b). Expectation Propagation for approximate Bayesian inference. Ph.D. thesis,
MIT.

T. Minka and Z. Ghahramani (2003). Expectation propagation for infinite mixtures.
In Advances in Neural Information Processing Systems. Workshop on Nonparametric
Bayesian Methods and Infinite Models.

T. Minka and J. Lafferty (2002). Expectation propagation for the generative aspect
model. In Uncertainty in Artificial Intelligence.

K. Murphy (1998). Switching Kalman filters. Technical report, University of Berkeley.

K. Murphy (2001). Learning Bayes net structure from sparse data sets. Technical report,
University of Berkeley.

K. Murphy (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, University of California, Berkeley.

K. Murphy, Y. Weiss, and M. I. Jordan (1999). Loopy-belief propagation for approximate
inference: An empirical study. In Uncertainty in Artificial Intelligence.

R. M. Neal and G. E. Hinton (1998). A view of the EM algorithm that justifies incremen-
tal, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models,
pages 355–368. MIT Press.

A. E. Nicholson and J. M. Brady (1994). Dynamic belief networks for discrete monitor-
ing. IEEE Transactions on Systems, Man, and Cybernetics, 24(11).

C. Norris and G. Armstrong, editors (1999). The Maximum Surveillance Society: The Rise
of CCTV. Oxford:Berg.

H. Pasula, S. Russell, M. Ostland, and Y. Ritov (1999). Tracking many objects with many
sensors. In Int. Joint Conf. on Artificial Intelligence, pages 1160–1171.

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

F. Pedersini, A. Sarti, and S. Tubaro (2001). Multi-camera parameter tracking. IEE Pro-
ceedings: Vision, Image & Signal Processing, 148(1):70–77.

S. Press (1972). Applied Multivariate Analysis. Series in Quantitive Methods for Decision-
Making. Holt, Rinehart and Winston, Inc.

Y. Qi and T. Minka (2003). Expectation propagation for signal detection in flat-fading
channels. In IEEE Int. Symposium on Information Theory.

124 BIBLIOGRAPHY

C. Rao, A. Ylimaz, and M. Shah (2002). View-invariant representation and recognition
of actions. International Journal of Computer Vision, 50(2):203–226.

C. E. Rasmussen (2000). The infinite Gaussian mixture model. In Advances in Neural
Information Processing Systems 12, pages 554–560.

J. Rittscher, J. Kato, S. Joga, and A. Blake (2000). A probabilistic background model for
tracking. In Proc. of European Conf. Computer Vision.

S. T. Roweis and Z. Ghahramani (1999). A unifying review of linear gaussian models.
Neural Computation, 11(2):305–345.

J. Ruiz-Alzola, C. Alberola-Lopez, and J. Corredera (2000). Model-based stereo-visual
tracking: Covariance analysis and tracking schemes. Signal Processing, 80(1):23–43.

L. K. Saul and M. I. Jordan (1999). Mixed memory Markov models: Decomposing com-
plex stochastic processes as mixtures of simpler ones. Machine Learning, 37(1):75–87.

C. Stauffer and W. E. Grimson (1999). Adaptive background mixture modelling for
realtime tracking. In IEEE Computer Vision and Pattern Recognition, pages 246–252.

J. Sullivan, A. Blake, M. Isard, and J. MacCormick (2001). Bayesian object localization in
images. International Journal of Computer Vision, 44(2):111–135.

J. Sullivan, A. Blake, and J. Rittscher (2000). Statistical foreground modelling for object
localisation. In Proc. of European Conf. on Computer Vision, pages 307–323.

M. E. Tipping (1998). Probabilistic visualisation of high-dimensional binary data. In
Advances in Neural Information Processing Systems.

K. Toyama and A. Blake (2001). Probabilistic tracking in a metric space. In IEEE Inter-
national Conference on Computer Vision, pages 50–59.

N. Ukita and T. Matsuyama (2002). Real-time cooperative multi-target tracking by com-
municating active vision agents. In IEEE Int. Conf. on Pattern Recognition.

M. J. Wainwright and M. I. Jordan (2003). Graphical models, exponential families, and
variational inference. Technical report 649, University of California, Berkeley.

D. Wang, T. Feng, H.-Y. Shum, and S. Ma (2002). A novel probability model for back-
ground maintenance and subtraction. In Int. Conf. on Vision Interface, pages 109–117.

M. Welling and Y.-W. Teh (2001). Belief optimization in binary networks: a stable alter-
native to loopy belief propagation. In Uncertainty in Artificial Intelligence.

C. K. I. Williams and D. Barber (1998). Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Ananlysis and Machine Intelligence, 20(12):1342–1351.

J. Winn (2003). Variational Message Passing and its Applications. Ph.D. thesis, University
of Cambridge.

P. J. Withagen, F. Groen, and K. Schutte (2005). CCD characterization for a range of color
cameras. In IEEE Instrumentation and Measurement Technology Conference.

BIBLIOGRAPHY 125

C. R. Wren, A. Azerbayejani, T. Darrel, and A. P. Pentland (1997). Pfinder: Real-time
tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(7):780–785.

J. Yamato, J. Ohya, and K. Ishii (1992). Recognizing human action in time-sequential
images using hidden Markov model. In IEEE Computer Vision and Pattern Recognition.

J. S. Yedidia, W. T. Freeman, and Y. Weiss (2001). Understanding belief propagation and
its generalizations. In Int. Joint Conf. on Artificial Intelligence.

J. S. Yedidia, W. T. Freeman, and Y. Weiss (2005). Constructing free-energy approxima-
tions and generalized belief propagation algorithms. IEEE Transactions on Information
Theory, 51(5):2282–2312.

A. Yuille (2002). CCCP algorithms to minimize the Bethe and Kikuchi free energies:
Convergent alternatives to belief propagation. Neural Computation, 14:1691–1722.

W. Zajdel, A. Cemgil, and B. J. A. Kröse (2004). Online multicamera tracking with a
switching state-space model. In IEEE Int. Conf. on Pattern Recognition, pages 339–343.

W. Zajdel, A. Cemgil, and B. J. A. Kröse (Submitted, 2005a). Hybrid graphical model for
online multicamera tracking. Pattern Recognition.

W. Zajdel, A. T. Cemgil, and B. J. A. Kröse (Submitted, 2005b). A probabilistic model for
spatial pixel correlations for background segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

W. Zajdel and B. J. A. Kröse (2002). Bayesian network for multiple hypothesis tracking.
In Dutch-Belgian Artificial Intelligence Conference, pages 379–386.

W. Zajdel and B. J. A. Kröse (2003a). Approximate learning and inference for tracking
with non-overlapping cameras. In Int. Conf. on Artificial Intelligence and Applications,
pages 70–75.

W. Zajdel and B. J. A. Kröse (2003b). Gaussian mixture model for multi-sensor tracking.
In Dutch-Belgian Artificial Intelligence Conference, pages 371–378.

W. Zajdel and B. J. A. Kröse (2005). A sequential Bayesian algorithm for surveillance
with non-overlapping cameras. International Journal of Pattern Recognition and Artificial
Intelligence, 19(8):977–996.

W. Zajdel, N. Vlassis, and B. J. A. Kröse (2005a). Bayesian methods for tracking and
localization. In E. Aarts, J. Korts, and W. Verhaegh, editors, Intelligent Algorithms,
pages 243–258. Kluwer Academic Publishers.

W. Zajdel, Z. Zivkovic, and B. J. A. Kröse (2005b). Keeping track of humans: have I seen
this person before? In IEEE Int. Conf. on Robotics and Automation, pages 2093–2098.

T. Zhao and R. Nevita (2004). Tracking multile humans in complex situations. IEEE
Transactions on Pattern Recognition and Machine Intelligence, 26(9):1208–1221.

Z. Zivkovic (2004). Improved adaptive Gausian mixture model for background subtrac-
tion. In IEEE Int. Conf. on Pattern Recognition.

126 BIBLIOGRAPHY

ACKNOWLEDGMENTS

I worked on this thesis pretty much uninterrupted between September 2001 and Novem-
ber 2005. The thesis is a result of support, collaboration and help from many friends and
colleagues.

Without doubt, the thesis would have not been written without Ben and Taylan. I am
deeply grateful for their guidance, research ideas and other teachings. If there is any-
thing you both failed to teach me then it must be your passion for music. Although
Frans was not directly involved in my daily research, his role as a promotor cannot be
missed. I thank him for his contributions to the papers and the thesis.

Nikos and Josep gave me a lot of encouragement, which has been very valuable for me.
Much appreciation to the remaining group members as well. In particular, Zoran con-
tributed substantial part of the software used in Chapter 5. Leo, Stephan, my roommate
Sjaak, fellow AIOs Mathijs (who translated the summary) and Jelle provided for a gezel-
lig working environment. I thank the Nijmegen group, especially Tom — the wizard of
graphical models always ready to guide the seeker of the truth on Bayesian inference. I
thank Arend from Eagle Vision for collaboration and his interest in my work.

Outside office, my endavours in The Netherlands have been made easier by Kamil,
Wien, Laurens, Dini, Anushka, Paula and Jan. I am especially indebted to Anushka and
Dini. Anushka allowed me to live in effectively two homes for the past two years. If I
can say a single Dutch word correctly it must have been Dini’s effort.

Magdalena, whatever I say in whatever language I wouldn’t have made it through
to the end of this thesis without you. I deeply thank for all the love, patience and the
inevitable insights on latest ballet displays in Amsterdam.

Dziękuję moim rodzicom: wasze wsparcie było i jest podstawą wszystkiego. Uściski dla mojej
siostry Ewy oraz Szymona, ktorzy nigdy nie szczędzili zaproszeń do Lille! Dziękuję również
rodzicom Magdaleny, za to iż zawsze o mnie pamiętali podczas swoich wizyt w Holandii.

Amsterdam, 21 November 2005.

