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 Abstract

In clustering, we are given a set of N points in d-dimension space Rd and we have to arrange them into a number of groups  (called clusters). In k-means clustering, the groups are identified by a set of points that are called the cluster centers. The data points belong to the cluster whose center is closest. Existing algorithms for k-means clustering suffer from two main drawbacks, (i) The algorithms are slow and do not scale to large number of data points and (ii) they converge to different local minima based on the initializations. We present a fast greedy k-means algorithm that attacks both these drawbacks based on a greedy approach. The algorithm is fast, deterministic and is an approximation of a global strategy to obtain the clusters. The method is also simple to implement requiring only two variations of kd-trees as the major data structure. With the assumption of a global clustering for k-1 centers, we introduce an efficient method to compute the global clustering for k clusters. As the global clustering for k = 1 is obvious (cluster center at the mean of all points), we can find the global solution for k clusters inductively. As a result, the algorithm we present can also be used for finding the minimum number of centers that satisfy a given criteria. We also present a number of empirical studies both on synthetic and real data. 
1 Introduction

Clustering is a well-known problem in statistics and engineering, namely, how to arrange a set of vectors (measurements) into a number of groups (clusters). Clustering is an important area of application for a variety of fields including data mining, statistical data analysis and vector quantization. The problem has been formulated in various ways in the machine learning, pattern recognition optimization and statistics literature. The fundamental clustering problem is that of grouping together (clustering) data items that are similar to each other. The most general approach to clustering is to view it as a density estimation problem. Because of its wide application, several algorithms have been devised to solve the problem. Notable among these are the EM algorithm, neural nets, SVM and k-means. Clustering the data acts as a way to parameterize the data so that one does not have to deal with the entire data in later analysis, but only with these parameters that describe the data. Sometimes clustering is also used to reduce the dimensionality of the data so as to make the analysis of the data simpler.

In one of its forms, clustering problems can be defined as: given a dataset of N records, each having dimensionality d, to partition the data into subsets such that a specific criterion is optimized.  The most widely used criterion for optimization is the distortion criterion. Each record is assigned to a single cluster and distortion is the average squared Euclidean distance between a record and the corresponding cluster center. Thus this criterion minimizes the sum of the squared distances of each record from its corresponding center. K-means clustering is used to minimize the above-mentioned term by partitioning the data into k non-overlapping regions identified by their centers. Also k-means is defined only over numeric or continuous data since it requires the ability to compute Euclidean distances as well as the mean of a set of records. 

Clustering based on k-means is closely related to a number of other clustering and location problems. These include the Euclidean k-medians, in which the objective is to minimize the sum of distances to the nearest center, and the geometric k-center problem, in which the objective is to minimize the maximum distance from every point to its closest center. There are no efficient methods known to any of these problems and some formulations are NP-hard. In [11] is presented an asymptotically efficient approximation for the k-means clustering problem, but the large constant factors suggest that it is not a good candidate for practical implementation. 

The k-means algorithm is based on the simple observation that the optimal placement of a center is at the centroid of the associated cluster. Thus given any set of k-centers C, for each center c 
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 C, let V(c) denote the voronoi region of the point c, that is, the region of space that is closest to the center c. At every stage of the k-means, the algorithm moves the centers in C to the centroid of the points in V(c) and then updates V(c) by recomputing the distance from each point to a center c. These steps are repeated until some convergence condition is met. For points in general positions (in particular, if no point is equidistant from two centers), the algorithm will converge to a point where further stages of the algorithm will not change the position of any center. This would be an ideal convergence condition. However, converging to the point where no center is further updated might take very long. Thus further stages of the algorithm are stopped when the change in distortion, is less than a threshold. This saves a lot of time as in the last stages, the centers move very little in every stage. Even without the approximation of convergence based on distortion, the results obtained are not necessarily a global minimum. The results obtained vary greatly based on the initial set of centers chosen. The algorithm is deterministic after the initial centers are determined.  

The attractiveness of the k-means lies in its simplicity and flexibility. In spite of other algorithms being available, k-means continues to be an attractive method because of its convergence properties. However, it suffers from major shortcomings that have been a cause for it not being implemented on large datasets. The most important among these are

(i) K-means is slow and scales poorly with respect to the time it takes for large number of points; 

(ii) The algorithm might converge to a solution that is a local minimum of the objective function.
Much of the related work does not attempt to confront both the before mentioned issues directly. Because of these shortcomings, K-means is at times used as a hill climbing method rather than a complete clustering algorithm, where the centroids are initialized to the centers obtained from some other methods. 

The clusters obtained depend heavily on the initial centers. In [9] is given a discussion on how to choose the initial centers. To treat the problem of choosing the initial centers, several other techniques using stochastic global optimization methods (e.g. Simulated annealing, genetic algorithms), have been developed. Different methods of sub-sampling and approximation have also been proposed to counter the above. However, none of these methods have gained wide acceptance and in many practical applications, the clustering method that is used is based on running the k-means algorithm with multiple restarts. 

There has been some related work where one of the above two issues mentioned has been addressed. In [2,3] and [4] methods have tried to address the problem of efficient implementation of the k-means algorithm. In [1] a method has addressed the problem of the local convergence of the k-means algorithm and proposed an iterative algorithm that comes closer to the global solution by running a set of deterministic k-means algorithms one by one. But the proposed strategy is very slow and has little practical application even in case of medium sized datasets. 

Before proceeding, we explicitly define the problem that we are looking at. In a traditional k-means algorithm (for which we develop an improved solution) each of the points is associated with only one partition also called the cluster. The number of partitions is pre-specified. Each of the partitions is recognized by a cluster center, which is the mean of all the points in the partition. All the points in a partition are closer to its center than to any other cluster center. The accuracy of a clustering approach is defined by the distortion criterion, which is the mean squared distance of a point from its cluster center. Thus the objective is to get the clustering with minimum distortion and the specified number of clusters. 

In this thesis we address the issues of scaling the algorithm for large number of points and convergence to local optima. We present a fast greedy k-means algorithm. The proposed algorithm is entirely deterministic and so avoids the problem of having to initialize the centers. In addition to combining ideas in [2,3], [4], [1] and the standard k-means algorithm, the proposed algorithm also introduces some new techniques to make k-means more tractable.  The implementation is also simple and only requires variants of a kd-tree. 

The rest of the thesis is organized as follows. In the next chapter, we introduce the various concepts that are related to this algorithm. In chapter 3 we outline our algorithm, its variants and the new ideas implemented. Chapter 4 explains the implementation issues so that similar results can be obtained in independent studies later. Experimental results on both synthetic and real data are reviewed in chapter 5. Chapter 6 gives the conclusions of the research and chapter 7 points to certain directions in which further research could be undertaken. The thesis closes with relevant references in chapters 8. 

2 Definitions and Related Work

In this chapter we look at relevant work and definitions that are important for the understanding of the thesis. The ideas covered in this chapter are the standard k-means algorithm, also referred to as the Lloyd’s algorithm in [4], a brief introduction to kd-trees, the Global K-means algorithm as in [1] including the greedy approximations and other methods suggested in the same paper for improving the performance of the method and the Blacklisting/filtering algorithm as in [4] and [2]. Several definitions, given in these papers, which we would use in this thesis, are also included. We, however, do not give any proofs of the theorems or lemma that are already proved in these papers.

2.1 Naïve k-means algorithm

One of the most popular heuristics for solving the k-means problem is based on a simple iterative scheme for finding a locally optimal solution. This algorithm is often called the k-means algorithm. There are a number of variants to this algorithm, so to clarify which version we are using, we will refer to it as the naïve k-means algorithm as it is much simpler compared to the other algorithms described here. This algorithm is also referred to as the Lloyd’s algorithm in [4]. 

The naive k-means algorithm partitions the dataset into ‘k’ subsets such that all records, from now on referred to as points, in a given subset "belong" to the same center. Also the points in a given subset are closer to that center than to any other center. The partitioning of the space can be compared to that of Voronoi partitioning except that in Voronoi partitioning one partitions the space based on distance and here we partition the points based on distance. 

The algorithm keeps track of the centroids of the subsets, and proceeds in simple iterations. The initial partitioning is randomly generated, that is, we randomly initialize the centroids to some points in the region of the space. In each iteration step, a new set of centroids is generated using the existing set of centroids following two very simple steps. Let us denote the set of centroids after the ith iteration by C(i). The following operations are performed in the steps:

(i) Partition the points based on the centroids C(i),  that is, find the centroids to which each of the points in the dataset belongs. The points are partitioned based on the Euclidean distance from the centroids. 

(ii) Set a new centroid c(i+1)  
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 C (i+1)  to be the mean of all the points that are  closest to c(i) 
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 C (i) The new location of the centroid in a particular partition is referred to as the new location of the old centroid.  

The algorithm is said to have converged when recomputing the partitions does not result in a change in the partitioning. In the terminology that we are using, the algorithm has converged completely when C(i) and C(i – 1) are identical. For configurations where no point is equidistant to more than one center, the above convergence condition can always be reached.  This convergence property along with its simplicity adds to the attractiveness of the k-means algorithm.  

The naïve k-means needs to perform a large number of "nearest-neighbor" queries for the points in the dataset. If the data is ‘d’ dimensional and there are ‘N’ points in the dataset, the cost of a single iteration is O(kdN). As one would have to run several iterations, it is generally not feasible to run the naïve k-means algorithm for large number of points.  

Sometimes the convergence of the centroids (i.e. C(i) and C(i+1) being identical) takes several iterations. Also in the last several iterations, the centroids move very little. As running the expensive iterations so many more times might not be efficient, we need a measure of convergence of the centroids so that we stop the iterations when the convergence criteria is met. Distortion is the most widely accepted measure. Clustering error measures the same criterion and is sometimes used instead of distortion. In fact k-means algorithm is designed to optimize distortion. Placing the cluster center at the mean of all the points minimizes the distortion for the points in the cluster. Also when another cluster center is closer to a point than its current cluster center, moving the cluster from its current cluster to the other can reduce the distortion further. The above two steps are precisely the steps done by the k-means cluster. Thus k-means reduces distortion in every step locally. The k-Means algorithm terminates at a solution that is locally optimal for the distortion function. Hence, a natural choice as a convergence criterion is distortion. Among other measures of convergence used by other researchers, we can measure the sum of Euclidean distance of the new centroids from the old centroids as in [9]. In this thesis we always use clustering error/distortion as the convergence criterion for all variants of k-means algorithm.

Definition 1: Clustering error is the sum of the squared Euclidean distances from points to the centers of the partitions to which they belong.  

Mathematically, given a clustering 
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 the centroid this clustering associates with an arbitrary point x (so for k-means, 
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 is simply the center closest to x). We then define a measure of quality for 
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Where |a| is used to denote the norm of a vector ‘a’. The lesser the difference in distortion over successive iterations, the more the centroids have converged. Distortion is therefore used as a measure of goodness of the partitioning. 

In spite of its simplicity, k-means often converges to local optima. The quality of the solution obtained depends heavily on the initial set of centroids, which is the only non-deterministic step in the algorithm. Note that although the starting centers can be selected arbitrarily, k-means is fully deterministic, given the starting centers. A bad choice of initial centers can have a great impact on both performance and distortion. Also a good choice of initial centroids would reduce the number of iterations that are required for the solution to converge. Many algorithms have tried to improve the quality of the k-means solution by suggesting different ways of sampling the initial centers, but none has been able to avoid the problem of the solution converging to a local optimum. For example, [9] gives a discussion on how to choose the initial centers, other techniques using stochastic global optimizations methods (e.g. Simulated annealing, genetic algorithms), have also been developed. None of these algorithms is widely accepted.  

2.2 Kd-trees

A very important data structure that is used in our algorithm is a kd-tree. A kd-tree is a data structure for storing a set of finite points from a d-dimensional space. It was introduced and examined it in detail in [12, 13]. 

Kd-trees are simple data structures with the following properties:

(i) They are binary trees;

(ii) The root node contains all the points;

(iii) A node is split along a split-plane such that points to the left are part of the left sub-tree, points to the right are part of the right sub-tree;

(iv) The left and right sub-trees are recursively split until there is only one point in the leaf or a certain condition is satisfied.  

This is the basic kd-tree structure. There exist several variants of the kd-tree based on the way in which they choose the splitting plane, the termination criteria, etc. 

Originally designed to decrease the time in nearest neighbor queries, kd-trees have found other applications as well. Omohumdro has recommended it in a survey of possible techniques to increase speed of neural network learning in [14]. In the context of k-means, kd-trees are used as a data structure to save the points in the dataset by methods described in [10], [4] and [2, 3]. A variant of the kd-tree is also used in [1]. 

Though kd-trees give substantial advantage for lower dimensions, the performance of kd-trees decreases/drops in higher dimensions. Other data structures like AD trees [5] have been suggested for higher dimensions [2] but these have never been used for k-means. 

After this brief introduction to the kd-trees (which is the primary data structure used in our algorithm), we discuss the two main approaches that try to counter the shortcomings of the k-means algorithm.

2.3 The Greedy K-means Algorithm

In [1] is presented a variant of the k-means algorithm that is called the global k-means algorithm. The local convergence properties of k-means have been improved in this algorithm. Also it does not require the initial set of centroids to be decided. The idea is that the global minima can be reached through a series of local searches based on the global clustering with one cluster less. 

Assumption: The assumption used in the algorithm is that the global optima can be reached by running k-means with the (k-1) clusters being placed at the optimal positions for the (k-1) clustering problem and the kth cluster being placed at an appropriate position that is yet to be discovered. 

Let us assume that the problem is to find K clusters and K’ ≤ K. We Use the above assumption, the global optima for k = K’ clusters is computed as a series of local searches. Assuming that we have solved the k-means clustering problem for K’ – 1 clusters, we have to place a new cluster at an appropriate location. To discover the appropriate insertion location, which is not known, we run k-means algorithm until convergence with each of the points in the entire set of the points in the dataset being added as the candidate new cluster, one at a time, to the K’ – 1 clusters. The converged K clusters that have the minimum distortion after the convergence of k-means in the above local searches are the clusters of the global k-means. 

We know that for k = 1, the optimal clustering solution is the mean of all the points in the dataset. Using the above method we can compute the optimal positions for the k = 2, 3, 4, ... K, clusters. Thus the process involves computing the optimal k-means centers for each of the K = 1, 2, 3… K clusters. The algorithm is entirely deterministic. 

Though the attractiveness of the global k-means lies in it finding the global solution, the method involves a heavy cost. K-means is run N times, where N is the number of points in the dataset, for every cluster to be inserted. The complexity can be reduced considerably by not running the K-means with the new cluster being inserted at each of the dataset points but by finding another set of points that could act as an appropriate set for insertion location of the new cluster. In [1] is suggested the use of centers of regions, formed by a variant of the kd-tree, as the insertion points for new centroids. The variant of the kd-tree splits the points in a node using the plane that passes through the mean of the points in the node and is perpendicular to the principal component of the points in the node. A node is not split if it has less than a pre-specified number of points or an upper bound to the number of leaf nodes is reached. The idea is that even if the kd-tree were not used for nearest neighbor queries, merely the construction of the kd-tree based on this strategy would give a very good preliminary clustering of the data. We can thus use the kd-tree nodes centers as the candidate/initial insertion positions for the new clusters. 

The time complexity of the algorithm can also be improved by taking a greedy approach. In this approach, running k-means for each possible insertion position is avoided. Instead reduction in the distortion when the new cluster is added is taken into account without actually running k-means. The point that gives the maximum decrease in the distortion when added as a cluster center is taken to be the new insertion position. K-means is run until convergence on the new list of clusters with this added point as the new cluster. The assumption is that the point that gives the maximum decrease in distortion is also the point for which the converged clusters would have the least distortion. This results in a substantial improvement in the running time of the algorithm, as it is unnecessary to run k-means for all the possible insertion positions. However, the solution may not be globally optimal but an approximate global solution. 

2.4 Accelerating the naïve K-Means Algorithm 

The high time complexity of the k-means algorithm makes it impractical for use in the case of large number of points in the dataset. Reducing the large number of nearest neighbor queries in the algorithm can accelerate it. The kd-tree data structure helps in accelerating in the nearest neighbor queries and is a natural choice to reduce the complexity. There are at least three variants of the k-means algorithm using kd-trees presented in [2], [4] and [10]. In all of these the kd-tree is formed using the points in the dataset. Such usage of kd-trees in k-means was first done in a method detailed in [10]. 

2.4.1 The Blacklisting Algorithm 

In [2] is presented a method to speed up the execution of single k-means iteration thus making k-means for large datasets tractable. This algorithm is called the blacklisting algorithm.

In-spite of its simplicity, the naïve k-means algorithms involves a very large number of nearest neighbor queries. The blacklisting algorithm proceeds by reducing the number of nearest neighbor queries that the k-means algorithm executes. Thus speed is enhanced greatly. The time taken for a single iteration is greatly improved. The algorithm remains exact and it would until take the same number of iterations for convergence as the naïve k-means.  

The blacklisting algorithm uses a variation of the kd-tree, called the mrkd tree, described in [5]. In this variation of the kd-tree, the region of a node is a hyper-rectangle identified by two vectors, hmax and hmin. The node is split at the mid point of the hyper-rectangle, perpendicular to the dimension that is longest. The root node represents the hyper-rectangle that encloses all the points in the dataset. 

The algorithm exploits the fact that instead of updating a particular cluster from the points that belong to it point by point, a more efficient approach will be to update in bulk or groups. Naturally these groups will correspond to hyper-rectangles in the kd-tree. Points can be assigned in bulk using the known centers of mass and size of groups of points provided all the points are being assigned to the same cluster. To ensure correctness we must first make sure that all of the points in a given rectangle indeed “belong” to a specific center before adding their statistics to it. 

Before proceeding to give a description of the algorithm, we give some definitions that are necessary for an understanding of the algorithm. For further details we refer to [2] and [4].

Definition 2: Given a set of centers C and a hyper-rectangle h, we define by ownerC(h) a center c 
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 C such that any point in h is closer to c than to any other center in C, if such a center exists.

Theorem 1: Let C be a set of centers, and h a hyper-rectangle. Let c​​​ 
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 C be ownerc (h). If d(c, h) represents the distance of a hyper-rectangle from the center c (minimum distance from any point of the hyper-rectangle), then: (It is not just the hyper-rectangle boundary. In case the center is inside the distance is always zero. When the center is outside the distance from the hyper-rectangle is minimum from one of the boundaries)
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The above theorem states that if the hyper-rectangle is dominated by a centroid, then it is the centroid that is the closest to the hyper-rectangle. 
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Figure 1: The dotted lines are the lines of decision between C1, C2 and C1, C3. C1 is also closest to any of the hyper-rectangles. C1 dominates the hyper-rectangles U1, U2 and U3.
Definition 3: Given a hyper-rectangle h, and two centers c1 and c2, we say that c1 dominates c2 with respect to h if every point in h is closer to c1 than it is to c2.

Thus the ownerC(h) dominates all the centers in C, except itself. That is, we say that a hyper-rectangle is dominated by a centroid if no other centroid is closer to any point of the hyper-rectangle than this centroid. 
Lemma 1: Given two centers c1, c2, and a hyper-rectangle h such that d(c1,h) < d(c2,h), the decision problem "does c1 dominate c2 with respect to h?" can be answered in O(d) time where d is the dimensionality of the dataset. 

The task mentioned in Lemma 1 can be done by taking the extreme point p of the hyper-rectangle h in the direction 
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 and verifying if p is closer to c1 or c2. If it is closer to c1 then c1 dominates c2. 

Furthermore, finding the extreme point in the direction 
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, that is, the linear program “maximize 
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” can be solved in time O(d). Again we notice the extreme point is a corner of h. For each coordinate i, we choose pi to be himax if c2i > c1i , and himin otherwise.

Using theorem 1 and lemma 1, we can find in at most O(k’d), where k’ is the number of cluster centers passed to the node and d the dimensionality of the data, if any cluster center dominates the hyper-rectangle. If so, all the points in this hyper-rectangle can be assigned to this cluster. 
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Figure 2: This picture shows the vectors C2 – C1 and C3 – C1. E1, E2, E3 and E4 are the extreme points in the direction C2 – C1. E3, E4, E5 and E6 are the extreme points in the direction C3 – C1.
All the cluster centers are initially passed to the root node. The node verifies if a single cluster center dominates its region. Using theorem 1 and lemma 1 described before does this. That is, we find the centroid closest to the hyper-rectangle (in the case of the blacklisting algorithm) or the centroid closest to the center of the center of the hyper-rectangle (filtering algorithm). Using lemma 1, we can then verify if this centroid dominates all the other centroids. If so, all the points in the node are assigned to that center. If the closest center does not dominate all the other centroids, then the closest centroid and the centroids not dominated by this centroid are passed to the child nodes. The same process of filtering is repeated at the child nodes. When a node is completely assigned to a single centroid, the centroid details are updated based on the sum of the points in the node, their norm squared and the number of points assigned so that the distortion and the mean of the points assigned to a centroid can be computed. 

2.4.2 Variants of k-means using kd-tree

At least two other variants of k-means using the kd-tree are known. These are described in [10] and [4]. 

In [10] is also probably the first use of kd-tree for k-means in a manner similar to the blacklisting algorithm. A kd-tree is used as a data structure to store the points and points are assigned to the center in bulk based on the regions of the kd-tree. However, in [10] the concept of domination of a node by a center as in blacklisting is not used. Instead, a node was considered closer to a node only if its maximum distance from the hyper-rectangle was more than the minimum distance of any other center. 

In [4] is suggested a method very similar to the blacklisting algorithm, called the filtering algorithm, for speeding up the execution of the k-means clustering. This algorithm differs from the blacklisting algorithm only at two places. One difference from the blacklisting algorithm is that in order to find a potential owner instead of distance from the cell as in theorem 1, the distance from the center of the hyper-rectangle is taken. This has the advantage that when there are more than one cluster centers which are inside the hyper-rectangle, the cluster center that is closer to the center of the hyper-rectangle is chosen. Another difference between the filtering algorithm and the blacklisting algorithm is that during the kd-tree construction, the filtering algorithm uses a sliding midpoint plane for splitting a node. In this, if one of the children nodes has no points in its range the splitting plane is shifted so that at least one point is contained in every node.  See [6] for further discussion on the sliding midpoint splitting in kd-trees.  

All the three algorithms, described in [10], the blacklisting and the filtering algorithm proceed in very similar fashion. The algorithms are recursive in nature and call the children nodes if an owner does not exist. All the cluster centers are initially passed to the root node. The node verifies if a single cluster center is closer to the region than any other, using their respective criteria. If so, all the points in the node are assigned to that center. If the closest center does not dominate all the other centroids, then the closest centroid and the centroids not filtered (again based on their respective criteria) by this centroid are passed to the children nodes. The same process of filtering out centroids is repeated at the child nodes. When a node is completely assigned to a single centroid, the centroid details are updated based on the sum of the points in the node, their squared norm, and other cached statistics so that the new location of the centroid and the distortion can be computed. 

In the filtering algorithm, based on how the tree is are classified as expanded if the children of that node were visited. 
Definition 4: A node is expanded if its children are visited when the tree is traversed.

Though these work well for lower dimensions, the performance is not as good for higher dimensions. This is so because the kd-trees are not very good for higher dimensions. However the time complexity of these algorithms does not increase linearly with the number of points or the number of clusters, which is the case with the naïve k-means algorithm. As a result of these, these algorithms are better suited for large number of points and centers. In [4] it is proven that when the clusters are close to the actual centers, the number of nodes expanded in a k-means iteration of the filtering algorithm is of the order of O(nk2/
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 is the cluster separation. Thus the time complexity of the k-means reduces as the cluster separation increases. This is in contrast to the O(nk) cost of single k-means iteration in the naïve k-means iteration for all degrees of separation. 

The filtering algorithm that computes the closest centroid based on its distance from the center of the hyper-rectangle performs better than blacklisting algorithm. One advantage of using the sliding midpoint plane for splitting the plane over the method in the blacklisting algorithm is that every node has at least one point. Thus any node with no points in its region is eliminated. The idea is already more or less expressed in saying that a region with no points is identified. Therefore, this has been discarded.

In this chapter we have covered all the basic concepts that are needed for understanding the algorithms that are discussed in the following chapter. We use all features discussed in this chapter in our algorithms and also introduce some new concepts that add an advantage to the algorithm. 

3 Accelerating the Global   k-means

In this chapter we combine the three algorithms described by us in the previous section. Thus we combine the global k-means algorithm suggested in [1], the fast k-means algorithm suggested in [2] and [4] with the naïve k-means algorithm, thereby making the global k-means tractable for large data set. The kd-tree as in [1] is used for the insertion positions of the centroids. The kd-tree as in [2], as in the blacklisting algorithm, with minor modifications, is used for accelerating the k-means iteration. Certain other modifications are proposed that speed up the algorithm considerably. As for the concepts described in [1], the same assumption s also used here. We restate this assumption once more below:  

Assumption: The assumption used in the algorithm is that the global optima can be reached by running k-means with the (k-1) clusters being placed at the optimal positions for the (k-1) clustering problem and the kth cluster being placed at an appropriate position that is yet to be discovered. 

This chapter is organized in three sections. In the first section we give an overview of the fast greedy k-means Algorithm. This gives a brief description of the various methods that are part of the algorithm. 

In the next section we discuss an algorithm that enhances the fast k-means algorithms, that is, an algorithm based on the blacklisting algorithm and the filtering algorithm. This is the algorithm that we use in the fast greedy k-means algorithm for convergence of clusters. The new algorithm is a mixture of the naïve approach and the approach using kd-trees and is faster than either of these. This fast algorithm is named the restricted filtering algorithm, as filtering is not done when certain criteria are satisfied. The restricted filtering algorithm also uses some new concepts not used in either naïve k-means or the filtering algorithm. 

The next section gives an algorithm that acts as the crucial link in combining the restricted filtering algorithm and the greedy global k-means algorithm. Efficient implementation of this link is thus very important for the fast greedy k-means algorithm. We then combine the restricted filtering algorithm and the greedy global k-means algorithm to get a fast greedy k-means algorithm. 

The fast greedy k-means algorithm overcomes the major shortcomings of the k-means algorithm discussed in chapter 1, viz. possible convergence to local minima and large time complexity with respect to the number of points in the dataset. However, there is a limitation in that though the algorithm can be used for large number of data points, it might until not be feasible to use the fast greedy k-means algorithm for large number of clusters and higher dimensions. 

3.1 The overall algorithm

The fast greedy k-means algorithm uses the concepts of the greedy global k-means algorithm for a global solution. The intermediate convergence is done using the restricted k-means algorithm instead of the naïve k-means algorithm.

The following 4 steps that have been illustrated in the diagram below outline the algorithm.

Step 1: The first step of the algorithm is to find an appropriate set of points that could act as the insertion positions for the new clusters in the cluster insertion steps of the algorithm. This is done using the kd-tree as in [1]. Thus, the fast greedy k-means algorithm starts by first initializing the kd-tree so that the centroids of the points contained in the leaf nodes can be used for the insertion of new cluster positions. This variant of kd-tree splits the points in a node using the plane that passes through the mean of the points and is perpendicular to the principal component of the points in the node. The number of buckets (leaf nodes) is pre-specified, so one does not split a node if the maximum number of buckets has been reached. Normally the number of buckets is taken to be the number of clusters that one wants to in the final solution. For further discussion on the properties of the kd-tree, see [1]. 

Step 2: Once the cluster insertion locations are determined, the k-means initializes the first cluster to be the mean of the points in the dataset. This is the optimum cluster center for K = 1. This is the first step in our iterative process. 

The algorithm proceeds based on the following concept. Let us assume that we have the optimum clustering for K – 1 clusters.  Using the assumption in [1], also described in chapter 2, we have to find an appropriate cluster location for insertion so that the cluster locations for the (K – 1)-means and the new cluster location converge to the optimum cluster locations for k-means. 

Step 3: One way to find the new insertion location is to run k-means until convergence with each of the candidate cluster locations computed in step 1 being added to the   K – 1 means optimum solution. However, this is very time consuming. As a result we use a greedy approach that is an approximation. We only compute the new distortion when the new cluster is added at a candidate insertion position. The point that gives the minimum distortion if added to the existing K – 1 means/centers in there own positions is taken to be the cluster center that is most appropriate for getting the optimal k-means solution. 

Step 4: The final step in the algorithm is to run k-means until convergence on the configuration for K – 1 clusters plus the new cluster being added at the location as determined in Step 3. If we have the required number of clusters, the algorithm is terminated. Else we go back to step 3, find another insertion location and run the algorithm for the new set of clusters. 

3.2 Restricted filtering Algorithm

The restricted filtering algorithm concentrates on accelerating step 4 of the fast greedy k-means algorithm. As this is executed several times, in a for loop, accelerating the large number of nearest-neighbor queries that the algorithm executes in step 4 can significantly reduce the time complexity of the algorithm. For each iteration of k-means, one has to assign various data points to their nearest cluster centers and then update the cluster centers to be the mean of the points assigned to them. 
The restricted filtering algorithm is very similar to the filtering/blacklisting algorithm explained in chapter 2. Modifications/extensions have been done so that efficiency can be improved in the construction of nodes, space and number of nodes spanned. The modifications/extensions are:

1. Boundaries of the node: A modification is done at the stage when the kd-tree is created. In methods in both [2] and [4], one of the boundaries of the region of the node was the plane perpendicular to the dimension along which the parent hyper-rectangle is split. The other extreme along this dimension was typically the other extreme value along that dimension in the parent. As a result, the union of the region of the children equals the region of the parent. However, in this scheme, large regions of the node have no point, also these regions are considered during the dominance check. An improvement in the above scheme can be made. The boundaries of the node are redefined based on the points in the region. The bounds of the region are the extreme values that the point can take. Thus if there is only one data point in the hyper-rectangle, its coordinates would be both the higher and lower extremes of the region that would be looked at by the algorithm. This gives marginal improvement during filtering and also helps when the resultant region is not split by any of the Voronoi boundaries of the centroids. It can also be noted that if the boundaries were redefined this way, each of the children nodes, formed by splitting the node along the longest dimension, would have at least one point each, thus eliminating the need for a sliding midpoint splitting as suggested in [4]. 

2. Threshold for direct computation of distances: Another change is in the condition when we descend the tree in a node. The cost overheads of the blacklisting and filtering algorithm are high. The overhead is high not just when we have to create the tree but also when we have to traverse the tree, as we have to maintain/compute several statistics for each node individually. Furthermore, the cost of the traditional k-means is significantly less for small number of points and centers. As a result it would be more intuitive to use a combination of both the accelerated and the naïve algorithm. When the cost of the naïve algorithm is less, i.e. product of number of data points and the number of centroids to be considered is less than a given value in the hyper-rectangle, instead of descending the tree, we directly compute the distances and assign the points in the hyper-rectangle to the centers. The threshold value is decided based on experimental results on various random datasets of various dimensions and sizes. This change results in a speed up of at least two to three times when compared to the implementation without the threshold value.  It should be noticed that even if the average height of the kd-tree reduces by just one, the number of nodes to be expanded is reduced to almost half. This results in reduction of large overheads like recursion and maintenance of statistics for each node. In certain languages like MATLAB, having to run a large number of statements as against the few statements as required for direct computation is also a big overhead.  

3. Kd-tree construction at runtime: It might be noted that as a result of the modification in (2) above, not all nodes with more than one data point have children. As a result the children of a node are determined only at run time, i.e. only if this node is expanded in some iteration. However, once the children of a node are defined, these are stored so that one does not have do redefine the children. This might give considerable advantage as the depth of the tree is reduced considerably. Also the space complexity is drastically reduced as even if the average depth reduces by just one, we have reduced the space complexity of the tree to almost half as with a full tree. 
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Figure 3: This figure shows a typical case when using the threshold would be advantageous.  The decision line passes through almost the middle of one of the children hyper-rectangles that has only 7 points. Instead of splitting this node, we would directly compute the distortion.

The restricted filtering algorithm can is summarized in the following:

	Update (Node U, Centers C) {

    Do any initializations to U if first call //boundaries set to extreme points 
    If the threshold criteria for direct computation is satisfied { 

        Directly compute distances; update statistics of centers

        Return

    }

    Find the centroid c* closest to the center of the hyper-rectangle U

    If c* dominates all other centroids {

        All points in U belong to c*; update statistics

        Return;

    } else {

        Find the centers in C, Cunfiltered, not dominated by c*

Do initializations to the child nodes if first call, //points split in node among children
Update (U.left, Cunfiltered)

Update (U.right, Cunfiltered); 

Return;


The main operations in k-means are to find the mean of points in a cluster region and to compute the distortion. When the distances are being computed point by point, the computation of these statistics is trivial. However when using the restricted filtering algorithm, points are assigned in bulk, so the computation is not so straightforward. While simply initially computing and storing the sum of all the points in a node can obtain the mean, there are two ways in which the distortion can be computed. They are described below.

3.2.1 Computing Distortion for the current set of centers:

For all points X that belong to a particular center ((x) the contribution to the total distortion is:
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(2)

Where N is the number of points. The above equation can be directly used to compute the distortion for the current set of points if one has stored the statistics of the sum of squared norm of the points, the sum of the points that belong to a single cluster and the number of points in each cluster. 

3.2.2 Computing the distortion for the updated list of centers:

The same statistics can be used to compute the distortion with the updated centroids. This is a new method of computing the distortion devised by us. Let (’(x) be the new centroids. (’(x) is computed as the mean of the sum of points in each region. Thus 
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Substituting the same in the equation (2), we get the following 
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The statistics that need to be stored in either of these is the same viz. the sum of squared norms of all the points in a node. However, based on the formula that is used, we might either obtain the distortion for the old set of centers or the one-step updated centers. However when we use the second formula for obtaining the distortion for the new cluster centers, the number of iterations required for convergence would reduce by one (based on the criteria that we use for convergence). This results in marginal reduction of the time taken for convergence. The exact figures about the reduction in time taken can be seen in the experimental results, Section 5.1: Effect of number of points, Effect of Dimensionality and Effect of number of centers. Section 5.2: Variation of dimension, Variation of number of points. 

The restricted filtering algorithm is highly efficient and faster than either the naïve k-means algorithm or the filtering algorithm for all types of problems except when the dimensionality is very large. In fact, the restricted k-means algorithm can be viewed as a combination of the naïve k-means and the filtering algorithm. When the threshold value is set very high, the algorithm reduces to a naïve k-means algorithm. When the threshold is set to zero, the algorithm reduces to the filtering algorithm. Thus in this case, the restricted k-means algorithm would be at least as fast as any of these two algorithms but the threshold value for direct computation of distortion might be different. For lower dimensions the threshold value is expected to be lower and for higher dimensions, the threshold value is expected to be higher.

3.3 Distortion computation for the set of candidate center locations

Distortion computation for the set of candidate centers is the key step in the fast greedy k-means algorithm. The distortion with each of the candidate centers being inserted in the current set global clusters needs to be computed. Thus for each cluster that is inserted, the distortion for each of the candidate centroids is computed. As the number of candidate centroids is large, this step can become a bottleneck in the program. The number of such distortion computations might easily exceed the total number of distortion computations done by the restricted filtering algorithm. An efficient algorithm of this step is thus very important for the fast greedy algorithm. 

The computation of this distortion parameter is also very similar to the restricted filtering algorithm. We use the same kd-tree that was defined in the previous section for the restricted filtering algorithm. The outline of the algorithm that computes distortion with a centroid added is as follows.  
	CalDistortion (Node U, Point p) {

    Do any initializations to u that are necessary

    If the threshold criteria for direct computation is met { 

        Directly compute distances

        Return

    }

    If the centroid closest to the center of U dominates p {

        Distortion = same as computed in last k-means iteration;  

        Return;

    }

    If p is closer to the center than the closest centroid and the closest centroid is not contained in the hyper-rectangle {

          If p dominates all the unfiltered centroids for node U considered by the last k-means iteration {

        //all points in the region belong to p 

        Compute distortion // all point assigned to the point p
        Return

    }

}

Do the necessary initializations to the child nodes, 

Distortion = Caldistortion (U.left, p) + Caldistortion (U.right, p); 

Return;
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Figure 4: This figure shows 3 possible insertion positions. C1 and C2 are the centroids that are not filtered. (i) P1 is closer than the closest centroid and also dominates the unfiltered list of centroids; all points assigned to P1. (ii) P2 is dominated by the closest centroid; Distortion is the same as last computed in k-means iteration. (iii) P3 is not dominated by the closest centroid; calDistortion is called recursively for points of this type and those not classified as cases (i) and (ii). 

As mentioned previously, it is important that the above be implemented in an efficient way. As a result, we save the statistics that have been already computed in the k-means iteration. These include the closest centroid in the iteration, the list of unfiltered centroids and the distortion as computed previously. Also during implementation, we use a version of calDistortion that does all the above computations for all the possible insertion points simultaneously so that the advantages of the language and some common computations like the distances of the centers from all the points in case the threshold is satisfied can be used to the best of the advantage.  
The condition for direct computation is slightly different than in the restricted k-means algorithm. In calDistortion, we not only have the old k-means centers from which distances need to be computed but also the insertion positions which are often more in number than the number of centers. As a result, the threshold condition is also modified. We not only check that the product of the number of points and the number of point satisfies the criteria in the restricted k-means algorithm, but also introduce a new threshold which validates the product of the number of insertion points and the number of points. We call these thresholds threshold1 and threshold2 respectively. 

It should be noted that the task accomplished in this step is very similar to the distortion computation in the restricted filtering algorithm except for three things: 1: Instead of keeping track of the mean and the sum of squared norms of the points assigned to each cluster, we maintain the distortion for each cluster from the previous iteration; 2: We already know which cluster each of the points belongs to; 3: The list of centroids that were unfiltered in the last k-means iterations and the final distortion as was obtained is already cached in the node. As in the restricted filtering algorithms, there exist two ways of computing distortion. However, in calDistortion, we compute the distortion for the original cluster centers only and not for the updated list of centers. It would have been highly advantageous if we had been able to compute the distortion for the updated list of centroids, as then we would be choosing the insertion point based on the distortion after the iteration and so the choice would be a better approximation of the actual insertion center. However, doing so in MATLAB is not so efficient for multiple sets of clusters. As a result we always compute the distortion based on the initial set of centers and not the updated centers. Further discussion on the same is in the chapter on Implementation, section 4.3. 

In this chapter we have given a detailed description of the fast greedy k-means algorithm and its variant that does advance distortion computation. All the new ideas viz., the restricted filtering algorithm, advance distortion computation and the distortion computation with just one added center have been given due emphasis. The next chapter gives a description of some of the implementation issues when implementing the fast greedy k-means algorithm. 

4 Implementation

In this chapter we discuss the important issues that we had to handle in our implementation of the various algorithms discussed so far. We explain the various mathematical formulae used. These include the computation of the new centroids and computation of the distortion: for both the current and the updated list of centers. We also discuss how we computed each of the terms in these formulae in the actual implementation. Finally we give the basic fields in a single node of the kd-tree and how one can check if one of the centers is dominating all the other centers. All this data will also help in replicating the results obtained in the experimental results at other places. 

4.1 Computing the new Centroids

The new centroid is the mean of all the data points that belong to this centroid. As we assign the data points to a centroid in bulk, for each node in the tree we have to cache the sum of the points in its region. Whenever a node is assigned to a centroid, the corresponding sum needs to be added for that centroid. The new location of the centroid is the total sum divided by the total number of points assigned to this centroid. 

Thus computation of the new centroids can be done by storing/caching the statistics of the sum of points in a node and the number of points in each node. Whenever a node is assigned to a center, these statistics are added to the properties of that node. When a direct computation is done because of the threshold criteria being satisfied, we can directly compute the distance of each of the points from the all the centers in consideration. 

4.2 Computing the distortion

As mentioned in chapter 3, there are two ways in which the distortion can be computed by maintaining the same statistics in a node. We restate the two formulae for reference:
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 The statistics that are required for the distortion computation are 

(i). Squared norms of points in the node;

(ii). Sum of points in the node (also required for finding the new center location);

(iii). Number of points in the node (also required for finding the new center location).

The distortion with the updated centroids can be computed by maintaining the number of data points assigned to each center, the sum of points and the sum of the norm squared of these points. 

Though it appears that equation (4) is always better to use as it gives the distortion for the updated list of centroids, there is one drawback with this equation. The distortion can be computed only after the complete traversal of the tree is done, as the values of the updated centers would only be known then. By contrast, equation (2) can be used in the computation of distortion for each of the hyper-rectangles individually.

4.3 Computing distortion for added center

Here we are referring to the calDistortion step viz. step 3 of the fast greedy k-means algorithm. Efficiency is most important in this step. The number of distortion computations that we have to do in this step is much more than the distortion computations that we do for the convergence of k-means. Using the strength of MATLAB, we do computation in matrices for all the possible insertion points simultaneously. 

Using equation (4) in this step would be actually better than using equation (2) as then we are finding the distortion after one run of k-means iteration which is a better approximation than computing the distortion without any iterations. However for equation (3), we have to first explicitly compute the squared norm sum and the number of points that are in the region of each cluster. When we have a single partitioning, this is simple. However when we have to maintain the sum for each of the possible insertion points, the task becomes difficult. For each of the candidate centers, the sum of the points (which in turn is a vector) for each of the clusters needs to be maintained. This makes the matrix three-dimensional and difficult to implement. In contrast, the distortion in each region can be computed easily using the equation (2) and only the distortion values summed. As a result we use equation (2) for the distortion computation in the calDistortion step.   

To use equation (2) for the computation of the distortion, we have to cache the sum of the points assigned to a centroid in a hyper-rectangle and the number of points that are closest to the corresponding centroids in a hyper-rectangle. As the list of centroids that are to be considered during the calculation cannot be known during the recursion of calDistortion, the list of unfiltered centroids last considered (by k-means) is also stored/cached in the nodes. 
The implementation of calDistortion in MATLAB accepts a set of points instead of a point and computes the distortion with each of the points added.  The return value of calDistortion is a vector representing the distortion (in its region) with the respective points added to its list of centroids. The algorithm for the same is depicted in the following:
	CalDistortion (Node U, Points P) {

    Do any initializations to U that are necessary

    If the threshold1 and threshold2 criteria for direct computation is met { 

        Directly compute distances

        Return

    }

    for the Points in P which are dominated by centroid closest to the center of U {

        Distortion = same as computed in last k-means iteration;  

        Return;

    }

If closest centroid not contained in U {

    For Points in P dominating all the unfiltered centroids of the last k-means iteration for node U {

        //all points in the region belong to these candidate centers in P 

        Compute distortion // all point assigned to the new center in P
        Return

    }

}

Do the necessary initializations to the child nodes, 

Distortion = Caldistortion (U.left, PnotComputed ) + Caldistortion (U.right, PnotComputed ); 

Return;


4.4 Maintaining the Tree

As the kd-tree is a binary tree and also keeping in mind the various statistics for k-means and distortion computation for the added center, the following fields are necessary in a node:

Hmax

//the upper bound of the hyper-rectangle
Hmin

//the lower bound of the hyper-rectangle
X

//the list of points in the hyper-rectangle, //necessary so that they could be assigned to the //children. 

Leftchild

Rightchild

Sum

//sum of all the points in the hyper-rectangle
Normsq
//sum of the norm squared of all the points in //the hyper-rectangle

C

//indices of centroids not filtered
Csum

//sum of points assigned to the various centroids

W

//number of points assigned to various centroids

Also, the node needs to be initialized only once to compute the mean and other fields. After that it would only need to be traversed. 

5 Experimental results

We performed a series of carefully prepared tests on synthetic data generated using MATLAB; synthetic data generated using a well-known algorithm as in [15] and on some well-known data sets. The various experiments performed compare the effect of various parameters of the algorithm and its variant with advanced distortion computation suggested in this paper. The experiments also compare the algorithm to the greedy global k-means algorithm as in [1]. 

In all the tests that we perform, we compare the distortion and time of the algorithm. Tests have been designed in order to measure the effect of the various parameters in the algorithm. These include the effect of number of points in dataset, dimensionality of data, number of centroids and the threshold values for the direct computation.  The distortion is considered when considering the affect of the number of leaves of the kd-tree on the quality of the solution. 

All the tests are conducted on a Celeron 600 MHz machine with 128 MB RAM. MATLAB version 5.2 on Windows 98 is used for the tests. 

5.1 Dataset generated using MATLAB

We generated a set of datasets using MATLAB for testing the effect of various parameters and size of the problem on the time taken by the algorithm. By choosing the required number of cluster centers randomly in the region [0,100] and then creating a required number of points with a normal distribution around these points we create the datasets on which the experiments are done. 

5.1.1 Variation of number of insertion points

Under this category of tests, the effect of the number of insertion points on the solution and the time taken for the computation was evaluated. Having a smaller number of insertion points might affect the quality of the solution, as it might not be globally optimal. But having many insertion positions would result in the calDistortion step taking much longer. 50000 points were generated with 50 cluster centers and 1000 points being generated around them with a normal distribution. The results are displayed the figure below. 
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Figure 5: Variation in number of insertion points (50 centers)

As expected the quality of the solution improves with increasing number of insertion points but only to some value (=150 in fig 5) . After that the distortion is more or less the same. The time taken for the computation increases with increasing number of insertion points. Based on the results of these experiments, we set the number of insertion points in our other experiments to be the same as the number of centers. 

5.1.2 Variation of threshold1

Threshold1 is the threshold for direct computation of the distances in the restricted filtering algorithm. Having a small threshold1 value will make the restricted filtering algorithm closer to the filtering algorithm as in [4]. A large threshold will make the algorithm similar to the naïve k-means algorithm. We conducted the experiments on two different dimensions to also see the variation in threshold based on the dimension, as we are aware from previous results in [4] that the filtering algorithm does not perform very well for high dimensions. The number of insertion points was set to the number of centers.  The results are shown below. 
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Figure 6: Threshold1 vs. Time taken. 2 D data
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Figure 7:  Threshold1 vs. time taken. 6 D data

The results obtained in the experiments show that there exists an optimum value of the threshold1 for which the algorithm would take the least time. The value of threshold1 would probably depend on the language of implementation, as the naïve k-means algorithm might be highly efficient compared to the implementation of the filtering algorithm. For example in MATLAB, computation of distances for all the points to all the centers can be implemented very efficiently in a vectorized fashion while the filtering algorithm would require several computations. 

5.1.3 Variation of threshold2

Experiments were also done to see the affect of the variation in the threshold2, which is the product of the number of candidate centers in consideration and the number of points. The affect on the value of the time taken for the algorithm to execute is considered. The data had 50000 points and was generated by creating an equal number of points with normal distribution around each of these 50 centers. The threshold1 value was set at 10000 in these experiments. The results are displayed in the following graphs. 
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Figure 8: Threshold2 vs. Time taken. 2 D data, threshold1 fixed as 10000
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Figure 9: Threshold2 vs. Time taken. 6 D data, threshold1 fixed as 10000 

The results show that as with threshold1, there also exists an optimal value for the threshold2. However the variation is not very high and is generally not more than 10 percent of the minimum time taken if the threshold2 is not set very less compared to threshold1.  

5.1.4 Effect of number of points

Under this category of tests, test runs are performed to see how the various algorithms scale with increasing number of points. The three algorithms that we tested were the greedy global algorithm in [1], the fast greedy algorithm discussed in this thesis and the fast greedy algorithm with advanced distortion computation in the restricted filtering algorithm. The fast greedy algorithm with advanced distortion computation is expected to perform marginally better than the algorithm with direct computation as it has one iteration of the restricted filtering algorithm less during the convergence of k-means. The results of the same are shown in the following graph.   
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Figure 10: Variation in number of points. 2 D

As expected the complexity of greedy global algorithm in  [1] increases linearly with time. Algorithm in [1] also requires a lot of memory and could not run for more than 50000 points. The complexity of the fast greedy algorithm does not increase as fast and the rate of increase also appears to fall with increase in the number of points. The fast greedy algorithm also fares better than the greedy global. Though it might be expected that the distortion for the fast greedy algorithm with advance distortion computation might not be as good as fast greedy algorithm since the number of iterations in each step is one less, that was not so. The distortion of all the three cases was almost identical. 

5.1.5 Effect of dimensionality

Under this category of tests the effect of variation in the dimensionality of the data on the time taken by the algorithm is evaluated. The tests involve 50000 points and 50 clusters. The average time taken for 2 runs is plotted in the graph below. 

[image: image37.png]Time (s)

1200

1000

800

600

400

200

Variation

in Dimension (50000 points, 50 centers)

ension

12

14

16

—+—Likas et al

Fast Greedy

Fast Greedy with
advance distortion
computation





Figure 11
Curiously for normal data, variation in dimension does not seem to have much effect on the time taken for the fast greedy algorithms. Also time taken for the algorithm in [1] falls initially with increase in dimensionality. These results were consistent across successive runs on data generated in a similar fashion. 

This might be because we are testing the data of 50000 records and the algorithm in [1] requires lot of memory and therefore might be creating a lot of page faults. By contrast, the fast greedy algorithm is highly memory efficient works very well even for 16 dimensional data. 

5.1.6 Effect of number of centers

The effect of variation of the number of centers on the time complexity of the algorithm is seen in these tests. As before we generate normal data. The total number of points is set at 50000. The data in this case is 2 dimensional. Tests were not conducted on the algorithm in [1] as it required lot of memory and could not run even for 100 centers with 50000 points. 
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Figure 12
As expected the number of centers affects the complexity of the algorithm more or less in a quadratic way. This is also expected as according to a result in [4] the number of nodes expanded in a k-means iteration in filtering algorithm is not more than O(nk2/
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2). Thus for each k-means iteration, the time complexity is expected to be of that order. As the number of clusters increases one by one, the time complexity of the fast greedy algorithm is expected to be: 
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Thus with increasing number of centers to converge, the restricted k-means algorithm also takes more time.  As a result of this, the fast greedy algorithm cannot be used for large number of cluster centers. However our restricted k-means algorithm can still be used. 

5.2 Data generated using Dasgupta [15]

In this set of experiments the dataset is generated using the algorithm in [15]. The algorithm generates a random Gaussian distribution given parameters like eccentricity, separation degree, dimensionality and number of points. Tests are done to compare the greedy global k-means algorithm with the algorithms proposed in this paper. 

5.2.7 Variation in dimensionality

The effect of dimensionality of data on the time taken is computed. 50000 points around 30 centers are generated with a Gaussian mixture of eccentricity 2, and varying degrees of separation based on the lines in [15]. The results obtained are as in the following diagrams. 
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Figure 13: Time Vs Dimension, 50000 points, 30 centers, eccentricity 2

Unlike the case with normally distributed data uniformly with 50000 points and 50 centers (the previous category of tests), the increase in dimensionality hardly affects the time complexity of the algorithm in [1] but drastically increases the time complexity of the fast greedy algorithm. The algorithm in [1] performs better than the fast greedy algorithm for higher dimensions. This is also expected, as kd-trees do not perform well for high dimensional data. 

5.2.8 Variation in number of points

The variation of the number of points is tested in this category. Random points are generated around 30 centers with an eccentricity 2 and separation degree of 2 in two dimensions. The number of points ranged from 20000 to 160000. The results obtained are illustrated in the diagram below. 
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Figure 14: Time vs. Number of points, 30 centers 2 D, eccentricity 2, separation degree 2
The results in this case are similar to those obtained with synthetic data generated using MATLAB alone. 

5.2.9 Variation in Cluster Separation

Under this category of tests, we varied the cluster separation of the clusters being generated to see the affect of the various algorithms in them. 50000 points were generated around 30 centers with eccentricity 1 and varying cluster separation. The results obtained are illustrated in the figure below.
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Figure 15: Variation in separation, 30 centers, 50000 points, eccentricity 2

The decrease in time taken for increase in the separation is expected for two reasons. 

· With the increase in the separation of the clusters, the number of iterations needed for convergence in k-means would be less;

· The cost of Fast Greedy approaches is also likely to decrease because of the complexity result proved in [4], viz., the maximum number of nodes expanded in a k-means iteration on filtering algorithm is O(nk2/
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2), where 
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 is the separation degree of the clusters. As we have a restricted k-means approach, the number of nodes expanded is expected to be much less. 

The reduction in the time taken by the algorithm in [1] is only because of the first reason stated above. The fast greedy approach would require less time because of both the above reasons. In fact it appears that the affect of both of these is equal since while the algorithm in [1] reduced the time complexity by a factor of just two, the time complexity of the fast greedy approached reduced by a factor of four. The curves also seem to follow the rule of being proportional to (1/
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2 + constant).
5.3 Dataset from UCI ML Repository

Most of the publicly available real world datasets have very few records. We evaluated our method on the letter-recognition dataset of the Irvine dataset. This dataset consists of 20000 data elements in 16 dimensions, which consist of a large number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli
. This is the largest number of records that any of the datasets in the repository have. 

As it was known that the algorithm does not scale well for high dimension data, the experiments were also conducted by considering only first few dimensions of the data as well. We also experimented with varying values of the threshold. The results are shown in the following table. 

	Threshold1 value
	Time Taken (seconds) for Fast greedy algorithm with advanced distortion computation 

	
	All 16 dimensions
	First 8 dimensions
	First 4 dimensions
	First 2 dimensions

	5000
	304.9
	224.6
	102.4
	41.0

	15000
	235.3
	186.4
	105.4
	48.6

	25000
	227.2
	180.9
	111.7
	57.1

	35000
	227.8
	177.9
	117.6
	59.6

	50000
	225.6
	174.4
	123.9
	64.4

	75000
	228.1
	172.5
	132.1
	72.0

	100000
	227.6
	171.9
	136.2
	76.5

	150000
	226.1
	173.9
	135.8
	80.4

	200000
	228.2
	172.3
	139.4
	83.3

	
	

	Greedy global [1]
	138.3
	136.9
	108.6
	62.9


The results obtained are on expected lines keeping in mind that the fast greedy algorithm is not efficient for large dimensions and for less number of points. The results also show that with increasing dimensions, the value of threshold1 increases. For just 2 dimensions, the best solutions are obtained with a threshold1 as low as 5000. With higher dimensions (8 and 16), the solutions are better for a larger value of threshold1. If the number of points is less, 20000 for example, and the number of dimensions is also less, then which algorithm viz., the greedy global algorithm in [1] or the fast greedy algorithm, is faster depends on the kind of data. Here, the fast greedy algorithm performs substantially better for 2 dimensions. However for data that was generated as described in [15], the fast greedy algorithm was not so much faster for so few points even in the case of 2 dimensional data (refer figure 8). However when the number of points is large and dimensionality low, it is always better to use the fast greedy algorithm. 

6 Conclusion

We have presented a new k-means based algorithm in this thesis that gives us near global solutions efficiently. Two main drawbacks of the k-means algorithm viz., convergence to local minima and non-scalability to large number of points have been effectively handled. The implementation of the algorithm is also simple. The proposed algorithm is a combination of existing works but also introduces some new ideas. 

An efficient method of combining the restricted filtering algorithm and the greedy global algorithm in [1] has been the stepping-stone in being able to develop a fast greedy global algorithm. The fast distortion computation with an added center is able to compute the distortion for the large number of candidate centers. This is done efficiently even when the number of insertion points was much more than the total number of k-means clusters. Also as the k-means centers for all k’ < k are also evaluated, the algorithm can also be used to evaluated the minimum number of centroids that satisfy a given condition.

The experimental results on both the synthetic and real data suggest that the algorithm performs very well for low dimensional data but not so well for data exceeding 6 dimensions. Also the algorithm suggested in [1] is faster for less number of points. This is so as the greedy global algorithm in [1] caches the distances from each of the possible insertion points to each of the data points. The magnitude of data cached is so large that this algorithm is not able to run even for medium sized data of an order beyond 50000 points and 50 centers. By contrast, the fast greedy algorithm is memory efficient and scales very well with large number of points. If the algorithm is to be used only for less number of points caching the distances from the insertion points to the data points when computed by a node can be cached, as in [1]. When this is done, the fast greedy algorithm with caching is likely to run faster than the algorithm in [1] if the thresholds are set appropriately.

However, all the algorithms discussed, including the one in [1], fare very badly in terms of the number of centers. The cost goes up quadratically with the number of centers. As a result the algorithm cannot be used for more than a few hundred centers when implemented in MATLAB. However an implementation in ‘C’ is likely to be up to 50 – 100 times faster making the algorithm feasible even for centers of the order of a few thousands. 

Some of the ideas introduced in this thesis can be used even at places where it is not practical to use the fast greedy algorithm because of large number of centers involved. The restricted filtering algorithm introduced in chapter 3 scales very well for all sizes of number of centers and number of points. This method can be used when one is dealing with millions of records in low dimension. This algorithm is also likely to fare well for higher dimensions with an increase in the threshold values. 

7 Further Research

Currently we are using the center of the partitions formed by a kd-tree as in [1] as the insertion position for the new centers. The centers are used as they give a good preliminary clustering of the data. Other ways could be employed to get a good preliminary clustering. For example to use centers that are suggested for initialization in [9] as the insertion positions. The idea of having the insertion points is only to have an appropriate set of insertion locations so that one of the locations always satisfies the appropriate location assumption (refer Chapter 3) used by the algorithm. The initialization points suggested in [9] would probably give a good preliminary clustering of data to start with instead of the kd-tree as in [1]. 

Another extension of the work would be to come up with a formula for choosing the appropriate threshold values, a formula that would work for all dimensions, number of points and centers. Here we have only been able to experimentally see that an optimum threshold value exists, but not been able to come to the exact value. It is also likely that the thresholds depend on the type of data. More research is needed for deriving the formula.

The current algorithm performs badly with increases in dimensionality. This is because the most important data structure used in the algorithm, the kd-tree, does not scale well with increases in dimension. An alternative way would be to use some other data structures instead of a kd-tree, like AD trees in [5], that scale well with increases in dimensionality. 
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Construct an appropriate set of positions/locations which can act as good candidates for insertion of new clusters;


Initialize the first cluster as the mean of all the points in the dataset;


In the Kth iteration, assuming K-1 clusters after convergence find an appropriate position for insertion of a new cluster from the set of points created in step 1 that gives minimum distortion;


Run k-means with K clusters till convergence. Go back to step 3 if the required number of clusters is not yet reached.








� For a more detailed description of the data, see the Irvine ML Data repository at http://www.ics.uci.edu/~mlearn/MLRepository.html
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